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Abstract

Due to the correspondence between the striatal dopamine sig-
nal and prediction error signal utilized by model-free rein-
forcement learning methods, computational psychological re-
search has found much success in modeling the basal gan-
glia as a biological implementation of a reinforcement learn-
ing mechanism. A large majority of these modeling efforts
have focused on applying the tenets of reinforcement learning
to the proposed functions of the basal ganglia, but few (if any)
have attempted to apply crucial aspects of basal ganglia neuro-
physiology to reinforcement learning mechanisms. Here, we
propose a basal ganglia-plausible model that explicitly utilizes
two symmetric sets of actions (analogous to the basal ganglia’s
direct and indirect pathways), to simultaneously update value
estimates of both available actions (i.e. chosen and not chosen)
in the Probabilistic Stimulus Selection (PSS) task. We demon-
strate that this proposed model architecture outperforms a stan-
dard reinforcement learning model of the PSS task by eliminat-
ing the standard model’s bias towards estimation of the most
valuable available actions, while granting improved resistance
to noise in the internal selection process.
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Introduction

Model-free reinforcement learning (RL) is a powerful ap-
proach for obtaining an optimal long-term action policy in the
absence of transition probability and reinforcement functions.
In other words, a model-free RL agent must interact with an
unknown environment (i.e., sample the environment repeat-
edly through action) in order to construct an optimal control
policy, based on the pattern of reward received by interaction
with the environment. This framing of RL methods makes
clear their power in modeling human and animal decision-
making. Policies refined through RL mechanisms are ori-
ented such that the agent’s (i.e., human/animal) actions con-
sider both immediate and future reward, optimized to max-
imize some value over time. The key idea that enables an
agent to determine an optimal policy within an unknown envi-
ronment is that of temporal-difference (TD) learning (Sutton,
1988).

The ideas behind TD methods have since been expanded,
including a proposal by Watkins and Dayan (1992) that de-
fined a TD control algorithm now known as Q-learning. Q-
learning is an off-policy method that allows the agent to
choose to take non-optimal actions while still estimating an
optimal value function. By updating action values based on

the best action available while allowing the agent to make in-
ferior choices, this procedure increases the rate of learning
under a suboptimal action selection process. Both TD learn-
ing and Q-learning have been shown to converge to the op-
timal value function with probability P = 1 (Sutton & Barto,
1998).

However, in some circumstances, these model-free RL
methods produce suboptimal results. As defined, these meth-
ods emphasize learning of rewarding actions — updating the
value of a state/state action (SA) pair increases the likelihood
that the agent will choose the action that leads to that state/SA
pair when it is next given the opportunity to do so. As a re-
sult, even though it converges to an optimal value function,
an agent still does not have complete knowledge of its envi-
ronment — namely, it does not know much (if anything) about
the least rewarding states/SA pairs. This is an instance of the
general exploration-exploitation trade-off that many models
encounter. Lacking knowledge of the least rewarding alter-
natives is not an issue while the agent has full access to its
actions, but what if learned “good” (i.e. optimal) states/SA
pairs are blocked from the agent? In this case, the agent can-
not take the actions it usually would by following its policy
and value function, and as a consequence, cannot act opti-
mally within the “new” environment. In essence, the agent
has no knowledge of how to navigate bad options — how to
choose the “least bad”, when forced to.

The Probabilistic Stimulus Selection Task

A situation in which this circumstance arises is when model-
ing a well-known psychology task paradigm, the Probabilistic
Stimulus Selection (PSS) task (Frank, Seeberger, & O’Reilly,
2004). The PSS task is a repetitive, two-alternative forced-
choice task made up of two consecutive phases, a training
phase in which a participant repeatedly makes choices be-
tween fixed pairs of stimuli, and a test phase where the par-
ticipant is presented with new combinations of options (see
Figure 1).

