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Abstract

We recently developed a spiking neuron model that performs
magnitude  comparison  and  finger  gnosis  tasks  using  a
common  underlying  neural  system,  explaining  why
performance on these tasks is associated in humans.  Here, we
explore  the  parameters  in  the  model  that  may vary  across
individuals, generating predictions of error patterns across the
two  tasks.   Furthermore,  we  also  examine  the  neural
representation of numbers in the magnitude comparison task.
Surprisingly, we find that the model fits human performance
only when the neural representations for each number are not
related to each other.  That is, the representation for TWO is
no more similar to THREE than it is to NINE.

Keywords: magnitude  comparison;  finger  gnosis;  neural
engineering; number representation

Introduction
We have recently proposed a neural  model of a cognitive
component  underlying  two  disparate  tasks:  finger  gnosis
and magnitude  comparison  (Stewart  et  al.,  2017).   These
tasks have been shown to be related via behavioural, fMRI
imaging,  and  stimulation  experiments,  and  our  model
describes  a  neural  system that  could  be  involved  in  both
tasks, explaining this relation.  However, in the initial paper,
we did not perform an analysis of the effects of parameter
variation on this model.  Our goal in this paper is to present
this  parameter  analysis  in  order  to  better  understand  the
performance of this model.

Finger gnosis is the ability to indicate which fingers have
been touched, out of the view of the participant.  Typically
two  fingers  (on  the  same  hand)  are  touched  while  the
participant's hand is occluded, and they must then indicate
which fingers were touched (Baron, 2004).

The  magnitude  comparison task  considered  here  is
symbolic single-digit number comparison.  Participants are
visually shown two single-digit numbers and they are asked
to indicate which one is larger. 

Individual performance on the finger gnosis task predicts
a variety of mathematical measures in both children (Fayol
et al., 1998; Noel, 2005; Penner-Wilger et al., 2007, 2009)
and  in  adults  (Penner-Wilger  et  al.,  2014,  2015).   In
particular, this relation is partially mediated by performance
on  the  single-digit  symbolic  magnitude  comparison  task
used here (Penner-Wilger el al., 2009, in prep.).  Individuals
who perform better at magnitude comparison also perform
better at the finger gnosis task.

In  addition  to  this  behavioural  result,  representation  of
number  and  finger  gnosis  both  activate  the  same  brain
regions (Andres, Michaux & Pesenti, 2012; Dehaene et al.,
1996; Zago et al., 2001), both tasks are disrupted by rTMS
and direct cortical stimulation to the same regions (Rusconi,
Walsh,  & Butterworth,  2005; Roux et  al.,  2003),  and the
tasks interfere with each other when performed at the same
time (Brozzoli et al., 2008).  For these reasons, we believe
that there is a common component underlying these tasks.
In  other  words,  there  is  some  set  of  neurons  performing
some operation that is used in each task.  This makes it an
example  of  neural  redeployment (Penner-Wilger  &
Anderson, 2008, 2013)

In  the  current  paper,  we  first  outline  in  more  detail  a
model that performs finger gnosis and number comparison,
which we initially reported in Stewart et al. (2017). Second,
we examine the behavioural  effects in these two tasks, as
different parameters in the neural model are varied.  Given
that  the  same  neural  components  are  used,  changing  an
aspect of the model will affect both tasks.  The results of
these variations form a set of predictions about individual
differences  in  performance  on  these  tasks.  Finally,  we
examine  a  parameter  that  only  exists  for  the  magnitude
comparison task.  Here, we need to decide how the different
numbers  are  represented  neurally.   One  possibility  is  to
assume  that  the  number  SEVEN  should  have  a  neural
representation  that  is  more  similar  to  the  neural
representation for EIGHT than it is to ONE, as this might
explain  why more  mistakes  are  made  when  the  numbers
being compared are close to each other.  As is shown below,
the  modelling  result  instead  shows  that  there  is  a  better
match to human performance if the neural representation for
each number is unrelated to the others.

A Common Component
We postulate that the shared system for these two tasks is a
neural implementation of  an array of pointers.  That is, a
neural system that can store a small set of arbitrary values,
each of which can represent something.  For example, one
pointer  could  be  set  to  the  neural  representation  of  the
number  SEVEN,  while  another  pointer  could  be  set  to
represent concepts like DOG or CAT or BLUE or QUIET or
TOUCHED.

