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Abstract

The explore-exploit dilemma occurs anytime we must choose
between exploring unknown options for information and ex-
ploiting known resources for reward. Previous work suggests
that people use two different strategies to solve the explore-
exploit dilemma: directed exploration, driven by information
seeking, and random exploration, driven by decision noise.
Here, we show that these two strategies rely on different neu-
ral systems. Using transcranial magnetic stimulation to inhibit
the right frontopolar cortex, we were able to selectively inhibit
directed exploration while leaving random exploration intact.
This suggests a causal role for right frontopolar cortex in di-
rected, but not random, exploration and that directed and ran-
dom exploration rely on (at least partially) dissociable neural
systems.
Keywords: Explore-exploit, decision making, transcranial
magnetic stimulation, frontal pole

Introduction
In an uncertain world, adaptive behavior requires us to care-
fully balance the exploration of new opportunities with the
exploitation of known resources. Finding the optimal bal-
ance between exploration and exploitation is a hard compu-
tational problem and there is considerable interest in how
humans and animals strike this balance in practice (Hills et
al.,2015). Recent work has suggested that humans use two
distinct strategies to solve the explore-exploit dilemma: di-
rected exploration, based on information seeking, and random
exploration, based on decision noise (Wilson, Geana, White,
Ludvig, & Cohen,2014). Even though both of these strate-
gies serve the same purpose, i.e. balancing exploration and
exploitation, it is likely they rely on different cognitive mech-
anisms. Directed exploration is driven by information and is
thought to be computationally complex. On the other hand,
random exploration can be implemented in a simpler fashion
by using neural or environmental noise to randomize choice.

Of particular interest is the right frontopolar cortex (RFPC)
– an area that has been associated with a number of functions,
such as tracking alternate options (Boorman, Behrens, Wool-
rich, & Rushworth,2009), strategies (Domenech & Koech-
lin,2015) and goals (Pollmann,2016) that may be important
for exploration. In addition, a number of studies have im-
plicated the frontal pole in exploration itself (Badre, Doll,
Long, & Frank,2012;Daw, O’Doherty, Dayan, Seymour, &
Dolan,2006), although importantly, how exploration is de-
fined varies from paper to paper. In one line of work, ex-

ploration is defined as information seeking. Understood this
way, exploration correlates with FPC activity measured via
fMRI (Badre et al.,2012), suggesting a role for FPC in di-
rected exploration. However, in another line of work, ex-
ploration is operationalized differently, as choosing the low
value option, not the most informative. Such a measure of ex-
ploration is more consistent with random exploration where
decision noise drives the sampling of low value options by
chance. Defined in this way, exploratory choice correlates
with FPC activation (Daw et al.,2006) and stimulation and in-
hibition of RFPC with direct current (tDCS) can increase and
decrease the frequency with which such exploratory choices
occur (Raja Beharelle, Polania, Hare, & Ruff,2015).

Taken together, these two sets of findings suggest that lat-
eral FPC plays a crucial role in both directed and random ex-
ploration. However, we believe that such a conclusion is pre-
mature because of a subtle confound that arises between re-
ward and information in most explore-exploit tasks. This con-
found arises because participants only gain information from
the options they choose, yet are incentivized to choose more
rewarding options. Thus, over many trials, participants gain
more information about more rewarding options such that the
two ways of defining exploration, choosing high informa-
tion or low reward options, become confounded (Wilson et
al.,2014). This makes it impossible to tell whether the link
between FPC and exploration is specific to directed explo-
ration, random exploration, or whether it is general to both.

To distinguish these interpretations and investigate the
causal role of RFPC in directed and random exploration, we
used continuous theta-burst TMS (cTBS) (Huang, Edwards,
Rounis, Bhatia, & Rothwell,2005) to selectively inhibit RFPC
in participants performing the ‘Horizon Task’, an explore-
exploit task specifically designed to separate directed and ran-
dom exploration (Wilson et al.,2014). Using this task we find
that RFPC inhibition selectively inhibits directed exploration
while leaving random exploration intact.

Methods
Participants
31 healthy right-handed, adult volunteers (19 female, 12
male; ages 19-32) took part in the study. 6 participants were
excluded from the analysis due to chance-level performance
or for failure to to return for the second session leaving 25



participants (13 female, 12 male, ages 19-32) for the main
analysis. All participants were informed about potential risks
connected to TMS and signed a written consent. The study
was approved by University of Social Sciences and Humani-
ties ethics committee.