Across both phases, there are six possible stimuli, imple-
mented as symbols that are difficult to describe (in order
to make memorization of each stimulus history of success
more difficult). Each stimulus carries an intrinsic probabil-
ity of success, ranging linearly from 20% to 80%. During
the training phase, the stimuli are presented a fixed pairs, for
a total of three sets: (A,B) (C,D), and (E, F), with associ-
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Figure 1: An overview of the Probabilistic Stimulus Selection task. In the training phase, participants learn to identify the best
option within three pairs. In the ]test phase, the six options appear in new paired combinations.

ated reward probabilities of (80%,20%), (70%,30%), and
(60%,40%), respectively. Participants receive feedback re-
garding the outcome of their decision directly after making
a selection, and are instructed to attempt to maximize their
success by choosing what they believe to be the “correct” op-
tion on each trial. esponses that are probabilistically deter-
mined to be errors are associated with negative reward (i.e.
“feedback’), while those deemed correct are associated with
positive reward, with the consequence that a component of
“good” performance is avoiding “bad” (i.e. low probability of
success) choices. Once a participant’s performance reached a
predefined criterion (different for each pair: 65%, 60%, and
50% probability of choosing the higher valued option for the
sets of (A,B) (C,D), and (E,F), respectively), the test phase
begins. During the test phase, participants are shown all pos-
sible combinations of the six stimuli(fifteen total, four times
each, for a total of 60 trials), and do not receive feedback upon
selection. From the test phase, two different measures are cal-
culated: the participant’s Choose accuracy, that is, the prob-
ability of choosing the highest valued alternative (A; 80% re-
ward probability) when it is paired with any other alternative,
and the participant’s Avoid accuracy, that is, the probability
of not choosing the lowest valued alternative (B, 20% reward
probability) when it is paired with any other alternative (ex-
cepting A). These measures can generally be interpreted to be
the participant’s tendencies to pursue reward and avoid pun-
ishment, respectively.

Human participants perform close to criterion in the test
phase, with an average of about 70% accuracy in both Choose
and Avoid accuracies (Frank et al., 2004; Frank, Moustafa,
Haughey, Curran, & Hutchison, 2007; Stocco et al., 2017).

Model Comparisons

General Model Implementation

The PSS task poses a number of important constraints for the
design of RL agents. In this section, we outline these con-
straints, and how they were addressed in the implementation

of our agents.

The first constraint is that the set of actions available to an
agent corresponds to the decision options in the task, that is,
the six options A,B...F.

The second constraint is that an agent should be able to
generalize the Q value of an action to an different state. This
is essential to permit generalization of the Q-values learned
during the training phase (Figure 1A and 1B) to the new set
of pairs in the test phase (Figure 1C and 1D). A number of
mechanisms have been proposed to generalize Q-values to
new states. In this paper, we have taken the minimalistic ap-
proach of associating all actions to a single state s, but chang-
ing the set of actions available at every trial depending on the
options presented. Thus, in a trial where the options A and B
are presented, only the actions a4 and ap will be selectable
by the agent.

The third constraint is related to the second, and concerns
the relationship between subsequent states in the PSS task.
Because the PSS task consists of a sequence of independent
trials, the probability of a state 5,41 following another state s;
does not depend on the action taken g,. Canonical RL algo-
rithms based on temporal difference rely on the environment
states to be concatenated in some way, since the update term
for the Q-value of an action taken at state s; depends on the
Q-value of the agent’s actions at state s, For example, in
the Q-learning algorithm, the error term depends on the best
action available at state s, 1.

Qs[,a, — Qs,,a, + (X'[rl+l +YmaX(Qs,+1,u,+1 - Qb‘y.ﬂt)] (1)

Other algorithms, such as SARSA, similarly rely on the
measuring the Q-value of the action taken at state s;, i.e.
O(si+1,a:11). Since the trials are randomized, however, the
contribution of the term Qy, . is going to be statistically
identical, in the long term, across all states in the long-term.
For convenience, in these simulations we set this term to be
zero, so that the final learning equation reduces to:



Qs,,a, — Qs,,a; + (X[rl+1 - quat)} 2

Note that, under these conditions, the Q-value of an action
a converges to the probability of reward P(R;) associated with
each corresponding option.

The participant’s policy in the PSS task was modeled as as
a Gibbs softmax action selection function:

=~ 3)

Under this mechanism, the probability of the agent choos-
ing a given action increases proportionally with the action’s
value Q(s,a), divided by a parameter T, defined as the tem-
perature of the system. Higher values of T inject more noise
into the action selection process, causing action selection to
be less deterministic.

