
Modelling Workload of a Virtual Driver

Jan-Patrick Osterloh (osterloh@offis.de)
OFFIS Institute for Information Technology, Escherweg 2

26121 Oldenburg, GERMANY

Jochem W. Rieger (jochem.rieger@uol.de)
Carl von Ossietzky University Oldenburg
Applied Neurocognitive Psychology Lab

26111 Oldenburg, GERMANY
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Abstract

In many transportation modes, automation is added to
increase comfort, efficiency, or to reduce human errors.
Automation has a direct impact on the drivers workload,
which can even be higher then without automation. In
this paper we propose the development of a virtual driver
that can predict human workload in early design phases
of automation and assistant systems. We describe the au-
ditory workload model in a closed-loop simulation and
an early validation.

Keywords: workload; cognitive modelling; driver mo-
del; n-back task

Introduction
In many transportation modes, like in cars, aeroplanes, or on
ships, more and more automation is added, with the objective
to increase comfort of the passengers, to make transporta-
tion more efficient and cheaper, or to reduce human errors.
Introducing automation should reduce human workload and
consequently human errors, but Metzger and Parasuraman
(2005) and others have shown that additional automation can
even increase mental workload. They conclude that opera-
tors “should be given an active role in the system to ensure
that they can detect and respond to malfunctions in a timely
manner” (Metzger & Parasuraman, 2005, p. 13). This para-
digm becomes especially interesting, with the current trend
in automotive industry on autonomous driving, where drivers
are more and more forced into a monitoring role. In order to
allow an evaluation of the workload induced by automation
systems on drivers in early design phases, we propose the use
of virtual drivers, which predict human behaviour in traffic
simulations. Using a virtual driver has many advantages for
the automotive industry. First, one can not only use them for
evaluations in early design phases, where studies with users
are expensive or not even possible, but it also allows to evalu-
ate a lot of different driving scenarios that cannot be covered
with driver studies, because it is either to expensive, too time
consuming, or to risky.

Our virtual driver1 is implemented in the cognitive archi-
tecture CASCaS (Cognitive Architecture forSafety Critical

1Or virtual tester in general, as CASCaS is domain independent

Task Simulation). In the following, we will refer to our vir-
tual driver as “CASCaS driver”. In order to allow also pre-
diction of workload, we will extend our cognitive architecture
CASCaS with different workload measures. Development of
the workload model in CASCaS will be done in iterations,
in order to handle the complexity of the workload topic. In
a first step, Wortelen, Unni, Rieger, and Lüdtke (2016), des-
cribed different measures that could be implemented for pre-
diction of workload of different modules in CASCaS, and im-
plemented and validated a first version of a measurement in
an open-loop simulation. In this paper, we will describe the
second step, the implementation of a closed-loop simulation.

State of the Art

Cognitive Architectures are tools, which provide executa-
ble models of human behaviour based on psychological and
physiological models of human behaviour. In this paper
we will describe the cognitive architecture CASCaS, which
has been developed since 2004 (Lüdtke, 2004) in our in-
stitute. Main driver for the development of CASCaS was
a more application-oriented approach. In contrast to that,
many cognitive architectures like ACT-R (Adaptive Cont-
rol of Thought Rational, (Anderson et al., 2004; Anderson,
2000)), or SOAR (Lehman, Laird, Rosenbloom, et al., 1996)
were developed for creation and evaluation of theories and
models of human cognition. Beside that, more and more
cognitive architectures are now used to predict also pilot
or driver behaviour, for example Salvucci (2006) describes
a driver model in ACT-R, and Fuller (2010) describes a
driver model in QN-MPH. Beside driver modelling, cogni-
tive architectures are also used in aviation, as described in
the Human Performance modelling (HPM) element within
the System-Wide Accident Prevention Project of the NASA
Aviation Safety Program, where they performed a compa-
rison of error prediction capabilities of five cognitive ar-
chitectures (Foyle & Hooey, 2007), including ACT-R and
(Air-)MIDAS (Corker & Smith, 1993; Gore, 2011). CAS-
CaS has been applied in several projects, in order to model
perception (L̈udtke & Osterloh, 2009), attention allocation
(Wortelen, L̈udtke, & Baumann, 2013), decision making of



drivers (Weber, Steenken, & Lüdtke, 2013) and human errors
of aircraft pilots (L̈udtke, Osterloh, Mioch, Rister, & Looije,
2009) and car drivers (L̈udtke, Weber, Osterloh, & Wortelen,
2009).