TMS procedure
All TMS was delivered in line with established safety guide-
lines (Rossi, Hallett, Rossini, Pascual-Leone, & Safety of
TMS Consensus Group,2009). There were two experimental
TMS sessions (targeting RFPC and vertex, as a control) and
a preceding MRI session in which a T1 structural image was
acquired in order to target frontal pole. During the TMS ses-
sions, resting motor thresholds were obtained first and then
the cTBS procedure took place. This involved 40 second of
stimulation at 50Hz at 80% resting motor threshold, a proto-
col that is thought to decrease cortical excitability for up to 50
minutes (Wischnewski & Schutter,2015). Participants began
the main task immediately after stimulation. The two experi-
mental sessions were performed with an intersession interval
of at least 5 days. All sessions took place at Nencki Institute
of Experimental Biology in Warsaw. Based on previous fMRI
work showing a link between FPC and exploration (Daw et
al.,2006;Badre et al.,2012), RFPC stimulation was targeted at
[x,y,z] = [35,50,15] in MNI (Montreal Neurological Institute)
space. Vertex corresponded to the Cz position of the 10-20
EEG system.

Behavioral task
We used our previously published ‘Horizon Task’ (Figure 1)
to measure the effects of TMS stimulation of RFPC on di-
rected and random exploration. In this task, participants play
a set of games in which they make choices between two slot
machines (one-armed bandits) that pay out rewards from dif-
ferent Gaussian distributions. To maximize their rewards in
each game, participants need to exploit the slot machine with
the highest mean, but they cannot identify this best option
without exploring both options first.

The Horizon Task has two key manipulations that allow us
to measure directed and random exploration. The first ma-
nipulation is the horizon itself, i.e. the number of decisions
remaining in each game. The idea behind this manipulation is
that when the horizon is long (6 trials), participants should ex-
plore more frequently, because any information they acquire
from exploring can be used to make better choices later on.
In contrast, when the horizon is short (1 trial), participants
should exploit the option they believe to be best. Thus, this
task allows us to quantify directed and random exploration
as changes in information seeking and behavioral variability
that occur with horizon.

The second manipulation is the amount of information par-
ticipants have about each option before making their first
choice. This information manipulation is achieved by us-
ing four forced-choice trials, in which participants are told
which option to pick, at the start of each game. We use these
forced-choice trials to setup one of two information condi-
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Figure 1: The Horizon Task. Participants make a series of
decisions between two one-armed bandits that pay out prob-
abilistic rewards with unknown means. At the start of each
game, ‘forced-choice’ trials give participants partial informa-
tion about the mean of each option. We use the forced-choice
trials to set up one of two information conditions: (A) an un-
equal (or [1 3]) condition in which participants see 1 play
from one option and 3 plays from the other and (B) an equal
(or [2 2]) condition in which participants see 2 plays from
both options. A model-free measure of directed exploration is
then defined as the change in information seeking with hori-
zon in the unequal condition (A). Likewise a model-free mea-
sure of random exploration is defined as the change choosing
the low mean option in the equal condition (B).

tions: an unequal, or [1 3], condition, in which participants
see 1 play from one option and 3 plays from the other option,
and an unequal, or [2 2], condition, in which participants see
two outcomes from both options. The two information condi-
tions allow us to quantify directed and random exploration in
a model-free manner (Figure 1). In particular, directed explo-
ration, which involves information seeking, can be quantified
as the probability of choosing the high information option,
p(high info) in the [1 3] condition, while random exploration,
which involves decision noise, can be quantified as the prob-
ability of making a mistake, or choosing the low mean re-
ward option, p(low mean), in the [2 2] condition. Crucially,
if p(high info) and p(low mean) increase with horizon, then
we infer that participants are using directed and random ex-
ploration.

Model-based analysis
While the model-free analyses are intuitive, the model-free
statistics, p(high info) and p(low mean), are not pure reflec-
tions of information seeking and behavioral variability and
could be influenced by other factors such as spatial bias and
learning. To account for these possibilities we performed
a model-based analysis using a model that extends our ear-
lier work (Wilson et al.,2014;Somerville et al.,2017). In this
model, the level of directed and random exploration is cap-
tured by two parameters: an information bonus for directed



exploration, and decision noise for random exploration. In
addition the model includes terms for the spatial bias and to
describe learning. The model naturally decomposes into a
learning component and a decision component and we con-
sider each of these components in turn.