Standard RL Model

At relatively high values of 7', where the estimated utility of
actions has a smaller effect on the action selection mecha-
nism, the RL model’s Choose and Avoid accuracies are ap-
proximately equal, revealing that the model has estimated the
value of choosing A, when presented with any option other
than B, as approximately equal to the value of not choosing
B, when presented with any option other than A. This is de-
sired model behavior—the model should estimate that choos-
ing A is equal to not choosing B. However, as a consequence
of the high level of noise in the action selection process, the
model has not estimated the actual value of these two actions
appropriately (relative to the value of all other options), as
indicated by the low Choose and Avoid accuracies 2.

On the other hand, when the value of T is low, and the
action selection process is largely dependent on the estimated
Q-values of the actions associated with the current state, some
alarming results occur.

Specifically, the model learns the value of of the desirable
options A, C, and E well, reflected as a increasing Choose
accuracy as T decreases (Figure 2, grey line). This is the
expected behavior of the model — as a deterministic action se-
lection process based on the estimated value of actions allows
exploration to suggest relatively “better” options, the model
quickly switches to exploiting them, learning their true values
well in the process !.

However, when the Avoid accuracy of the model is in-
spected, it becomes clear that the model has learned the value
of some, but not all, options well. As the value of T begins
decreasing, the Avoid accuracy of the model does begin in-
creasing, as the Choose accuracy did. However, the model’s
Avoid accuracy actually begins to decrease (Figure 2, black
line) as T continues to decrease. This indicates that for lower

! Although here we report the results obtained using the softmax
function, the same results have been replicated with another com-
mon policy that balances exploration and exploitation, the e-greedy
policy.
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Figure 2: Performance of a canonical RL model in the PSS
task for various levels of temperature 7. Grey: Choose accu-
racy; Black: Avoid accuracy; Blue: Mean accuracy.

values of T, the model does not sufficiently explore the “bad”
options (B, D, and F') during the training phase, and as a con-
sequence, does not value them appropriately. For higher val-
ues of T, the model does explore both bad and good options
approximately equally — however, it does not value neither
good nor bad options appropriately. Additionally, the maxi-
mum Avoid accuracy achieved at the point of inflection (less
than 70%) is much lower than the maximum Choose accu-
racy achieved by the model (which is when the value of T is
at a minimum; approximately 90%), as well as the Choose
accuracy at the point of inflection.

This pattern of Choose and Avoid accuracies over the range
of T values tested suggests the existence of an accuracy/bias
trade-off — to become more accurate on average for a given
option, the model must bias its action choices to exploiting
that option (in other words, the model increases the quality of
its estimates of the “good” options, while becoming more un-
certain about the value of the “bad” options). This effect can
be seen as tendency of RL agents to converge towards overly
optimistic estimates, which has been noted in the literature
(Hasselt, 2010). Note that this trade-off effect does not mani-
fest in human performance. To visualize the model’s trade-off
issues, the model’s estimate error (defined as the bias towards
choosing a given option, with respect to the probability of
avoiding the same option) can be plotted as a function of its
mean accuracy (Figure 3). An ideal PSS task agent would
be able to obtain unbiased estimates for every level of accu-
racy (the vertical dashed black line). However, as made clear
by Figure 3, the model’s estimate error increases as mean ac-
curacy increases—the model becomes more uncertain about its
“bad” options in order to do well when presented with “good”
options.

Another way in which this apparent accuracy/bias trade-off
can be demonstrated is by defining the model so that it learns
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Figure 3: Mean accuracy vs. Q-value estimate errors for
the three models examined in this paper. Solid lines indi-
cate the accuracy-error trade-off curves; dotted lines indicate
the maximum mean accuracy for each model. Blue: Standard
RL model; Red: BG-inspired model; Yellow: Anti-correlated
BG-inspired model.

the value of NOT choosing actions, rather than the value of
choosing actions. In other words, the model chooses to “not
choose” a given option, learning the value of such in the pro-
cess. In this case, as the value of T increases, Avoid accu-
racy decreases while Choose accuracy exhibits the inflection
behavior seen in Avoid accuracy under the original model.
Now, the model has learned how to navigate amongst “bad”
options—it knows the value of not choosing a given option,
and so it “doesn’t choose” the “bad” options more often as
T decreases. However, it does not learn about the value of
“good” options during the learning process.

Basal Ganglia-Inspired RL Model

Reinforcement learning is known to be a reliable method of
modeling the function of the basal ganglia (BG) system, a net-
work of subcortical nuclei including the striatum, globus pal-
lidus, substantia nigra, and subthalamic nucleus (Alexander
& Crutcher, 1990).