Importantly, we do not need to make a strong claim about
the  nature  of  the  neural  representation  of  these  concepts



here.  Instead, we merely make the weak claim that there is
some pattern of neural activity for each concept, and all we
need is a system that can store an arbitrary pattern.  Here we
generally  randomly  choose  these  patterns,  but  we
investigate what happens when these patterns are related to
each other below.

To describe this system mathematically, we can say that
there are a small set of vectors p1, p2, p3, p4, and p5, one for
each  pointer.   In  order  for  this  system  to  maintain
information  over  time,  if  there  is  no  input,  these  values
should stay as they are.  However, if there is an input, we
also need to indicate which pointer(s) will be changed.  To
do  this,  we  introduce  a  mask  m,  which  controls  which
pointers  will  be affected  by the input  x.   For example,  if
m=[0,1,0,0,0], then the second pointer p2 will be affected by
the input x.  Mathematically, this can be written as:

 (Eq. 1)

For the magnitude comparison task, this would be used as
follows.   First,  the  vector  for  one  of  the  numbers  (e.g.
SEVEN)  would  be  loaded  into  the  first  pointer  value  by
setting  x to  the  vector  for  SEVEN  and  setting  m  to
[1,0,0,0,0].  Next the other number (e.g. THREE) would be
loaded into the second pointer by setting x to THREE and m
to [0,1,0,0,0].  Over time, the values stored in the pointers
would be as follows:

Magnitude Comparison Task

step x m p1 p2 p3 p4 p5
1 -- 00000 -- -- -- -- --
2 SEVEN 10000 SEVEN -- -- -- --
3 THREE 01000 SEVEN THREE -- -- --
4 -- 00000 SEVEN THREE -- -- --

Once these values are stored in the pointers, the rest of the
task  can  be  completed  by  reading  the  values  out  and
performing  the  comparison.   The  details  for  this  are
provided below.

For the finger gnosis task, a similar process is followed,
but we use the pointers in a different way.  In particular, the
value  that  is  being  loaded  in  is  always  the  vector  for
TOUCHED (indicating that this finger was touched), but the
particular pointer that we load it into is what is important.
In  the  following  chart,  we  show  the  process  when  the
second and fourth fingers are touched.

Finger Gnosis Task

step x m p1 p2 p3 p4 p5
1 -- 00000 -- -- -- -- --
2 TOUCHED 01000 -- TOUCHED -- -- --
3 TOUCHED 00010 -- TOUCHED -- TOUCHED --
4 -- 00000 -- TOUCHED -- TOUCHED --

Once these values are loaded in, the rest of the finger gnosis
task involves reading out these values and reporting them,

as is detailed below.  Importantly,  while the remainder of
the finger gnosis task is quite different from the magnitude
comparison task, both tasks make use of this same array of
pointers component.

Neural Implementation
Though this basic idea of an array of pointers is simple (and,
indeed, is trivial to implement in a traditional computational
model),  here  we  implement  this  system  using  spiking
neurons.  The important point here is that neurons will not
perfectly  implement  this  algorithm;  rather,  their  actual
behaviour  will  only  approximate  this  ideal.   Importantly,
this  approximation  can  serve  as  an  explanation  for  the
mistakes  made  by  people  performing  these  tasks.
Furthermore,  changing  the  details  of  this  neural
implementation (for example, how many neurons are used,
or  how  strong  the  mask  is)  can  change  the  resulting
behaviour,  providing  an  explanation  for  the  individual
differences, and how errors on one task relate to errors on
the other task.

To  convert  this  model  to  spiking  neurons,  we  use  the
Neural  Engineering  Framework  (Eliasmith  &  Anderson,
2003).   In  this  approach,  different  groups  of  neurons  are
used to represent  each vector (e.g.  x or  p1).   Connections
between groups of  neurons implement  functions on those
variables.  For example, if one group of neurons represents
x and another group of neurons represents  y, then we can
form a connection from x to y such that  y=f(x).  Given any
particular function f, we can solve for the optimal synaptic
connection weights  between those groups  of  neurons that
will best approximate that function.