Learning component The learning component of the
model assumes that participants use a Kalman filter
(Kalman,1960) to learn a value for the mean reward of each
option. In particular, we assume that participants use a gener-
ative model of the task in which the rewards from each ban-
dit, rt , are generated from Gaussian distribution with a fixed
standard deviation, σr, and a mean, mi

t , that is different for
each bandit and can vary over time. The time dependence
of the mean is determined by a Gaussian random walk with
mean 0 and standard deviation σd . Note that this generative
model, assumed by the Kalman filter, is slightly different to
the true generative model used in the Horizon Task, which as-
sumes that the mean of each bandit is constant over time, i.e.
σd = 0. This mismatch between the assumed and actual gen-
erative models, is quite deliberate and allows us to account
for the suboptimal learning of the subjects. In particular, this
mismatch introduces the possibility of a recency bias (when
σd > 0) whereby more recent rewards are over-weighted in
the computation of Ri

t .
The actual equations of the Kalman filter model are

straightforward. The model keeps track of an estimate of both
the mean reward, Ri

t , of each option, i, and the uncertainty in
that estimate, σi

t . When option i is played on trial t, these two
parameters update according to

Ri
t+1 = Ri

t +
(σi

t+1)
2

σ2
r

(rt −Ri
t)

1
(σi

t+1)
2 =

1
(σi

t)2 +σ2
d
+

1
σ2

r

(1)

When option i is not played on trial t we assume that the es-
timate of the mean stays the same, but that the uncertainty
in this estimate grows as the generative model assumes the
mean drifts over time. Thus for unchosen option j we have

R j
t+1 = R j

t and (σ
j
t+1)

2 = (σ
j
t )

2 +σ
2
d (2)

When the option is played, the update equation for Ri
t is es-

sentially just a ‘delta rule’ (Rescorla, Wagner, et al.,1972),
with the estimate of the mean being updated in proportion
to the prediction error, rt −Ri

t . This relationship to the rein-
forcement learning literature is made more clear by rewriting
the learning equations in terms of the time varying learning
rate, αi

t = (σi
t+1)

2/σ2
r Written in terms of this learning rate,

equations 1 become

Ri
t+1 = Ri

t +α
i
t(rt −Ri

t) and
1
αi

t
=

1
αi

t−1 +αd
+1 (3)

where αd = σ2
d/σ2

r . The learning model has four free param-
eters: the noise variance, σ2

r , the drift variance, σ2
d , and the

initial values of the estimated reward, R0, and uncertainty in
that variance estimate, σ2

0. In practice, only three of these
parameters are identifiable from behavioral data, and we will
find it useful to reparameterize the learning model in terms
of R0 and an initial, α0, and asymptotic, α∞, learning rate.
In particular, the initial value of the learning rate relates to
σ0 and σr as α0 = σ2

0/σ2
r , while the asymptotic value of the

learning rate, which corresponds to the steady state value of
αi

t if option i is played forever, relates to αd (and hence σd
and σr) as

α∞ =
1
2

(
−αd +

√
α2

d +4αd

)
(4)

Decision component Once the payoffs of each option, Ri
t ,

have been estimated from the outcomes of the forced-choice
trials, the model makes a decision using a simple logistic
choice rule:

p(choose right) =
1

1+ exp
(

∆R+A∆I+B
σ

) (5)

where ∆R ( = Rle f t
t −Rright

t ) is the difference in expected re-
ward between left and right options and ∆I is the difference in
information between left and right options (which we define
as +1 when left is more informative, -1 when right is more in-
formative, and 0 when both options convey equal information
in the [2 2] condition). The three free parameters of the de-
cision process are: the information bonus, A, the spatial bias,
B, and the decision noise σ. We assume that these three de-
cision parameters can take on different values in the different
horizon and uncertainty conditions (with the proviso that A
is undefined in the [2 2] information condition since ∆I = 0).
Thus the decision component of the model has 10 free pa-
rameters (A in the two horizon conditions, and B and σ in the
4 horizon x uncertainty conditions). Directed exploration is
then quantified as the change in information bonus with hori-
zon, while random exploration is quantified as the change in
decision noise with horizon.