There are several model-based approaches to assess the le-
vel of cognitive workload in a specific situation. The work-
load model of McCracken and Aldrich (1984) offers a scale,
which assigns workload levels to specific kinds of human
actions like “recall, memorize”, or “visually inspect”. Itdis-
tinguishes four types of workload: visual, auditory, cognitive
and psycho-motor. For example, this model was used to an-
notate behaviour primitives in cognitive models created with
the cognitive architectures MIDAS (Gore, 2011) with asso-
ciated workload levels. However, the model of McCracken
and Aldrich is used in an analytical way and does not assess
workload of a human operator online.

In the current work, we outline a model-based appro-
ach for the online assessment of workload. For real hu-
man operators, online assessment of workload is ongoing
research, and typically performed based onphysiological
measures. Physiological measures are quite popular as
they can continuously record the operators response wit-
hout actually intruding into the operators task. The most
commonly used physiological measures for workload asses-
sment are electrocardiogram (ECG) and electro-dermal acti-
vity (EDA). Previous researches have consistently demon-
strated that increased workload levels lead to increased heart
rate (HR) and decreased heart rate variability (HRV) (Kramer,
1991). Solovey, Zec, Perez, Reimer, and Mehler (2014) re-
corded ECG and EDA while driving and were able to dis-
criminate three driving situations with increasing control de-
mand. Brain activation measurements may provide the ne-
cessary specificity and state quantification required for online
prediction of workload.

Modelling

In the following sections, we will describe our modelling ap-
proach, starting with a short introduction to CASCaS and the
driver modelling, followed by the workload model implemen-
ted in CASCaS.

CASCaS

The cognitive architecture CASCaS (Cognitive Architecture
for Safety Critical Task Simulation) has been developed
since 2004 (L̈udtke, 2004), and has since then been con-
tinuously improved and used in several research projects
(Lüdtke, Osterloh, et al., 2009; Lüdtke, Weber, et al., 2009;
Lüdtke & Osterloh, 2009; Weber et al., 2013; Wortelen et al.,
2013). Main focus during the development of CASCaS has
been the usage in real-time simulators, mainly car and air-
craft simulators, to cover complex scenarios as needed for
the industrial application as virtual tester. As many cognitive
architectures, CASCaS has several components as depicted in
Figure 1, which cover different aspects of human behaviour.
Main component of CASCaS is the “Knowledge Processing”

component, which is based on Anderson’s theory of behavi-
our levels (Anderson, 2000):
• cognitive layer2: decision making in unfamiliar situati-

ons
• associative layer: rule-based behaviour and decision ma-

king
• autonomous layer: processing without thinking in daily

operations, i.e. sensory-motor programs like steering,
braking

Figure 1: Layered Architecture of CASCaS; (Weber et al.,
2013)

For the driver model, only the associative layer and the au-
tonomous layer are used. CASCaS main input is the for-
mal procedure for the associative layer, which describes the
interaction with the environment in form of IF-THEN ru-
les. CASCaS procedures are specified in a simple, human-
readable, CASCaS-specific text format, allowing also non-
computer experts to read, understand, and use the language
for modelling without the need to have deep understanding of
a programming language. The procedures that are executed
by CASCaS are stored in the Memory component, which also
contains the declarative memory.

In addition to the Knowledge Processing, additional com-
ponents for perceptual and motoric processes are part of the
architecture, as an interface to the Simulated Environment.
The visual component for example, models perception in the
focus and in the visual field (L̈udtke & Osterloh, 2009). At
each moment, system state and processing of the procedure
create the mental model and are expressed as an ordered set
of goals and sub-goals that have to be accomplished – the so
called goal agenda. Processing of the goal agenda follows
these steps:

1. A goal is selected from the goal agenda
2. All rules containing the goal in their Goal-Part are col-

lected, their conditions evaluated by retrieving the nee-
ded information from the memory, and organized into a
conflict set.

2except programming interfaces no model of the cognitive layer
is implemented in CASCaS



3. One rule is randomly selected from the conflict set and
fired, which means that the motor, percept, and/or me-
mory actions are sent to the motor, percept and memory
component respectively, and the sub-goals are added to
the goal agenda.

