
Examining Working Memory during Sentence Construction with an ACT-R
Model of Grammatical Encoding

Jeremy R. Cole
The Pennsylvania State University

University Park, PA
jrcole@psu.edu

David Reitter
The Pennsylvania State University

University Park, PA
reitter@psu.edu

Abstract
We examine working memory use and incrementality using a
cognitive model of grammatical encoding. Our model com-
bines an empirically validated framework, ACT-R, with a lin-
guistic theory, Combinatory Categorial Grammar, to target that
phase of language production. By building the model with the
Switchboard corpus, it can attempt to realize a larger set of
sentences. With this methodology, different strategies may be
compared according to the similarity of the model’s sentences
to the test sentences. In this way, the model can still be evalu-
ated by its fit to human data, without overfitting to individual
experiments. The results show that while having more work-
ing memory available improves performance, using less work-
ing memory during realization is correlated with a closer fit,
even after controlling for sentence complexity. Further, sen-
tences realized with a more incremental strategy are also more
similar to the corpus sentences as measured by edit distance.
As high incrementality is correlated with low working mem-
ory usage, this study offers a possible mechanism by which
incrementality can be explained.

Introduction
Working memory has long been thought to play an important
role in language processing (e.g., Gibson, 1998). In language
production, one important question concerns grammatical en-
coding, the process by which words are combined into sen-
tences. In this paper, we make progress in understanding the
interaction of working memory with strategies and represen-
tations that are needed for grammatical encoding.

One strategic decision that is crucial to grammatical encod-
ing is how incremental the process is: are words planned in
the exact order they are output, or are other mechanisms at
play? There are, obviously, opportunities to leverage repre-
sentational insights from computational linguistics and algo-
rithmic choices known in natural-language generation. Mod-
els of grammatical encoding thus far have been either too gen-
eral or too specific to both make clear predictions that are
testable with behavioral methods or against known effects.

Computational implementations of linguistic models (e.g.,
Steedman, 2000) are geared towards performance, not ex-
planatory value, which makes it difficult to evaluate their de-
mand for limited cognitive resources and to determine their
interactions with general cognition. On the other hand, con-
nectionist models often aim to be more agnostic to the lin-
guistic task (e.g., Dell et al., 1999), making them challenging
to interpret once they are trained on data. In short, the general
motivations to engage in a combination of cognitive modeling
and computational linguistics apply to grammatical encoding.

With the availability of large-scale data, language models
should strive to explain as much data as possible. Reusing
syntactic alternatives, such as the difference between double

object and prepositional object, can only take the field so far
in explaining the richness of human discourse. Conversely,
if our models are high coverage but not cognitively plausi-
ble, the performance of the model may be good from an en-
gineering perspective, but the model cannot be said to have
explained any of the data from a scientific perspective.

Big data, used appropriately, also allows us to contrast dif-
ferent model variants in terms of their explanatory power.
This can lead to incremental improvements. In short, we call
for a new type of cognitive modeling where it is possible: in-
stead of modeling a relatively small number of experiments
surrounding a phenomenon, we model a large amount of the
raw data produced by the phenomenon itself. For our task,
we evaluate against a corpus.

In this paper, we advance towards such a computational
cognitive model of grammatical encoding. The implemented
model that we will discuss has clear, interpretable representa-
tions in the form of Combinatory Categorial Grammar (CCG,
Steedman and Baldridge, 2011). It is cognitively plausi-

ble and implemented in an empirically validated framework,
ACT-R (Anderson et al., 2004). It is empirically testable,
as the model can produce output for any target sentence, al-
lowing competition among alternative models. Our model in
particular examines how incrementality in syntax, working
memory availability, and working memory usage can improve
or worsen the model’s fit to linguistic data.

Related Work
This paper builds on a rich body of work from both psychol-
ogy and linguistics attempting to characterize the language
production process.

