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Abstract
We explore the effects of parameters in our novel model of
model-based reinforcement learning. In this model, spiking
neurons are used to represent state-action pairs, learn state
transition probabilities, and compute the resulting Q-values
needed for action selection. All other aspects of model-based
reinforcement learning are computed normally, without neu-
rons. We test our model on a two-stage decision task, and com-
pare its behaviour to ideal model-based behaviour. While some
of these parameters have expected effects, such as increasing
the learning rate and the number of neurons, we find that the
model is surprisingly sensitive to variations in the distribution
of neural tuning curves and the length of the time interval be-
tween state transitions.
Keywords: neural model; reinforcement learning; model-
based reinforcement learning; Neural Engineering Framework

Introduction
Reinforcement learning (RL), a formalization of reward-
based decision making, is often divided into two sub-types:
model-free and model-based (Sutton & Barto, 1998). This
distinction has been used by neuroscientists to explain as-
pects of instrumental conditioning in humans and other ani-
mals. Daw, Niv, and Dayan (2005) drew parallels between the
habit system (where actions are performed automatically) and
model-free RL; and between the goal-directed system (where
actions show evidence of planning) and model-based RL.
Model-free and model-based learning have been proposed
to be realized in the brain with separate systems that rely
on different prediction error signals (Glascher, Daw, Dayan,
& O’Doherty, 2010). There has been extensive research on
model-free RL, including work on how it may be instantiated
in the brain according to the reward prediction error theory of
dopamine (e.g., Barto, 1995). There is significantly less focus
on model-based RL, including a particularly evident lack of
suggestions as to how it may happen in the brain (Friedrich
& Lengyel, 2016).

We have developed a novel model of model-based RL
that uses spiking neurons to represent state-action pairs,
learn state transition probabilities, and compute the resulting
Q-values needed for action selection. The present work aims
to investigate the factors that influence the behaviour of this
neural model.

Background
In both model-free and model-based RL approaches, the goal
is to learn from experience how valuable different actions are,
given the current state (Sutton & Barto, 1998). This is written
as Q(s,a), where s is the state, and a is the action.
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Figure 1: Schematic diagram of the two-stage task. The num-
bers on the arrows in the first stage indicate the probability
of a particular state transition, given the chosen action. The
reward after performing an action in the second stage is ran-
domly determined based on the reward probability. Adapted
from Akam et al. (2015).

In model-based RL, the value Q of an action in a particular
state is given by the Bellman equation (Bellman, 1957):

Q(s,a) = R(s,a)+ γ∑
s′

P(s,a,s′)max
a

Q(s′,a), (1)

where R is the expectation of reward, P is the probability of
transitioning from state s to s′ if action a is performed, and γ is
a future discounting parameter. Importantly, in order to com-
pute this, the system needs to know the state transition prob-
abilities P(s,a,s′). This set of probabilities can be thought of
as a model of the environment, and is why this approach is
called model-based.

In contrast, model-free RL does not create an explicit rep-
resentation of the environment. Rather, it just uses whatever
state st+1 occurs after the action a in the current state st . This
can be thought of as an estimate of the typical next state that
will occur. This leads to an approximation of Eq. 1 that does
not take into account the transition probabilities, but is much
simpler to compute:

Q(st ,a) = R(st ,a)+ γmax
a

Q(st+1,a). (2)

Model-free RL constructs an estimate of Eq. 1 through di-
rect experience in the environment, which leads to an implicit



(a) Ideal model-free behaviour (b) Ideal model-based behaviour (c) Human behaviour

Figure 2: Ideal and human stay probability behaviour on the two-stage task. C denotes common, and R denotes rare, state
transitions. Trials are either rewarded (+) or unrewarded (−). Adapted from Daw et al. (2011).

representation of environmental statistics. In contrast, model-
based RL constructs an internal model of the probabilities of
reward R and state transitions P. This explicit learning of the
statistics is used to directly calculate the Bellman equation.

Given this difference, there are situations where the learn-
ing trajectories will differ between model-free and model-
based RL. As discussed in the next section, particular learning
tasks can be defined to distinguish the two approaches.

Two-stage task
We test our model on the two-stage task described in Daw
et al. (2011). A schematic diagram of this task is shown in
Fig. 1. The first stage consists of an initial state, which has
two possible actions (a and b). These actions lead probabilis-
tically to one of the two second stage, or terminal, states (A
and B), with action a commonly transitioning to state A and
action b commonly transitioning to state B. These common
state transitions each have a probability of 0.7; correspond-
ingly, rare transitions have a probability of 0.3. In states A
and B, actions a and b are again available, and are rewarded
with probability determined by a Gaussian random walk, so
that the immediate reward after performing an action in a sec-
ond stage state is either 0 or 1. This randomness was intro-
duced to enforce continued learning throughout the task.