This process is iterated until no more rules are applicable,and
all goals are achieved.

Driver Model

The driver model is a combination of a procedure for the as-
sociative layer, and some sensory-motor programs on the au-
tonomous layer. The procedure handles decisions that have to
be made by the driver, e.g. application of traffic rules, over-
taking of other cars, and general interaction with the car and
environment. General interaction with the car means opera-
tion of possible assistant systems and car interfaces like radio,
and GPS by the associative layer. A more detailed descrip-
tion on the driver model that has been used is described in
Weber et al. (2013). In our scenario (driving on a German
highway), these rules take care of speed limits, and decide if
other cars have to be overtaken or to follow them. For this,
the traffic is classified onto lanes and positions relative tothe
ego car, i.e. ahead, behind, left ahead, etc. In addition to that,
the distance and speed of the other cars is estimated by the
model based on perceived angular sizes.

The motor programs on the autonomous layer cover the
actual lateral and longitudinal control, i.e. control of the
steering wheel for turns and lane keeping, or control of the
pedals for braking and acceleration. For the lateral con-
trol, we implemented a simple one point steering control
(PD-controller). The longitudinal control has been imple-
mented on the basis of probabilistic models, as described by
(Eilers & Möbus, 2014). In general, the probabilistic models
are a set of Bayesian Networks, which at each point in time
give the probability for a certain output, in our case the bra-
king pedal value and the acceleration pedal value. The proba-
bilities used in the Bayesian Networks are learned from hu-
man driver behaviour that has been previously recorded in a
highway scenario. Note that the decision to brake, overtake
or which speed to drive is made on the associative layer, but
the autonomous layer performs the actual motor actions.

Workload in Closed-Loop Simulation

As a first step of the development towards a workload mo-
del, Wortelen et al. (2016) implemented aWorking Memory
Load as a mean for workload, which is defined as rate of
information elements written to memory, in an open-loop
simulation in CASCaS. They tested the working memory
load, by using a n-back speed regulation task. N-back
tasks have been widely used as a benchmark in the field of
neuroscience to influence memory load and task difficulty
(Miller, Price, Okun, Montijo, & Bowers, 2009). The n-back
speed regulation task requires the driver to follow the speed of
then-th speed sign prior to the actual speed sign, as depicted
in Figure 2.

Figure 2: N-back Speed Regulation Task; from
(Wortelen et al., 2016)

This approach had two main drawbacks. First, an open-
loop simulation has been used, and second the driver mo-
del used by Wortelen et al. (2016) was not so sophisticated
as the driver model from (Weber et al., 2013). Open-loop si-
mulation in this case meant, that CASCaS was feed with the
data from the human drivers, and the steering and accelera-
tion actions of CASCaS are not feed back in a driving si-
mulation. The driver model of Wortelen had therefore only
placeholders for the lateral and longitudinal control to mimic
multi-tasking. As the objective of CASCaS is to be used as a
virtual driver for testing automation and user interfaces in the
car, a closed-loop simulation is necessary, i.e. the feedback
loop between driver model and driving simulator is closed in
a way that the driver model has full control of the simulated
car. The closed-loop allows then predictions of the behaviour,
without the need of data from real human drivers (with the ex-
ception of the data needed for the training of the probabilistic
models used for longitudinal control).

The objective of this paper is to describe the integration
of Wortelen’s workload model in a closed-loop simulation.
To achieve a closed-loop simulation, an extended n-back task
model from Wortelen et al. (2016) has been integrated with
the driver model of Weber et al. (2013).

In a first step, the n-back task procedure for CASCaS has
been revised. According to Juvina and Taatgen (2007) hu-
mans use two different cognitive control strategies for then-
back task:

1. Phonological rehearsal, i.e. internally rehearsing thelist
of speeds

2. Time tagging the event
For our model, we have decided to use the phonological re-
hearsal as strategy for the n-back speed task, as this strategy
was, compared to the time tagging strategy, the easiest to im-
plement, due to the lack of a temporal component in CAS-
CaS.