The striatum receives input from cortical structures, and
subsequently propagates the signal to later nuclei of the
BG through two distinct pathways, termed the “direct”
and “indirect” pathways (Smith, Beyan, Shrink, & Bolam,
1998). Of particular interest to neurological/psychological
research is the fact that the striatum also receives strong
dopaminergic (dopamine; DA) input from the substantia ni-
gra parscompacta (SNc). Dopaminergic signaling originat-
ing from the SNc has long been thought to reflect a neural “re-
ward” signal associated with internally-generated action and
external stimuli that the organism has learned is (or expects to
be) rewarding in some manner, and corresponds closely with
the prediction error signal utilized in RL methods (Schultz,
2000; Schultz, Dayan, & Montague, 1997). Additionally,
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Figure 4: Overview of functional anatomy of the basal gan-
glia. The main basal ganglia nuclei are in grey; the arrows
indicate the major projections between nuclei. The indirect
pathway is shown in red, while the direct pathway is shown
in green.

dopaminergic input is a defining characteristic of the “direct”
and “indirect” pathways mentioned above — striatal neurons
that express D1 receptors (for which DA is an excitatory lig-
and) form the origin of the direct pathway, while those that
express D2 receptors (for which DA is an inhibitory ligand)
form the origin of the indirect pathway.

For the PSS task, although the standard RL model does
fairly well overall (approximately 77%), its performance does
not match that of human participants, especially when consid-
ering Avoid accuracy. As the model’s results demonstrate, it
learns well about one set of options (either the “good” op-
tions or the “bad” options, depending on if it is learning what
to choose or what to not choose, respectively), but it does not
do well at valuing all options appropriately at all values of
T. Ideally, the model could instead learn the values of choos-
ing an option and not choosing the alternative simultaneously,
allowing it to train once in order to appropriately value all
possible options. Superficially, there seems to be an obvi-
ous compatibility between the necessity for a RL model to
simultaneously estimate the value both the “chosen” and “not
chosen” alternatives within a PSS trial, and dopamine’s op-
posing influence on the direct and indirect pathways. Would
a model-free RL agent with two “action pathways” perform
any better than the standard RL model described above?

In order to implement the two-pathway concept, the Q-
learning agent described above was modified to include an
opposite set of “don’t” actions (—A,—B,...,—F), which,
when chosen by the agent, result in the selection of the other
option that they are paired with. Thus, this agent contains a
double set of actions and a stores a double set of Q-values; in
this, it is reminiscent of double Q-learning (Hasselt, 2010;
Van Hasselt, Guez, & Silver, 2016), an algorithm devised
to address the overly-optimistic estimates of the original Q-
learning algorithm (Watkins & Dayan, 1992).

The original set of actions (A,B,...,F) can be conceptu-
alized as the set of actions available to be suggested by the
direct pathway (restricted by actions possible within the cur-
rent state), while the “antiset” can be conceptualized as the set



of actions available to be suggested by the indirect pathway
(also restricted by the state). So, if the current trial allows for
actions A and B, and the agent selects the indirect pathway’s
action —A, the result is the selection of option B. However,
if the current trial allows for actions A and C, and the agent
selects —A, the result is the selection of option C.

BG-inspired Agent Performance by Temperature
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Figure 5: Performance of the BG-inspired reinforcement
learning agent in the PSS task for various levels of temper-
ature T. Note that there is no difference in the Choose Grey
and Avoid Black accuracies.

Figure 5 shows that the simple addition of an “indirect
pathway” to the RL model results in a marked absence of
the bias observed in the standard RL model-as the value of
T decreases, both choose and avoid accuracies increase com-
mensurately. As such, the model no longer needs to “trade-
oft” increasing the accuracy for one class of action by becom-
ing less confident in the valuations of the other class of ac-
tion. Instead, for every choice made, it simultaneously learns
both the value of the option chosen, and the value of not
choosing the alternative. However, note that the maximum
Choose and Avoid accuracies of the BG-plausible model do
not quite achieve the same level of accuracy as the standard
RL models—the uncertainty that the standard model had been
attributing to the option not chosen has now been distributed
across both available options. Figure 3 demonstrates that
overall, the BG-plausible model (red line) achieves essen-
tially the same level of global mean accuracy as the standard
RL model (blue line), but without the cost of increasing esti-
mate error.