This task was developed to discriminate model-based from
model-free behaviours, using the stay probability, i.e., the
likelihood of choosing the same initial-state action in trial
n+1 as in trial n (Daw et al., 2011). In particular, if an agent
finds itself in a rare (R) second-stage state (given their action
in the initial state), and performs an action that is rewarded
(+), a purely model-free strategy would increase the value of
performing that first-stage action, as shown in Fig. 2a, while
a purely model-based strategy would increase the value of be-
ing in that second-stage state, thus increasing the value of the
unchosen first-stage action and decreasing the stay probabil-
ity (see Fig. 2b, R+). By similar logic, in a rare, unrewarded
state (R−), a model-based agent would increase the value of
choosing the initial action, thus increasing the stay probabil-
ity.

As an example of model-based reasoning, say an agent has

found itself in state B after performing action a. The agent
“knows” this is a rare transition. Now say the agent performs
some action and receives a reward. This increases the value
of being in state B, so the agent wants to return to this state.
Since the agent knows that state B is more commonly reached
after performing action b in the initial state, it will also in-
crease the value of performing action b in the initial state and
correspondingly decrease the value of performing action a
in that state. Conversely, a model-free reasoner would sim-
ply increase the value of every state-action pair it performed
before receiving the reward, and so the value of performing
action a in the initial state would increase.

Daw et al. (2011) found that human behaviour on this
task showed characteristics of both model-free and model-
based strategies (see Fig. 2c). In particular, there is a sta-
tistically significant difference between rare-rewarded (R+)
and common-unrewarded (C−) probabilities not evident
in model-based behavior, and there are elevated rare-
unrewarded (R−) and common-rewarded (C+) probabilities
relative to the C− probabilities that is not evident in model-
free behaviour.

Model
Fig. 3 shows a schematic diagram of the model we built us-
ing the Nengo neural simulator (Bekolay et al., 2014), which
is based on the principles of the Neural Engineering Frame-
work (NEF; Eliasmith & Anderson, 2003). The NEF provides
methods to generate neurons with random properties (such as
tuning curve distributions) and then arrange them so that they
best approximate a given representation or transformation.

The neural model includes two components of model-
based RL: 1) the representation of the state transition prob-
abilities P(s,a,s′), and 2) the multiplication of these prob-
abilities by the Q-values of the future states to produce an
estimate of the Q-values of the current state’s actions. We
implement these components using spiking leaky-integrate-
and-fire (LIF) neurons (Lapicque, 1907) via the NEF, while
the rest of the model-based RL system is implemented using
traditional computation.

In the model, the states and actions are represented by vec-



tors. For simplicity of explanation, we refer to these vec-
tors as orthogonal, with the smallest possible dimensionality
(three dimensions to represent the three states, and two for
the two actions); however, our methods allow these vectors to
be arbitrarily large. In the model, we use 5-dimensional vec-
tors. For purposes of explanation, we will use 3-dimensional
vectors, and assume state A is represented by SA = [1,0,0],
state B by SB = [0,1,0], and the initial state by S0 = [0,0,1].
The rest of the model components, shown in rectangles in
Fig. 3, are implemented directly without neuron approxima-
tion. These components perform action selection, track and
update the environment’s actual state transitions and reward,
learn the model-free Q-values of actions in states A and B,
and store all the Q-values (for use in action selection).

In the design of our model, we exploit the natural par-
allelism of a neural implementation. In traditional model-
based approaches, the state transition probabilities P(s,a,s′)
are stored in lookup tables. However, in our model, these
probabilities are represented by a function computed in a con-
nection between neural populations that maps state-action in-
puts to a second-state probability distribution as follows:

P(s,a) = [P(s,a,SA),P(s,a,SB),P(s,a,S0)]. (3)

For example, P(S0,a) = [0.7,0.3,0.0] in the two-stage task.
In a traditional model-based agent, the value of actions in

states in the first stage (in this case, the single initial state) are
recalculated at the beginning of each trial, with:

Q(s,a) = ∑
s′

P(s,a,s′)max
a

Q(s′,a). (4)

In our model, this calculation is done in neurons. Specifi-
cally, using our modified representation of the state transition
probabilities, we calculate the following dot product:

Q(s,a) = P(s,a) ·Q(a′), (5)

where Q(a′) is the vector of the best possible action for every
state.