Grammatical Encoding
There are many ways to discretize the steps of the full pro-
cess of language production. For instance, we could say af-
ter an idea is formulated, it is grammatically encoded and
then phonologically encoded (Bock and Levelt, 2002). In
turn, grammatical encoding could consist of lexical selec-
tion, function assignment, and constituent assembly. The first
stage maps ideas to words; the second stage maps words to
parts of speech, and the last stage combines these lexical-
syntactic units (hereafter lexsyns) into constituents. As syn-
tactic trees are formed by recursively combining constituents,
this process eventually leads to a sentence. Thus, the full pro-
cess of grammatical encoding transforms ideas, or semantics,
into a realized sentence.



Working Memory and Language Production
The precise effect of memory on syntactic processing has not
been the focus of previous studies. Nonetheless, some con-
straints have been proposed on sentence formulation, includ-
ing showing that a higher span can decrease certain types
of grammatical errors (Hartsuiker and Barkhuysen, 2006;
Badecker and Kuminiak, 2007). Further, Slevc (2011) sug-
gests working memory load can affect the incrementality of a
sentence. However, the discussion of representations in work-
ing memory for the function assignment and constituent as-
sembly process is a matter of linguistic theory. We turn to
Combinatory Categorial Grammar (Steedman and Baldridge,
2011), which provides a possible representation, and we show
how it could map to the psychological architecture of atten-
tion, processing and memory.

Theories of Incrementality
V. S. Ferreira (1996) makes an argument for incrementality,
based on the observation that competitive syntactic alterna-
tives facilitate production rather than making it more diffi-
cult. An incremental account of sentence realization would
predict such an effect, as syntactic “flexibility” introduced by
the alternatives makes it easier to find a workable syntactic
decision. By contrast, without incremental commitment to
each structure, competing material slows down the process,
because it would lead to a combinatory explosion. Further
results, however, relativize this account when it comes to the
syntax-phonology interface (F. Ferreira and Swets, 2002). In-
cremental production is possible, but it is “under strategic
control”; it depends on semantic information, and it could
be modulated by external factors, such as stress.

Based on the literature, we assume that incrementality in
grammatical encoding may be graded: the degree to which
a sentence is realized incrementally may vary based on cer-
tain cognitive factors. However, the literature has yet to ad-
dress how speakers (or comprehenders) might use the lim-
ited memory resources available to guide the attendant strate-
gic choices surrounding incremental realization. Our corpus-
driven model has the potential to explain this by contrasting
models with different available working memory, and by ex-
amining actual working memory use, as well as by measuring
the activation and availability of linguistic structures.

Background
Our model relies on the unification between a linguistic the-
ory (CCG) and a cognitive framework (ACT-R), which will
be explained in turn in the following section.

Linguistic Theory
Combinatory Categorial Grammar (CCG) is a grammar for-
malism (Steedman and Baldridge, 2011). While it was not
conceived as a purely psycholinguistic theory, interpreting it
as such has a few important consequences. Most importantly,
after a syntactic operation, the representations are simplified.
This is as opposed to other grammar formalisms, where com-
bination always results in a more complicated representation,

Table 1: The four basic rules of CCG, which specify how syntactic
types can be combined. They are the rules by which types can
be systematically combined into a sentence. The left-hand side
specifies two types, each of which are recursively composed of one
or two types (e.g. X/Y is one type). The right-hand side specifies
the resulting type of the operation on the left.

Forward Application (>): X/Y > Y = X
Backward Application (<): Y < X \Y = X
Forward Composition (>>): X/Y >> Y/Z = X/Z
Backward Composition (<<): Y \Z << X \Y = X \Z

e.g. Tree-Adjoining Grammar (Joshi and Schabes, 1997). In
general, grammar formalisms operate based on types, such
as noun phrase, and rules, which are methods for combining
the types into a sentence. See Table 1 for a demonstration
of CCG’s combinatory rules. See Figure 1 for an example of
how these rules can create sentences.

ACT-R
ACT-R is a general theory of cognition (Anderson et al.,
2004). ACT-R, combined with a linguistic theory like CCG,
can provide a unification of computational modeling, cog-
nitive science, and linguistics. ACT-R’s basic system for
writing models involves chunks and production rules, where
chunks represent declarative memory and production rules
represent procedural memory. In the following sections, we
discuss how we infer the chunks from a corpus.