When we solve for these synaptic connection weights, we
are  not  making  any  claim  about  how  these  connection
weights  are  learned,  or  how  they  are  formed  in  a
developmental process.  Rather, we are simply finding the
best possible way that the given neurons can perform this
task,  and  leaving  these  larger  developmental  questions to
future research.

With this in  mind, our model  is  presented  in Figure  1.
Each box represents  a  group of  neurons representing one
vector.   Arrows  between  boxes  indicate  connections
between groups of neurons.  In each case, these connections
are optimized to compute the identity function.  This is the
simple  function  that  just  transmits  information  without
changing it in any way.  

Figure 1: A neural implementation of an array of pointers.
Only two pointers are shown.



The recurrent connection on the pointer neurons indicates
that  those  400  neurons  are  recurrently  connected  to
themselves such that they will pass their own information
back  to themselves.   In  other  words,  whatever  pattern of
neural  activity  is  generated  in  that  group  will  be  self-
sustaining.   That  is,  the  pattern  of  activity  will  be
maintained  over  time.   Of  course,  since  neurons  are  not
perfect, this pattern will not be perfectly maintained, leading
to a gradual decay of this memory system.

To  load  values  into  this  system,  we  place  the  desired
vector as the input  x.  This will drive the various  channel
neural populations to fire, representing that value  x.   This
will then in turn drive the pointer populations to store that
value.  However, with just this system, any x value as input
would  be  loaded  into  all of  the  pointers.   In  order  to
implement Equation 1 completely, we need a mask term to
control which pointers will be affected.  We accomplish this
by  selectively  inhibiting  the  activity  of  the  channel
populations.   If  a  channel  is  inhibited,  the  corresponding
pointer population will not be affected by x.

As described more completely in Stewart et al. (2017), we
implement all  of  this using standard  Leaky Integrate-and-
Fire spiking neurons using the simulation software Nengo
(Bekolay  et  al,  2014).   The  resulting  behaviour  of  the
system loading two pointers (FIVE and SEVEN) is shown
in Figure 2.

Figure 2: Spiking activity for an example magnitude
comparison task. Top row shows input to the model. Other

rows show spiking neuron activity over time. The text
indicates which vector x is represented by the pattern of
activity. Note that pointer 1 and pointer 2 maintain their
spiking pattern (approximately) after the input has been

removed.  Figure from (Stewart et al., 2017).

In order to perform the two separate tasks, we then connect
this same common component to one of two different output
systems.  For the finger gnosis task, the output is simply the
identity function again, as all we need to do is to report the
information stored in the pointers.

For  the magnitude  comparison  task,  we need a slightly
more complex output.  Rather than reporting the two stored
numbers,  we  need  to  report  whether  the  first  number  is
larger or smaller than the second number.  This is, itself, a

function.  So, in order to compute this, we use the NEF to
solve  for  the  optimal  connection  weights  that  will  best
approximate the function that maps the vectors for the two
numbers  to  a  single  scalar  output  that  is  +1  if  the  first
number is larger, and -1 if the second number is larger.  We
can think of this as training a group of neurons to memorize
this list of desired inputs and outputs:

input output

[ONE, TWO] -1
[TWO, ONE] +1

[ONE, THREE] -1
[THREE, ONE] +1
[TWO, THREE] -1

... ...
[NINE, EIGHT] +1

When  we  run  this  model,  we  treat  a  positive  output  as
selecting the first number, and a negative output as selecting
the second number.  In Stewart et al. (2017) we also use the
magnitude of this output to predict reaction times, but do not
do that here.

Results
The  basic  results  presented  in  Stewart  et  al.  (2017)  are
shown in Figure 3.  This includes both the model result and
the empirical result gathered from human participants.  We
plot the percent error for the magnitude comparison task and
for the finger gnosis  task.  Importantly,  we fit  the model
parameters  based on the magnitude comparison task  only,
leaving the finger gnosis task as a pure prediction based on
those same parameter values.

Figure 3: Best-fit model results for the magnitude
comparison task (left) and finger gnosis (right).  Parameters
are fit on the magnitude task and then applied to the finger

gnosis task.  Standard errors are shown.