Although multiplications are non-linear, they have a well-
characterized implementation in neurons that can be imple-
mented accurately with the NEF (Gosmann, 2015). A neural
population, called Product in Fig. 3, performs an element-
wise multiply based on this characterization, and a summa-
tion is performed by the output connections to compute Eq. 5.

To illustrate how this would be done by a model-based
agent using the two-stage task, consider an agent that is in
the initial state and considering performing action a (i.e., s =
S0,a= a). The agent remembers the Q-values of the best pos-
sible action a′ for every state, say Q(a′) = [0.25,0.75,0.33],
as well as the probability of reaching that state given the cur-
rent state and action (as before, P(S0,a) = [0.7,0.3,0.0]). To
calculate the Q-value of the current state and considered ac-
tion, it performs the dot product of these two vectors, produc-
ing a value of Q(S0,a) = 0.4. It then follows the same process
to consider action b, and finds Q(S0,b) = 0.6.
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Figure 3: Model diagram. The components of the model
shown in oval shapes are simulated populations of neurons
that perform representations and transformations. The rectan-
gular components are directly computed without neuron ap-
proximation. The connection between the State and Action
population and the Product population calculates Eq. 3 ac-
cording to the ideal state transition probabilities. The Prod-
uct population performs an element-wise multiply between
the transition probabilities and the Q-values stored in the en-
vironment. The connection from Product to the environment
adds the results of that multiply. These last two steps together
calculate Eq. 5.

The resulting Q-values need to be updated for both possible
actions in the initial state. One possibility is to perform this in
parallel (i.e., to have separate groups of neurons that perform
this computation for each possible action). However, since
this may be problematic if the number of actions grows to be
large (or is unknown), we consider a serial strategy. Specif-
ically, we have assumed the neural system considers actions
one after the other over time. Although the actions are con-
sidered sequentially, all of the possible future states following
those actions are considered in parallel.

Consistent with previous (non-neural) models of this
task (Daw et al., 2011), the values of actions in the terminal,
stage-two states are updated using a version of Q-learning:

Q(s,a)← (1−α)Q(s,a)+αr, (6)

where α is a learning rate parameter and r is the immediate
reward (Akam et al., 2015). This calculation is done directly,
rather than with neurons.

Action selection is performed by approximating a softmax.
That is, to determine the action performed in a given state, a
small amount of random noise is added to the Q-values for
all the actions in that state before selecting the action with the
highest Q-value.

Method
We explore four parameters that influence the model’s be-
haviour on the two-stage task:

1. The learning rate α (from Eq. 6), which affects how much
the Q-values of the terminal states are changed after receiv-
ing a reward.



(a) learning rate = 0.05 (b) learning rate = 0.3 (c) learning rate = 1

Figure 4: Examples of different stay probability behaviours for various learning rates with a Nengo seed of 1. Error bars are
95% confidence intervals.

Figure 5: Stay probabilities of different learning rates. Error
bars are 95% confidence intervals, and are sometimes smaller
than data point markers.

2. The number of neurons in the State and Action and Prod-
uct populations, which affects the accuracy of the repre-
sentation and multiplication.

3. The random properties of the neurons used in the model
are determined by Nengo according to a random seed. Dif-
ferent values of this seed produce different random distri-
butions of neural tuning curves, so versions of the model
instantiated with these different seeds can be thought of as
different individuals.

4. The time interval between state transitions. The effect this
is expected to have is that if the time interval is too short,
the neurons will not have adequate time to compute the
Q-values, and so the stay probability may be uniform in
all rewarded (+) or unrewarded (−) and common (C) or
rare (R) cases, since the agent is choosing actions based on
essentially random information.

For each tested case, we run our simulations with twenty

Figure 6: Stay probabilities of different numbers of neurons
in the State and Action population. Model-based behaviour is
clearly distinguishable with 100 or more neurons. Error bars
are 95% confidence intervals.

sessions of 10000 trials each. Each session is run with a dif-
ferent random seed for the environment, which determines
the random behaviour of state transitions, the random noise
in the action selection, and the random walks of reward prob-
abilities.

Results
Learning rate
As shown in Figs. 4 and 5, as the learning rate α is increased,
the effect of model-based reasoning is also increased; that is,
the stay probabilities of the C+ and R− cases are increased,
while the stay probabilities of the R+ and C− cases are de-
creased. When α = 1.0, the most extreme example, there is
no model-free learning; the Q-value of the terminal states is
simply the reward (0 or 1) that was most recently received.
In this situation, when calculating the Q-values of the initial
state as in Eq. 4 or 5, the Q-values will either be exactly the



Figure 7: Stay probabilities of different numbers of neurons
in the Product population. Error bars are 95% confidence
intervals.

state transition probability, or 0. When α is a lower, for exam-
ple α = 0.05, much more emphasis is put on the learned val-
ues of the terminal states, and those values are learned much
more slowly, and so they interfere with the model-based rea-
soning.