Methods
We create a model that is automatically derived from the
syntactic and lexical information present in 1,200 sentences
sampled from the Switchboard corpus (Godfrey et al., 1992).
Switchboard is a spoken language corpus of two strangers
having a phone conservation about a provided topic. We
then run this model with no interruptions or constraints, us-
ing the unordered bag-of-words from the corpus sentences
as input as an approximation of the meanings (one sentence
at a time), and expecting sentences or sentence fragments as

			the								dog	
	NP/N								N																				

															NP																																		bit										
						S/(S\NP) 	 	 	 				(S\NP)/NP									 			John			
	 	 	 	 	 					S/NP 	 	 	 	 	 														NP					
	 	 	 	 	 	 	 	 	S	
			the								dog																											bit	 				 	 	 			John	
	NP/N								N																							(S\NP)/NP																NP										

															NP																																	 			 	 	S/NP																				
	 	 	 	 	 	 	 	 	S	 		

T	
>	

>	
>>	

>	

>	 >	
<	

Figure 1: Two contrasting CCG derivations: The top is more in-
cremental (right-branching) than the bottom. Note that the T> is
normally used to mark non-standard derivations, which are usually
more incremental.



output. The model’s process is recorded in the form of syn-
tax trees (”derivations”) for further analysis, as these deriva-
tions reflect the strategy applied by the model to produce the
sentences. The model’s performance under different working
memory conditions will be evaluated by comparing to each
original sentence. Thus, the core task of the model is to re-
cover the original ordering of the words in each sentence.1

Model
Our model is implemented in jACT-R (Harrison, 2005), a full
Java implementation of the ACT-R theory (Anderson et al.,
2004). This was primarily due to convenience, portability,
and scalability, rather than any difference in theoretical pre-
dictions between jACT-R and the core Lisp ACT-R.

The model’s combinatory mechanism is based on CCG. As
CCG specifies clear symbolic and procedural components,
it maps naturally to chunks and production rules. The ex-
act mapping will be discussed in the following sections. As
discussed earlier, using CCG as the combinatory mechanism
of the cognitive model means that combinations will reduce
the current memory use. We acknowledge that such predic-
tions should match data on working memory, though we don’t
see such a prediction as out of line with current ideas about
chunking (Conway et al., 2005).

The model is generated from a corpus. The model’s goal is
to encode all of the sentences found in the corpus into declar-
ative memory and production rules. A wide range of models
can be created in this way; however, our empirical evalua-
tion is based on a model learned from a subset of the Switch-
board corpus. The chosen sentences use more frequent syn-
tactic types and are of shorter length. Then, the model learns
the words and potential syntactic types from the raw text and
CCG annotations. These learned syntactic types serve as pos-
sible function assignments for the words. Importantly, this is
all the model learns: the production rules are encoded with
no knowledge of the sentences.

In short, the current model forms a sentence by combin-
ing lexical-syntactic chunks together. Out of simplicity, it
chooses what to combine greedily. Importantly, it treats no
words, types, or rules as special, and it has no knowledge
of what words or types should go together beyond the con-
straints of CCG. Nonetheless, simply following CCG rules
can lead to unidiomatic sentences and potentially even un-
grammatical sentences by violating certain thematic con-
straints. This is true of the presented model. However, the
full expressive range of syntactic and lexical constructions
found in a corpus requires substantial learning, which is out
of scope for the present paper. Thus, while many construc-
tions of our model are unidiomatic, we provide a baseline for
future work to be evaluated against. Randomly selected ex-
ample constructions by the model can be found in Table 2.

1Due to our lack of test set, the careful reader may note that it
would be possible to overfit. However, our model does not learn
word orderings directly from the corpus, instead only learning syn-
tactic types: indeed, we are much more interested in the effects of
working memory and grammatical encoding strategy.