The best-fit parameters are as follows:

parameter value

# neurons for combining pointer values: nc 1000
Standard deviation of training noise: noiset 0.15

Amount of channel inhibition: c 0.875
Dimensionality of x vector: D 8

Uniqueness of digit representation: u 1.0



This core result indicates that the model captures the basic
characteristics  of  the  behavioural  data.   For  magnitude
comparison,  we  see  the  standard  distance  effect,  where
numbers that are farther apart (e.g. 2 and 7) are easier than
numbers that are closer together (e.g. 5 and 6).  We see a
similar effect for finger gnosis, with the exception of when
two fingers  right  next  to  each  other  are  touched.   In  the
human participant data, fingers next to each other are easier
than fingers that are two apart.  The model shows this same
effect, but it is much more pronounced.

Parameter Exploration
To further characterize this model, we systematically varied
these parameters.  Importantly, since our theory is that both
of  these  tasks  use  the  same  common  neural  system,
whatever parameter value is used for one task should also be
used for the other task.

However, this is only true for an individual person.  It is
plausible that, if this model is correct, different people may
have different parameter values for this system.  Thus, by
changing these parameter values we make predictions about
how  performance  on  these  two  tasks  may  co-vary  in
individuals.

Parameter 1: nc
The  first  parameter  is  the  number  of  neurons  to  use  to
combine together the outputs from all of the pointers.  Once
combined together in this way, we can either create output
connections  that  compute  which  of  the  two  numbers  is
biggest (for magnitude comparison) or that just compute the
identity function (for finger gnosis).  However, the accuracy
of  this  computation  will  be  affected  by  the  number  of
neurons used.  This is shown in Figure 4.

Figure 4: The effects of varying the number of neurons used
to combine the represented pointer values together for the

magnitude comparison task (left) and the finger gnosis task
(right).  Standard errors are shown.  

From  this,  we  note  that  500  or  fewer  neurons  gives
significantly  higher  error  rates  than  the  mean  human
performance on both tasks.  Having more than 1000 neurons
gives improved performance for the magnitude comparison
task  and  most  of  the  finger  gnosis  task,  but  does  not
improve the peak error at a finger distance of two.

Parameter 2: noiset
Next,  we look a the amount  of  random noise used when
finding  the  connection  weights  out  of  this  combined
population.  That is, the neural activity from this combined
population must cause change in a separate population that
represents the network's response to the task.  This change
is, of course, due to synaptic connection weights.  When we
use the Neural  Engineering Framework to solve for these
weights,  we  can  specify how much random variability  is
added.  The right amount noise should make the network
more robust to random variations, but too much noise will
cause it to lose accuracy.  The results are shown in Figure 5.

Figure 5: The effects of varying the amount of noise used in
training the weights for the tasks for the magnitude

comparison task (left) and the finger gnosis task (right).
Standard errors are shown.  

For  the  magnitude  comparison  task,  we see  the  expected
effect where there is an optimal value for this noise (0.15).
Less  noise  than  this  gives  extremely  poor  results  for  all
distances.   Interestingly,  having more noise than this only
increases  the  error  for  small  differences  between  the
numbers.

For the finger gnosis task, we get the surprising result that
the model is unaffected by the amount of noise.

Parameter 3: c
Next, we examine the inhibition factor which turns off the
channels leading into each pointer.  With a value of 1, this
inhibition would perfectly inhibit all of the neurons in the
non-active  channels,  leading  to  no  activity  in  those
channels, and thus no change in the other pointer values.  If
this  is  less  than  one,  however,  the  neurons  will  not  be
perfectly  “turned  off”,  and  so  there  will  be  some  small
influence on the other pointers when one of them is set.  For
example,  in Figure  2,  we see some neural  activity in the
channels that are not being set, reflecting c<1.  We assume
this amount of inhibition scales  linearly with the distance
from the target item, so values sent into pointer 1 have more
influence on pointer 2 than they do on pointer 3.  Results are
in Figure 6.



Figure 6: The effects of varying the amount of channel
inhibition for the magnitude comparison task (left) and the

finger gnosis task (right).  Standard errors are shown.

In this case, we get  a clear result that there is an optimal
value for c (we found 0.875 best).  Importantly, this optimal
value works for both the magnitude comparison task and the
finger gnosis task.