Making the Model More Plausible

As described, this implementation of “direct” and “indi-
rect” pathways in the RL model does well at capturing the
competition between the direct and indirect pathways of the
BG, and alleviates the problem of increasing estimate error
with increasing accuracy. However, the BG-plausible model
still performs similarly to the standard RL model in terms

of global mean accuracy, indicating that although the BG-
plausible model has improved ability to estimate the value of
all options in the environment, this does not translate to im-
proved fitness within the environment. However, just as the
standard models were missing a crucial aspect of BG physiol-
ogy (the presence of dual pathways), the BG-plausible model
is missing a crucial feature of these dual pathways — the fact
that DA signaling has opposite effects on the direct (excita-
tion, mediated through D1 receptors) and indirect (inhibition,
mediated through D2 receptors) pathways.

To capture this aspect of BG neurodynamics, the BG-
plausible RL model was modified so that the learning algo-
rithm results in opposite changes for the actions to the two
pathways (an anti-correlated BG-plausible model). Specifi-
cally, if action A was selected and resulted in an update of it
Q-value of size J, then the Q-value of the corresponding anti-
action —=A would be updated by the quantity —93. As in the
biological BG, this mechanism forces the values of one set of
actions to be anti-correlated to the values of the other set.

Figure 6 shows the results of simulations ran with this
model. At minimum values of 7', the maximum mean Choose
and Avoid accuracies increase slightly (when compared to the
original BG-plausible model). Figure 3 shows that, similar to
the original BG-plausible model (red line), the mean accuracy
of the anti-correlated BG-plausible model (yellow line) in-
creases without a subsequent increase in estimate error. Addi-
tionally, the small increase in Choose and Avoid accuracies at
minimum values of T translate into significantly better overall
performance for the anti-correlated BG-plausible model.
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Figure 6: Performance of the anti-correlated, BG-inspired
RL-learning model in the PSS task for various levels of tem-
perature 7.

However, what is most striking about the anti-correlated
BG-plausible model is that at relatively large values of T
(where the action selection process is noisy), the model
performs much better than either the original BG-plausible
model, or the standard RL models. This is an indication that
the presence of the anti-correlated pathways in the second



BG-plausible model bestow a greater resistance to internal
noise than the original BG-plausible model and standard RL
models possess. Figure 7 more clearly demonstrates this ef-
fect: across the range of tested values of 7', the mean accura-
cies of the original BG-plausible model are almost identical
to the standard RL model. However, across the same range
of T values, the anti-correlated BG-plausible model performs
much better in almost every circumstance.

Resistance to Moise Across Models
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Figure 7: A direct comparison of the mean accuracy of
three RL models tested in this paper. Blue: Standard RL
model; Red: BG-inspired model; Yellow: Anti-correlated
BG-inspired model.

The model does not perform as well as the standard “orig-
inal” BG-inspired model only when the value of T is very
close to zero, indicating almost no noise in the action se-
lection process (an unrealistic assumption for biological sys-
tems). A similar analysis can be performed for the model’s
estimate error, as seen in Figure 3. This again shows that for
every tested value of 7', there is little or no difference between
either BG-plausible model-the presence of the two pathways
allows each model to accurately estimate the value of both the
most rewarding (A, C, and E) and least rewarding (B, D, and
F) options. However, the standard RL model shows signifi-
cant estimation biases as the lowest levels of noise, when the
model’s performance is at a maximum.

Conclusions

In conclusion, the improved performance of the BG-plausible
RL models implies that psychological researchers looking to
model the functions of the basal ganglia could do well by
taking inspiration from the characteristics of the phenomena
they model, even when the modeling effort is largely theoret-
ical. The addition of opposed action sets, representative of
the well-known direct and indirect pathways within the basal
ganglia, allowed the original BG-plausible model to properly
estimate the value of both the “good” (relatively high proba-
bility of reward) and “bad” (relatively low probability of re-

ward) options available in the PSS task, eliminating the bias
towards “good” options displayed by the standard RL model.
Furthermore, by forcing the updates of the two action sets
to be anti-correlated (thereby mimicking the opposed excita-
tory/inhibitory effect of dopamine on the direct and indirect
pathways), the model displayed a marked resistance to greater
levels of noise within the selection mechanism.
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