Each time a new speed sign is perceived, the procedure al-
ters a mental list of the speeds. The mental model maintains
dedicated associations to the memory chunks at the beginning
of the list and it’s end, see “listbegin” and “listend” in Fi-
gure 3. When the number of elements is smaller than the cur-
rent n-back task, the new element is stored into the memory,
the “next” association is added from the current “listbegin”
to the new element, and then the “listbegin” and “cur-



rent rehearsal” associations are moved to the new element.
When the number of elements has reached n, the “listend”
association is moved to the “next” chunk to mark the new list
end. During the rehearsal, the “currentrehearsal” association
is moved over each “next” association from “listbegin” to
“list end”. For each element in the list, an internal speech-

current_sign_value

current_rehearsal last_recall

list_begin

120 60 80 100nextnextnext

list_end

Figure 3: Memory Structure for Rehearsal

action is executed to trigger the phonological loop. Each of
this internal speech actions trigger a workload event, which
are then accumulated over time as the auditory workload. In
our case, we have chosen a seven second interval for the
accumulation, because this reflects the response time that
is measured with the fNIRS. This is a small difference to
Wortelen et al. (2016), as their workload measure captured
more than the memory writes from the auditory component,
but rather all memory writes from the associative layer.

Then, as a second step, this procedure has been integra-
ted with the driver model. First, the rehearsal has been ad-
ded at the appropriate places, i.e. the rehearsal is restricted
to phases where the driver is driving ahead, and not overta-
king. Second, the sign recognition has been replaced with
the one described above, such that the list is maintained, and
the “list end” value is set as the current target speed in the
longitudinal control at the autonomous layer. Figure 4 shows
a screenshot of CASCaS during the simulation. On the left
the visualisation of SILAB, the driving simulator, is depicted,
and on the right the workload visualisation of CASCaS. The
auditory workload is shown in the diagram in the middle.

Validation
For the validation of the workload measure, we have chosen
a two step approach. First, we had an internal model valida-
tion as a kind of pre-test. With this step, we make sure, that
a) the simulator setup and the scenario is working, b) the data
recording is suitable for the planned analysis, and c) the CAS-
CaS driver produces behaviour that is plausible (see below for
hypotheses). Second, we will perform another experiment in
our driving simulator with human drivers. In this experiment,
we will record the driver behaviour as well as physiological
data (fNIRS) to measure the workload of the humans.

Internal Model Validation
Objective of the model validation is twofold. First this canbe
seen as a pre-test for the experiment with the humans, where
the scenario, the data recording setup, and the data analysis
can be tested before the expensive experiment. Second it can
be used for model exploration, i.e. checking the plausibility
of the CASCaS driver behaviour and improvement of the mo-
del subsequently. The plausibility of the model is expressed
in multiple hypotheses to be tested before starting the human
experiment:

1. The auditory workload can predict the n-back task level.
2. The CASCaS driver will adhere to the correct speed limit

according to the n-back level.
As a scenario for the internal model validation, we used the
same scenario as described below for the human experiment,
but without the traffic.

For hypothesis 1, we calculated Pearson’s correlationr be-
tween the n-back level and the predicted auditory workload
for each of the simulation runs. The meanr is calculated
with 0.9773, which supports hypothesis 1. In order to ana-
lyse hypothesis 2, we analysed how well CASCaS followed
the target speed according to the n-back level. For that, in a
first step we had to remove the phases where the speed was
undefined, because the number of speed signs was lower then
the current n-back level. Pearson’s mean correlationr be-
tween the current speed and the nth target speed of the 15
runs is 0.8445. A more detailed analysis of the speed driven
by CASCaS revealed, that in average over all runs, CASCaS

Figure 4: CASCaS workload visualisation while driving; forcomplete video visit
https://hcd.offis.de/wordpress/wp-content/uploads/Workload-02.mp4

https://hcd.offis.de/wordpress/wp-content/uploads/Workload-02.mp4


made 19 errors of speed out of 169 different speed signs in
one run. Error of speed here means, that between two speed
limit signs, the actual speed was not in a range of±10 km/h
of the target speed.

Our analysis showed, that when CASCaS had to reduce
the speed from a high speed limit (e.g. 140 or 160) to a lower
speed limit, the applied braking was not sufficient, such that
the new speed limit is not reached before a new sign arrives.
An example is shown in Figure 5.