Parameter 4: D
Finally, we vary the dimensionality of the input stimulus x.
This  controls  the  degrees  of  freedom  in  the  randomly
chosen patterns for each represented concept (ONE, TWO,
TOUCHED, etc).  Results are shown in Figure 7.

Figure 7: The effects of varying the dimensionality of x for
the magnitude comparison task (left) and the finger gnosis

task (right).  Standard errors are shown.

Here, we see that the magnitude comparison task indicates
that  if  D is  too large  (i.e.  32 or  64),  it  produces  a  large
increase  in  the  error,  but  just  for  the  case  where  the
difference  between the  numbers  is  1.   It  also produces  a
large increase in error overall if D is too small (i.e. 4).  For
the  finger  gnosis  task,  small  D produces  a  very  large
increase  in  error  as well,  but  large  D (above 8)  causes  a
massive decrease in the error.

Number Representation
If we consider just the magnitude comparison task, there is a
further  parameter  that  is  worth investigating.   This  is  the
question of how numbers are represented in the model.  In
particular,  should  the  representation  for  TWO  be  more
similar to THREE than it is to NINE?  After all, as can be
seen in the human data, participants are more likely to make
mistakes when number are close to each other, which seems
to imply that the neural activity for TWO should be more
similar to the activity for THREE than it is to NINE.

As we are using a vector representation in this model, this
becomes the question of how to choose what vector to use

for ONE, TWO, THREE, etc.  In the simplest case, we can
choose these vectors completely randomly, so that there is
no  similarity  structure.   At  the  other  extreme,  we  could
randomly choose a vector for ONE, a different vector for
NINE, and then smoothly interpolate between these two to
create  the  vectors  for  TWO,  THREE,  FOUR,  etc.   To
explore  this,  we  define  a  parameter  u  which  interpolates
between fully random representation where each number is
represented with a different random unique number (u=1.0)
and fully structured representation where TWO is halfway
between ONE and THREE (u=0.0).

The  effects  of  varying  this  uniqueness  parameter  are
shown in Figure 8.  Crucially, if there is low uniqueness (i.e.
if the neural representation of TWO is more similar to ONE
than it is to NINE), then we reach a much higher error rate
than is observed in the human data.

Figure 8: The effects of varying the uniqueness of the
number representation in the magnitude comparison task.

Standard errors are shown.

This  was  a  surprising  result  for  us.   The  observed  error
pattern in the human data (where numbers that are close to
each other are more likely to produce errors) is not the result
of  the  actual  neural  representation  of  the  numbers  being
similar to each other.  Rather, this pattern of errors is due to
mistakes made in extracting the information from the group
of  neurons.   When  neurons  are  used  to  approximate  the
“which number is larger” function, the optimal connection
weights  lead  to  a  system  which  is  more  likely  to  make
mistakes between nearby numbers, even though they are not
“nearby” in terms of neural activity.   They are, however,
nearby in terms of the function being computed.

Conclusions
We  have  examined  the  behaviour  of  a  model  of  how
magnitude comparison and finger gnosis can both rely on
the same common neural component: a system for storing
an array of pointers.  Since this neural system is believed to
be  used  in  both  tasks,  by  varying  the  parameters  of  this
system we produced predictions of how an individual's error
performance  on  both  tasks  can  be  related.   However,  it
should be noted that  all  of  the comparisons performed in



this paper were to the mean human performance.  The next
step  is  to  look  at  individual  differences  in  this  task  and
determine if the same patterns occur in the participant data.
If  it  does,  then  we  may  have  an  explanation  for  this
variation  in  terms  of  different  people  having  different
parameter settings for this common component.

Furthermore, we have a novel explanation as to why the
distance effect exists.  In our model, the distance effect (the
fact that more errors are made when two numbers are close
in  magnitude)  is  not due  to  those  two  numbers  having
similar  neural  representations.   Rather,  the  neural
representation of each number is completely random.  If we
do impose some similarity in the neural representation, then
the distance  effect  becomes  much larger  than  it  is  in  the
participant data.  This means that in our model, the distance
effect  emerges  purely  from  the  difficulties  involved  in
generating synaptic connections that determine which of the
two  numbers  is  larger,  rather  than  the  more  typical
interpretation that it  comes from similarities in the neural
representation itself.
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