Number of neurons
In general, decreasing the number of neurons in the State
and Action population has a similar effect to decreasing the
learning rate: the stay probabilities of the C+ and R− cases
decrease and the stay probabilities of the R+ and C− cases
increase as the number of neurons decreases. This trend is
shown in Fig. 6. Populations of at least 100 neurons were
sufficient for producing clearly model-based stay probability
behaviours. For most other simulations, a default value of
500 neurons was chosen because it produces a clear separa-
tion between C+, R− and R+, C− stay probabilities.

Increasing the number of neurons in the Product popula-
tion above 200 per dimension did not produce any significant
benefits, as shown in Fig. 7.

Individual
As shown in Fig. 8, there are large individual differences be-
tween different Nengo seeds. Many of them produce pure
model-based stay probability plots (Fig. 8a), while some have
a significant difference in stay probabilities between the R+
and C− cases that is reminiscent of human data (Fig. 8b), and
in others, that significant difference is in the opposite direc-
tion to the human data (Fig. 8c). However, when averaged
across individuals, the stay probabilities are characteristically
model-based.

Time interval
As expected, it is necessary for the time interval between state
transitions to be sufficiently long in order for the neurons to

compute the Q-values. However, the individual differences
discernible between different Nengo seeds are also depen-
dent on the length of the time interval between state transi-
tions; surprisingly, there is no apparent relationship between
the length of the time interval and the stay probability be-
haviour. Three examples of stay probability behaviour with
a Nengo seed of 1 are shown in Fig. 9. These can also be
compared to Fig. 8b, which shows the same seed with a time
interval of 50ms. Of particular interest is the discrepancy be-
tween Figs. 9b and 9c, since these time intervals have only
a 10ms difference, yet show almost opposite stay probability
behaviours.

Discussion

The core result of the research presented here is that, in gen-
eral, the neural model of model-based reinforcement learning
matches the expected results of a model-based agent. This
is demonstrated by data aggregated across individual Nengo
seeds, as well as particularly clearly by the trend produced
by varying the learning rate α. The value of alpha that pro-
duced the greatest difference between the C+, R− and R+,
C− stay probabilities (demonstrating a strong model-based
effect) was α = 1.0. This suggests that it may not be neces-
sary for models of the two-stage task to use the model-free Q-
learning component to estimate the values of terminal states
(Eq. 6), since model-based stay probability behaviour can be
produced when the values of the terminal states are taken to
be the immediate reward.

The effect of varying the number of neurons in the State
and Action population is also as expected for a purely model-
based agent. As the number of neurons increases, the repre-
sentation of the current state and action is improved, which
increases the likelihood of calculating the correct state transi-
tion probability as the input to the Product network.

The stay probability pattern reminiscent of human data
reappeared with a number of Nengo seeds and time intervals.
The individual differences between Nengo seeds demon-
strates that the stay probability behaviour is surprisingly sen-
sitive to the distributions of neurons. Future work will be
done to further investigate this result.

The most unforeseen result was that of the length of the
time interval and its interaction with the Nengo seed. In-
creasing the length of the synaptic filter may eliminate this
irregular effect; future work will investigate this and other
possibilities.

Conclusion

Our investigation of the effects of four parameters on the stay
probability behaviour of a neural model of model-based re-
inforcement learning established that it typically performs as
expected of a model-based agent. However, individual dif-
ferences between certain parameter values demonstrated the
model’s sensitivity to the distribution of neural tuning curves
and the time interval between state transitions.



(a) seed = 8 (b) seed = 1 (c) seed = 7

Figure 8: Examples of individual differences between Nengo seeds: (a) pure model-based stay probability behaviour, (b) stay
probability behaviour suggestive of human data, and (c) stay probabilities opposite to those in (b). All trials were run with a
time interval of 50ms. 95% confidence intervals are shown.

(a) time interval = 200ms (b) time interval = 500ms (c) time interval = 510ms

Figure 9: Examples of different behaviours for various time intervals with a Nengo seed of 1. Error bars are 95% confidence
intervals.

Notes Supplemental material, including python scripts,
is available at https://github.com/ctn-waterloo/cogsci17-
rl/refactor.
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l’excitation électrique des nerfs traitée comme une polar-
isation. Journal de Physiologie et de Pathologie Générale,
9, 620–635.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning:
An introduction. Cambridge: MIT Press.