Model Fitting
Hierarchical Bayesian Model Between the learning and
decision components of the model, each subject’s behavior
is described by 13 free parameters, all of which are allowed
to vary between TMS conditions. These parameters are: the
initial mean, R0, the initial learning rate, α0, the asymptotic
learning rate, α∞, the information bonus, A, in both horizon
conditions, the spatial bias, B, in the four horizon x uncer-
tainty conditions, and the decision noise, σ, in the four hori-
zon x uncertainty conditions (Table 1, Figure 2).

We fit each of the free parameters to the behavior of
each subject using a hierarchical Bayesian approach (Lee
& Wagenmakers,2014). In this approach to model fitting,
each parameter for each subject is assumed to be sam-
pled from a group-level prior distribution whose parame-
ters, the so-called ‘hyperparameters’, are estimated using a
Markov Chain Monte Carlo (MCMC) sampling procedure.



Parameter Prior Hyperparameters Hyperprior

prior mean, Rτs
0 Rτs

0 ∼ Gaussian(µτ
R0

, στ
R0

) θτ
R0

= (µτ
R0
,στ

R0
)

µτ
R0

∼ Gaussian(50, 14)
στ

R0
∼ Gamma( 1, 0.001 )

initial learning rate, ατs
0 ατs

0 ∼ Beta(aτ
α0

, bτ
α0

) θτ
α0

= (aτ
α0
,bτ

α0
)

aτ
α0

∼ Uniform(0.1, 10)
bτ

α0
∼ Uniform( 0.5, 10 )

asymptotic learning rate, ατs
∞ ατs

∞ ∼ Beta(aτ
α∞

, bτ
α∞

) θτ
α∞

= (aτ
α∞
,bτ

α∞
)

aτ
α∞

∼ Uniform(0.1, 10)
bτ

α∞
∼ Uniform( 0.1, 10 )

information bonus, Aτshu Aτshu ∼ Gaussian(µτhu
A , στhu

A ) θτhu
A = (µτhu

A ,στhu
A )

µτhu
A ∼ Gaussian(0, 100)

στhu
A ∼ Gamma( 1, 0.001 )

spatial bias, Bτshu Bτshu ∼ Gaussian(µτhu
B , στhu

B ) θτhu
B = (µτhu

B ,στhu
B )

µτhu
B ∼ Gaussian(0, 100)

στhu
B ∼ Gamma( 1, 0.001 )

decision noise, στshu στshu ∼ Gamma(kτhu
σ , λτhu

σ ) θτhu
σ = (kτhu

σ ,λτhu
σ )

kτhu
σ ∼ Exp(0.1)

λτhu
σ ∼ Exp( 10 )

Table 1: Model parameters, priors, hyperparameters and hyperpriors.

rτshug aτshug

cτshug

Aτshu Bτshu στshuατs
∞

ατs
0

Rτs
0

θτhuA θτhuB θτhuσ
θτR0

θτα0
θτα∞

game g = 1:G

uncertainty condition u = 1:U

horizon condition h = 1:H

subject s = 1:S

TMS condition τ = { vertex, RFPC }

Figure 2: Graphical representation of the model. Each vari-
able is represented by a node, with edges denoting the depen-
dence between variables. Shaded nodes correspond to ob-
served variables, i.e. the free choices cτshug, forced-trial re-
wards, rτshug and forced-trial choices aτshug. Unshaded nodes
correspond to unobserved variables whose values are inferred
by the model.

The hyper-parameters themselves are assumed to be sampled
from ‘hyperprior’ distributions whose parameters are defined
such that these hyperpriors are broad. For notational conve-
nience, we refer to the hyperparameters that define the prior
for variable X as θX . In addition we use superscripts to refer
to the dependence of both parameters and hyperparameters
on TMS stimulation condition, τ, horizon condition, h, un-
certainty condition, u, subject, s, and game, g.

The particular priors and hyperpriors for each parameter
are shown in Table 1. For example, we assume that the prior
mean, Rτs

0 , for each stimulation condition τ and horizon con-

dition h, is sampled from a Gaussian prior with mean µτ
R0

and
standard deviation στ

R0
. These prior parameters are sampled

in turn from their respective hyperpriors: µτ
R0

, from a Gaus-
sian distribution with mean 50 and standard deviation 14, στ

R0
from a Gamma distribution with shape parameter 1 and rate
parameter 0.001.