Declarative Memory
Declarative Memory (DM) is composed of a few simple
chunk types, described below. The basic organizational
scheme has Sentences composed of Lexsyns, and Lexsyns
composed of a single Word and several Types that the word
can be in a given context.Words simply have a name, which
corresponds to its lexical information (e.g. family).

Types are an arbitrarily complicated CCG type. The types
that exist in DM are the types that are used in Switchboard
CCG derivations of our chosen sentences.

Lexsyns associate a Word with some number of Types.
These associated types are taken from the function assign-
ments of each word in the Switchboard CCG derivations of
our chosen sentences. The types are ordered from most com-
mon to least common, which would mean more common
types would be selected if all else is equal.

Sentences are normally in the goal buffer. Thus, the sen-
tence contains the current state of grammatical encoding. If
we think of the goal buffer as working memory, then differ-
ing the slots available to realize a sentence corresponds to
different predictions about working memory availability. Ad-
ditionally, the sentence chunk also contains the input for the
task. However, this is more of a limitation than a theoreti-
cal commitment: due to our focus on grammatical encoding,
we had to assume the previous tasks of idea generation and
lexical selection were complete. In reality, it is likely that all
three tasks overlap to some extent.

Table 2: Example sentences produced by the model. The ‘target’
is the actual sentence from the corpus, while the realization is what
the model produced. The quality of the model’s output varies.

Realization Target
downhill going like every-
body

but then they started going
downhill like everybody else

you fire never something un-
less anybody ’re caught

they never fire anybody un-
less you ’re caught doing
something illegally

still taxes raise probably and i think he can probably raise
taxes and still get elected

i then and decided i like au-
thor this

and then i decided i like this
author

are school working you are you working anywhere
while you are going to school

Production Rules
We define a small set of about ten production rules (which are
compiled into several thousand production rules through an
automatic process, which we will not describe in detail here).
Depending on the production, the architecture will choose an
appropriate rule; there is no predefined algorithmic flow. The
model’s production rules fall into three basic categories.

1. Syntax Rule Application This production rule may fire
if Working Memory contains at least two Lexsyns whose
types would follow the constraints of at least one CCG rule.



If so, it initiates Rule (3) to determine the result of the rule
application.

2. Goal buffer modification (A) Move word from Input to
Working Memory: This production rule can only fire if
there is space in the goal buffer for it to be added. It simply
deletes the word from the input, and initiates Rule (3) to re-
trieve its function assignment. (B) Flush: If no other rules
apply, the model will flush, clearing its retrieval buffer or
working memory to try again. (C) Resolve Syntax Rule:
This deletes the unnecessary entries in working memory
after the resulting type is known, as the two entries are
combined into the single CCG entry representing the re-
sult of applying the rule.

3. Lexical Retrieval from DM Retrieve the possible func-
tion assignments of a word (its lexsyn), or retrieve the type
resulting from the application of a syntax rule.

Input
Due to our focus on grammatical encoding, the input to the
model is a bag of words generated from the target corpus
sentence. To be clear, the model does not order the words
its given as input, instead it only combines two words if its
possible under CCG using their current function assignments.
Thus, not every output sentence uses every word in the input.

Experiment
In our experiment, we use the model to ask how the size of
verbal working memory relates to the fidelity of the produced
sentences, and how this interacts with the strategy for gram-
matical encoding.

Conditions
Working Memory (WM) We contrast two basic versions
of the model with 3 and 5 working memory slots, respec-
tively. We consider these values as realistic lower and upper
bounds of working memory capacity as found in language
tasks (Daneman and Carpenter, 1980). This is implemented
simply by limiting the number of slots in the Sentence chunk,
so the model has less available working memory to use to
combine Lexsyns. We distinguish working memory span
(controlled) from actual working memory usage (observed).

Dependent Variables
Branching Factor We see grammatical encoding as a pro-
cess that is quite flexible: the set of production rules, and the
absence of a fixed algorithm (and order in which they are ap-
plied) is commensurate with that (as well as with ACT-R as a
cognitive architecture framing the model). Strategies emerge
as a result of the available cognitive resources, such as WM,
and, ultimately (not modeled) the success of rule sets. We
measure an important aspect of the strategy: incrementality,
as determined by branching factor: The more right-branching
a syntax tree is, the more incrementally it was realized.