Figure 5: Speed of CASCaS vs. Target Speed

After the target speed of 160 km/h, it goes down to 80 km/h
at time 00:29:25. As marked by the red arrow, CASCaS does
not decelerate below 90 km/h. The explanation for this is the
probabilistic model that is used for the longitudinal control.
The probabilistic model has been learned from humans dri-
ving in a driving simulator on a normal German highway. In
this scenario, subjects never exceeded 130 km/h on the one
hand, thus the model has never learned to handle fast driving.
In addition to that it can be observed, that the subjects pre-
ferred to use the motor break to decelerate, as many people
do during normal driving. While this gives a very human-like
speed control during normal cruising, the learned probabi-
listic model does not sufficiently represent driver behaviour
for the n-back speed experiment, where active braking and
more accurate speed control is required. In future versionsof
the model, the probabilistic model could be replaced with a
mathematical PD controller, to overcome this problem, or re-
trained with new experimental data. Beside that, the general
driving behaviour, including the overtaking and the rehearsal
seems natural, i.e. it shows actual human behaviour.

Comparison with Human Data

For further evaluation, we conducted an experiment with 10
subjects (7 male, 3 female). All subjects where students in
an age range between 22 to 42 (mean 27.3 years) with a valid
German driving license. Most drivers had more then 10.000
km of total driving experience, 4 had between 5.000 km and
10.000 km, and only one had below 5000 km. During the
experiment, subjects where given five different n-back levels,
from 0-back to 4-back, and thus five different levels of wor-
kload, with 0-back inducing the lowest workload level, and
4-back the highest. Each n-back task lasted around three mi-
nutes and consisted of ten different speed changes randomly

distributed from 70-140 km/h in steps of 10 km/h. Speed
changes where randomly assigned, but we made sure, that
speed changes where not larger then 20 km/h at once. We had
four repetitions for each n-back task, randomly distributed to
avoid sequencing effects. Random distribution of n-back task
and speed sequence has been done once for the scenario, and
then the same order was re-used for all participants. The sce-
nario had two different traffic situations, half of the scenario
had low traffic, the other half had higher traffic. Traffic was
always ahead and slow, such that the subjects had to overtake,
but no faster traffic was induced from behind. The whole dri-
ving experiment lasted for about 60 minutes.

The subjects brain activity was constantly monitored by
using a 32 channel neuroNIRX-system (fNIRS). The ob-
jective is to use the recorded brain activity data as a source
for objective workload measurement, and to correlate it to
the CASCaS predictions (similar to (Unni et al., 2015)). The
analysis of the brain activity data is still ongoing, neverthe-
less we analysed the speed driven by the subjects, in order to
compare it to CASCaS data on hypothesis 2.

The subjects had a meanr of for their speed of 0.87, and
in total over all subjects 17 driving errors where made (mean
1.42 errors per subject). In total, 169 different speed changes
had occurred, without initial build-up phase of each n-back
task, thus subjects had a error rate of roughly 1%. It could be
observed for the subjects, that with the higher n-back levels,
also the number of errors increased (1 and 2-back: 2 errors,
3-back 6 errors, 4-back 7 errors). In comparison to that, the
model had a meanr for speed adherence of 0.75, and a total
of 166 errors (mean 12.7 errors per model run), resulting in
an error rate of 7.5%, independent of the n-back task. The
decrease in correlation of speed for the model from pre-test
to final test can be explained by the added traffic in combina-
tion with the probabilistic model for speed control. It can be
observed, that the model speeds up for the overtaking (about
10-20 km/h), ignoring also possible speed limits. Especially
in high traffic scenarios, overtaking can then take longer then
the distance between two speed signs.

Conclusion & Next Steps

Starting from previous work of Wortelen et al. (2016) and
Weber et al. (2013), we have integrated a workload model
into a closed-loop driving simulation. With that, we extended
the workload model to use the phonological loop in CASCaS,
so that the auditory workload can predict the n-back level,
and thus the workload. For the speed management, a replace-
ment or re-training of the probabilistic model should further
improve the model by reducing speed errors.

In addition to that, there are a lot of different workload
measures we can implement for the different components in
CASCaS, as already introduced by Wortelen et al. (2016).
We plan to successively implement more of these measures
and validate them against the simulator data, to see if other
models can also be used as predictor for the n-back level,
which serves as controllable workload indicator.
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