Model fitting using MCMC The model was fit to the data
using a Markov Chain Monte Carlo approach implemented in
the JAGS package (Plummer et al.,2003) via the MATJAGS
interface (psiexp.ss.uci.edu/research/programs data/jags/).
This package approximates the posterior distribution over
model parameters by generating samples from this posterior
distribution given the observed behavioral data. In particular
we used 4 independent Markov chains to generate 4000
samples from the posterior distribution over parameters
(1000 samples per chain). Each chain had a burn in period
of 500 samples, which were discarded to reduce the effects
of initial conditions, and posterior samples were acquired
at a thin rate of 1. Convergence of the Markov chains was
confirmed post hoc by eye.

Results
RFPC stimulation selectively inhibits directed
exploration on the first free-choice
Model-free analysis Using the measures of directed and
random exploration, p(high info) and p(low mean), we
found that inhibiting the RFPC had a significant effect on
directed exploration but not random exploration (Figure 3A,
B). For directed exploration, a repeated measures ANOVA
with horizon, TMS condition and order as factors revealed
a significant interaction between stimulation condition and
horizon (F(1,24) = 4.96, p = 0.036). Conversely, a sim-
ilar analysis for random exploration revealed no effects of
stimulation condition (main effect of stimulation condition,
F(1,24) = 0.88, p = 0.36; interaction of stimulation con-
dition with horizon, F(1,24) = 1.24, p = 0.28). Post hoc
analyses revealed that the change in directed exploration was
driven by changes in information seeking in horizon 6 (one-
sided t-test, t(24) = 2.62, p = 0.008) and not in horizon 1



(two-sided t-test, t(24) =−0.30; p = 0.77).

stimulation condition
vertex RFPC

p(
hi

gh
 in

fo
)

0.4

0.5

0.6

*
**

*

directed exploration

horizon 6
horizon 1

stimulation condition
vertex RFPC

p(
lo

w
 m

ea
n)

0.1

0.2

0.3

** *

random exploration
A B

Figure 3: Model-free analysis of the first free-choice trial
shows that RPFC stimulation affects directed, but not ran-
dom, exploration. (A) In the control (vertex) condition, in-
formation seeking increases with horizon, consistent with di-
rected exploration. When RFPC is stimulated, directed explo-
ration is reduced, an effect that is entirely driven by changes
in horizon 6 (* denotes p < 0.02 and ** denotes p < 0.005;
error bars are ± s.e.m.). (B) Random exploration increases
with horizon but is not affected by RFPC stimulation.

Model-based analysis Posterior distributions over the
group-level means of all 13 parameters in the model are
shown in Figure 4. The left column of Figure 4 shows the
posteriors over each parameter while the right column shows
the posteriors over the TMS-related change in each parame-
ter. Both columns suggest a selective effect of RFPC stimu-
lation on the information bonus in horizon 6.

Focussing on the left column first, overall the parameter
values seem reasonable. The prior mean is close to the gen-
erative mean of 50 used in the actual experiment, and the de-
cision parameters are comparable to those found in our pre-
vious work (Wilson et al.,2014). The learning rate param-
eters, α0 and α∞, were not included in our previous mod-
els and are worth discussing in more detail. As expected for
Bayesian learning (Kalman,1960), the initial learning rate is
higher than the asymptotic learning rate (95% of samples in
the vertex condition, 94% in the RFPC condition). However,
the actual values of the learning rates are quite far from their
‘optimal’ settings of α0 = 1 and α∞ = 0 that would corre-
spond to perfectly computing the mean reward. This suggests
a greater than optimal reliance on the prior (α0 < 1) and a
pronounced recency bias (α∞ > 0) such that the most recent
rewards are weighted more heavily in the computation of ex-
pected reward, Ri

t . Both of these findings are likely due to the
fact that the version of the task we employed did not keep the
outcomes of the forced trials on screen and instead relied on
people’s memories to compute the expected value.