We define two basic metrics for measuring branching fac-
tor. The unweighted branching factor (UBF) is the number

of right-branching decisions compared to the number of total
decisions. The weighted branching factor (WBF) takes into
account how far up the syntax tree the decision was made; it
short, it sums all of the subtrees rather than simply compar-
ing the decisions. An example tree and computation can be
found in Figure 2, which is an syntax tree created from the
model’s syntactic decisions. Alternatively, to reference the
CCG derivations from earlier in Figure 1, the top derivation
has a WBF of 3 and a UBF of 7, while the bottom derivation
has a WBF of 1.0 and a UBF of 1.0. These values are not on
the same scale: 1.0 is the mean for WBF, but 0.2 is the mean
of UBF. Both metrics correlate with each other and higher
values represent more incremental constructions.

Figure 2: An example of the syntax tree of actual output from the
model. To compute the weighted branching factor (WBF), sum the
numbers in parentheses for the left and the right, then divide the sum
of the left numbers by the sum of the right numbers. The numbers
indicate the number of leaves in the right and left subtrees. This
computes to 10/8, or 1.25. The unweighted branching factor (UBF)
divides the total number of left leaf nodes (in this tree, 3) by right
leaf nodes (in this tree, 3), getting a branching factor of 1.0.

Working Memory Usage (WMU) This is based on the
maximum amount of slots the model used while realizing
a sentence. This includes slots for retrieval and all lexsyns
stored in the working memory portion of the goal buffer.
We additionally compute the adjusted working memory us-
age (AWMU), which takes into account the length of the sen-
tence, as longer sentences could possibly require additional
working memory, especially if constructions tend to be less
incremental.

Edit Distance This measure evaluates fidelity of the model
output, i.e., match between the result and the input sentence
is computed using Levenshtein distance (Levenshtein, 1966).
An edit distance in general is the number of changes (addi-
tions, swaps, and deletions) to transform one list into another
one: in this case, a sentence is treated as a list of words. Thus,
it is a measurement for how dissimilar two sentences are from
each other. If the model produces multiple fragments rather
than a single utterance, the distances are averaged. We chose
edit distance as a metric to ensure the model’s trace of syn-
tax was being measured, rather than simply the meaning. It



correlates well with metrics used to evaluate natural language
processing tasks (e.g., Lin, 2004). We define the edit distance
between the two sentences as the model fit.

Results
We examined the correlations between the branching factor,
working memory usage, and fit, as measured by edit distance
between the realization and the target sentences. We analyze
the influence of observed branching factor, available WM and
observed WM usage separately.

Both branching factor metrics (UBF and WBF) were found
to be significant with a negative effect on edit distance, im-
plying more incremental constructions produce realizations
more similar to the initial sentences (p < 0.001). Conversely,
working memory use (WMU) was found to have a positive
effect, implying increased working memory usage decreased
fit (p < 0.001). This had an even larger effect for adjusted
working memory use (AWMU), implying minimizing work-
ing memory usage was especially important for longer sen-
tences. Branching Factor and Working Memory usage (all
metrics) were also significantly correlated (p < 0.001).

Table 3: Individual linear models correlating predictors with edit
distance in the WM=3 condition.

WBF UBF WMU AWMU
p-value < 0.0001 < 0.0001 0.007 < 0.0001
effect −0.221 −0.168 0.057 0.074
Intercept 0.873 0.763 0.507 0.610
r2 0.056 0.025 0.162 0.065
df 1038 1038 1038 1038

Because increased working memory usage is correlated
with decreased fit, this begs the question of whether that
is because sentences with lower working memory usage re-
quirements are easier, or whether using more working mem-
ory directly decreases fit. As sentences have different work-
ing memory requirements, the ones with lower requirements
could just be easier to realize incrementally, possibly reduc-
ing production errors. The five-slot model helps elucidate
this.

In the five-slot condition, the model performs slightly bet-
ter, even though it uses more working memory on average by
both metrics. However, it is also more right-branching than
the other model by both metrics.

Table 4: Individual linear models correlating predictors with edit
distance in the WM=5 condition.

WBF UBF WMU AWMU
p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001
effect −0.162 −0.228 0.120 0.041
Intercept 0.915 0.773 0.427 0.685
r2 0.079 0.536 0.092 0.015
df 1038 1038 1038 1038

Discussion
The most interesting take-away from this is that higher work-
ing memory usage, which was previously associated with
fewer speech errors, is associated with worse fit to the corpus
data in our model. This could be because increased working
memory usage, rather than alleviating stress caused by low-
resources, causes the realizer to garden-path itself. By allow-
ing itself to work breadth-first, it can potentially make syn-
tactic choices that won’t eventually lead to a good utterance.
The branching factor could partially be a result of this: having
a higher right-branching factor should lead to lower working
memory use, as new elements are added to the current state,
rather than built up in another way. However, it could also be
a simple consequence of the fact that since language is out-
putted in order, it’s easier to combine it in order, thus allowing
earlier outputs. Importantly, this result indicates the effect of
using less working memory when all else is equal. It does not
indicate the effect of having less working memory available.
An important caveat then, is that this effect could simply be
explained with the observation that easier sentences use less
working memory.

Having working memory available when needed clearly
improves fit, even though in general, using more working
memory worsens fit. Varying WM capacity does not change
the general strategy of grammatical encoding, which prefers
to use less working memory and more right-branching con-
structions. Still, the model with less working memory was
less right-branching. This could perhaps be because with-
out additional working memory available, it sometimes had
to settle for an inferior strategy, perhaps explaining its fit de-
cline, in line with work such as Slevc (2011). We consider
the lower fit of the lower working memory model to be in
line with previous research, which leaves open as a possi-
ble avenue for future experimentation the correlation of lower
working memory usage to higher fit.

We consider both of these results to be compatible with the
hypothesis of strategic incrementality. More incremental pro-
cesses require less working memory. This is because lexsyns
can be combined and outputted, freeing space. Moreover, re-
ducing working memory usage is normally used as a possible
argument for why incremental strategies might be preferred.
That still leaves two basic possibilities: (1) Speakers prefer
to use constructions that are possible to realize more incre-
mentally, or (2) speakers attempt to realize all constructions
as incrementally as possible. We have reason to believe, from
F. Ferreira and Swets (2002), that (2) is not the case, unless
the speakers are under some stress to speak as quickly as pos-
sible. Possibly, (1) can be fairly easily examined from fre-
quency rates, though we are unaware of work doing so.

Table 5: Paired t-tests between WM=3 and WM=5 conditions.
WBF UBF WMU AWMU dist

Cond1-Mean 1.050 0.132 3.156 1.721 0.743
Cond2-Mean 1.023 0.105 2.703 1.575 0.748
p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001



By limiting working memory directly, we are able to
demonstrate through the model that working memory is crit-
ical to grammatical encoding: limiting it or having less of
it increases errors experimentally and reduces the fit of our
model. While our task was naturally not perfectly analogous
to experimental work, it does provide converging evidence in
this discussion (Hartsuiker and Barkhuysen, 2006; Badecker
and Kuminiak, 2007).

However, actually using less working memory on any sen-
tence is correlated with increased model fit, even after con-
trolling for effects of sentence length or complexity. There
are several possible explanations for this. For instance, push-
ing working memory to capacity could be more likely to
cause errors, as speakers retrieve too many lexsyns that can’t
be combined, forcing themselves to flush, thereby losing
track of part of the sentence. Conversely, each sentence may
dictate an minimum amount of working memory needed to
realize a sentence even in an incremental fashion. In that case,
the model predicts, testably, sentences with a lower minimum
work memory requirement will have fewer production errors
than others.