Turning to the right hand column of Figure 4, we can
see that the model-based analysis yields similar result to the
model-free analysis. In particular we see a reduction (of about
4.8 points) in the information bonus in horizon 6 (with 99%
of samples showing a reduced information bonus in the RFPC
stimulation condition) and no effect on decision noise in ei-

initial learning rate, ,
0

0 0.5 1
asymptotic learning rate, ,

inf

information bonus (horizon 1), A

-10 0 10
information bonus (horizon 6), A

decision noise (horizon 1, [1 3]), <

decision noise (horizon 6, [1 3]), <

decision noise (horizon 1, [2 2]), <

0 10 20
decision noise (horizon 6, [2 2]), <

spatial bias (horizon 1, [1 3]), B

spatial bias (horizon 6, [1 3]), B

spatial bias (horizon 1, [2 2]), B

parameter value
-10 0 10

spatial bias (horizon 6, [2 2]), B

-0.5 0 0.5

-10 0 10

-10 0 10

parameter change
-10 0 10

-40 -20 0 20 40

difference
(RFPC - vertex)

0 50 100
prior mean, 7

0

mean
vertex RFPC

Figure 4: Model-based analysis of the first free-choice trial
showing the effect of RFPC stimulation on each of the 13
parameters. Left column: Posterior distributions over each
parameter value for RFPC and vertex stimulation condition.
Right column: posterior distributions over the change in each
parameter between stimulation conditions. Note that, because
information bonus, decision noise and spatial bias are all in
units of points, we plot them on the same scale to facilitate
comparison of effect size.

ther horizon in either the [2 2] or [1 3] uncertainty conditions
(with between 40% and 63% of samples below zero).

Discussion
In this work we used continuous theta-burst transcranial mag-
netic stimulation (cTBS) to investigate whether right fron-
topolar cortex (RFPC) is causally involved in directed and
random exploration. Using a task that is able to behaviorally
dissociate these two types of exploration, we found that inhi-
bition of RFPC caused a selective reduction in directed, but
not random exploration. To the best of our knowledge, this
finding represents the first causal evidence that directed and
random exploration rely on dissociable neural systems and
is consistent with our recent findings showing that directed
and random exploration have different developmental pro-
files (Somerville et al.,2017). This suggests that, contrary to
the assumption underlying many contemporary studies (Daw
et al.,2006;Badre et al.,2012), exploration is not a unitary
process, but a dual process in which the distinct strategies
of information seeking and choice randomization are imple-
mented via distinct neural systems.

Such a dual-process view of exploration is consistent with
the classical idea that there are multiple types of exploration
(Berlyne,1966). In particular Berlyne’s constructs of ‘specific
exploration’, involving a drive for information, and ‘diver-



sive exploration’, involving a drive for variety, bear a striking
resemblance to our definitions of directed and random ex-
ploration. Despite the importance of Berlyne’s work, more
modern views of exploration tend not to make the distinc-
tion between different types of exploration, considering in-
stead a single exploratory state or exploratory drive that con-
trols information seeking across a wide range of tasks (Hills
et al.,2015;Kidd & Hayden,2015). At face value, such uni-
tary accounts seem at odds with a dual-process view of ex-
ploration. However, these two viewpoints can be reconciled
if we allow for the possibility that, while directed and random
exploration are implemented by different systems, their lev-
els are set by a common exploratory drive. More work will
be required to determine whether this is the case.

While the present study does allow us to conclude that di-
rected and random exploration rely on different neural sys-
tems, the limited spatial specificity of TMS limits our abil-
ity to say exactly what those systems are. In particular, be-
cause the spatial extent of TMS is quite large, stimulation
aimed at frontal pole may directly affect activity in nearby
areas such as ventromedial prefrontal cortex (vmPFC) and
orbitofrontal cortex (OFC), both areas that have been impli-
cated in exploratory decision making and that may be con-
tributing to our effect (Daw et al.,2006). In addition to such
direct effects of TMS on nearby regions, indirect changes
in areas that are connected to the frontal pole could also be
driving our effect. For example, cTBS of left frontal pole
has been associated with changes in blood perfusion in ar-
eas such as amygdala, fusiform gyrus and posterior parietal
cortex (Volman, Roelofs, Koch, Verhagen, & Toni,2011). In
addition the same study showed that unilateral cTBS of left
frontal pole is associated with changes in blood perfusion to
the right frontal pole. Indeed, such a bilateral effect of cTBS
may explain why our intervention was effective at all given
that a number of neuroimaging studies have shown bilat-
eral activation of the frontal pole associated with exploration
(Daw et al.,2006;Badre et al.,2012). Future work combining
cTBS with neuroimaging will be necessary to shed light on
these issues.
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