Based on our modeling simulations, we argue that there is a
specific amount of modality-specific working memory avail-
able to speakers for grammatical encoding, and that speak-
ers generally do not maximize working memory use. Impor-
tantly, our conclusions require researchers to take our model
for granted, though we do provide metrics by which future
models can be compared.

Conclusion
In this paper, we created a model of grammatical encoding
(specifically function assignment and constituent assembly)
by combining linguistic theory and computational cognitive
modeling. We examined working memory’s role during this
stage of language production, along with additional data on
incrementality, finding the model’s fit increases with higher
incrementality and lower working memory usage, but that
having additional working memory available improves over-
all fit. Lastly, we present the first cognitive model of language
production that is evaluated on a corpus, with a paradigm of
inquiry that makes progress in modeling by comparing gen-
erative fits across different model versions.

Acknowledgements
This project was supported by the National Science Founda-
tion (BCS-1457992). We thank Frank E. Ritter and Matthew
Kelly for their comments on an earlier version.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Quin, Y. (2004). An integrated theory
of the mind. Psychological Review, 111, 1036–1060.

Badecker, W. & Kuminiak, F. (2007). Morphology, agree-
ment and working memory retrieval in sentence pro-
duction: evidence from gender and case in Slovak.
Journal of Memory and Language, 56(1), 65–85.

Bock, J. K. & Levelt, W. J. M. (2002). Language production.
Psycholinguistics: Critical concepts in psychology, 5,
405–452.

Conway, A. R., Kane, M. J., Bunting, M. F., Hambrick, D. Z.,
Wilhelm, O., & Engle, R. W. (2005). Working Mem-
ory Span Tasks: A Methodological Review and User’s
Guide. Psychonomic Bulletin & Review, 12(5), 769–
786.

Daneman, M. & Carpenter, P. A. (1980). Individual differ-
ences in working memory and reading. Journal of Ver-
bal Learning and Verbal Behavior, 19(4), 450–466.

Dell, G. S., Chang, F., & Griffin, Z. M. (1999). Connection-
ist models of language production: lexical access and
grammatical encoding. Cognitive Science, 23(4), 517–
542.

Ferreira, F. & Swets, B. (2002). How incremental is lan-
guage production? Evidence from the production of ut-
terances requiring the computation of arithmetic sums.
Journal of Memory and Language, 46(1), 57–84.

Gibson, E. (1998). Linguistic complexity: locality of syntac-
tic dependencies. Cognition, 68(1), 1–76.

Godfrey, J. J., Holliman, E. C., & McDaniel, J. (1992).
Switchboard: telephone speech corpus for research
and development. In Ieee international conference on
acoustics, speech, and signal processing (ICASSP-92)
(Vol. 1, pp. 517–520). IEEE.

Harrison, A. (2005). jACT-R. http://jact-r.org/.
Hartsuiker, R. J. & Barkhuysen, P. N. (2006). Language pro-

duction and working memory: the case of subject-verb
agreement. Language and Cognitive Processes, 21(1-
3), 181–204.

Joshi, A. K. & Schabes, Y. (1997). Tree-adjoining gram-
mars. In Handbook of formal languages (pp. 69–123).
Springer.

Levenshtein, V. I. (1966). Binary codes capable of correct-
ing deletions, insertions and reversals. In Soviet physics
doklady (Vol. 10, p. 707).

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation
of summaries. In Text Summarization Branches Out:
Proceedings of the ACL-04 Workshop (pp. 74–81).

Slevc, L. R. (2011). Saying what’s on your mind: working
memory effects on sentence production. Journal of Ex-
perimental Psychology: Learning, Memory, and Cog-
nition, 37(6), 1503.

Steedman, M. (2000). Information structure and the syntax-
phonology interface. Linguistic inquiry, 31(4), 649–
689.

Steedman, M. & Baldridge, J. (2011). Combinatory catego-
rial grammar. Non-Transformational Syntax: Formal
and Explicit Models of Grammar. Wiley-Blackwell.

Ferreira, V. S. (1996). Is it better to give than to donate?
Syntactic flexibility in language production. Journal of
Memory and Language, 35, 724–755.


