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Abstract

Generating truly random sequences is hard. When participants
are engaged in a competitive game (e.g., Matching Pennies),
the sequences they generate are surprisingly more random
than when given explicit instructions to generate random
sequences (Rapoport and Budescu, 1992). To explore this
phenomenon, we formalized two probabilistic models of
Theory of Mind reasoning about subjective randomness. One
model (the Fair-Coin model) assumes participants predict
their opponents’ choices by implicitly assuming that their
opponents intend to generate binary sequences that simulate
the outcome of tossing a fair coin. The other model
(the Markov model) assumes participants believe that their
opponents intend to generate sequences that simulate the
outcome of a Markov process with transition probability
equal to 0.5. We find that Theory of Mind models of
both the Fair-Coin and the Markov definitions of subjective
randomness are able to characterize the calibrated subjective
randomness that occurs when participants are playing an
iterated competitive game (Matching Pennies), but the Markov
Model is better than the Fair-Coin Model in simulating
the situation where participants need to specify their choice
sequences in advance of the game. The current study suggests
that the calibrated subjective randomness in competitive
games can be explained by the online evaluation of sequence
randomness with Theory of Mind reasoning.
Keywords: subjective randomness; Theory of Mind; matching
pennies; probabilistic models

Introduction
People are relatively poor at generating random sequences
(Bakan, 1960). They produce “subjectively random”
sequences by switching between heads and tails, but they
switch too often (Lopes & Oden, 1987). However,
participants are able to generate sequences that are more
“truly random” when feedback is available (Neuringer,
1986), as in competitive games (Rapoport & Budescu,
1992). Many theories have been proposed to account
for participants’ failure to generate random sequences
(Griffiths & Tenenbaum, 2003; Hahn & Warren, 2009),
but the phenomenon of calibrated subjective randomness
in the context of feedback has received comparatively little
attention by formal models (however, see West and Lebiere
(2001); Lee, Conroy, McGreevy, and Barraclough (2004) for
some proposals). Here, we propose that calibrated subjective
randomness may result from basic Theory of Mind reasoning
about others’ models of subjective randomness.

The situation we will examine is the competitive game
Matching Pennies. In this game, two agents (the “Matcher”
and the “Nonmatcher”) each make a binary choice (e.g., 0
or 1) secretly. The Matcher wins if their choices are the
same and the Nonmatcher wins if their choices are different.
Mathematically, the optimal strategy is to choose the two
alternatives (0 or 1) with equal probability. Rapoport and

Budescu found that participants generated more truly random
sequences when playing in the Matching Pennies game.

To understand why feedback helps calibrate subjective
randomness, we must first understand the origin of subjective
randomness. Several researchers propose that subjective
randomness is the result of instructional biases (e.g., when
participants are instructed to generate random sequences,
they are encouraged to produce sequences that appear to be
orderless; Ayton, Hunt, & Wright, 1989). However, even
when participants are not explicitly given such instructions,
the nature of the task prompts participants to generate
sequences that are more “representative” of the output of a
random process (Kahneman & Tversky, 1974). Griffiths and
Tenenbaum formalized this idea into a probabilistic model of
subjective randomness (Griffiths & Tenenbaum, 2001).

Although these theories explain the nature of subjective
randomness, they provide no mechanistic explanation as to
why this bias is calibrated in the presence of feedback. In
the current investigation, we propose that Theory of Mind
reasoning can explain participants’ behavior in experimental
conditions both with and without feedback. The main
goal of this paper is to model and explain the data from
Rapoport and Budescu (1992). Below we first review the
relevant experiments and results. Next, we introduce two
computational models, and explore and compare the model
predictions in different experimental conditions. Finally, we
discuss the implications and limitations of our models.

Calibrated Subjective Randomness
Rapoport and Budescu (1992) ran a subjective randomness
experiment with three conditions. In the Dyad Condition,
participants were paired to form dyads; each dyad played
150 trials of Matching Pennies, generating a response on
each trial. The Single Condition was the same as the Dyad
condition except that the paired dyads were asked to specify
their choices in advance of the 150 rounds and were told that
the responses would be matched on a trial-by-trial basis to
determine the winner. In the Randomization Condition,
participants were instructed to generate a sequence of 150
random binary responses to simulate the outcome of tossing
an unbiased coin in a non-interactive context.

The key results are the patterns of sequential dependencies.
The distributions of sequences of length k (i.e., k-tuples; k =
2,3,4) were not uniform as expected under a “true” random
generating process. The authors calculated the frequencies of
k-tuples (e.g., 3-tuple [0 1 1], 4-tuple [0 0 0 0]), and found
that in the Randomization Condition, participants were more
likely to generate [0 1 0 1] and [1 0 1 0] than [0 0 0 0] and
[1 1 1 1]. They used two statistics to indicate the extent



to which the distributions deviate from the outcome of a
truly random generating process: the mean absolute deviation
(MAD) from expectation and the standard deviation of the
observed proportions around their expectation (SD):

MAD =
2k

∑
j=1
|p j−1/2k|/2k,k = 2,3,4.

SD =
2k

∑
j=1

[(p j−1/2k)2/(2k−1)]1/2,k = 2,3,4.

Here p j stands for the probability of individual k-tuples.

Rapoport and Budescu (1992) found that MAD and SD
in the Randomization Condition were the largest, followed
by the Single Condition, and finally the Dyad Condition.
Participants deviated from what would be expected with truly
random sequences the most in the Randomization Condition
and the least in the Dyad Condition.

To model these results, we propose that in the Dyad
Condition, participants use their opponents’ previous choices
to predict their opponents’ choices in the current trial,
assuming that their opponents intend to generate sequences
that are “subjectively random”. They then generate
their responses accordingly (i.e., Matchers try to match,
Non-matchers try to mismatch). In addition, we posit that
participants also have a desire to have their own sequences be
subjectively random. In the Single Condition, participants
consider that their opponents know that they are likely to
generate subjectively random sequences and adjust their
choices accordingly (though without feedback). Finally, in
the Randomization Condition, participants simply generate
sequences that are subjectively random.

Note that one of the critical components in our model is
how participants define “subjective randomness”. Different
definitions or models of subjective randomness are possible.
In a Bayesian setting, the inference of whether or not a
sequence is random will depend on the specification of the
alternative hypotheses (i.e., what counts as “non-random”).
For example, participants may imagine “random” to mean
a Markov process with transition rate of 0.5. In this
case, “non-random” corresponds to a Markov processes with
transition rates other than 0.5, which will generate sequences
with too many or too few alternations between 0 and 1,
though the total counts of 0s and 1s would be approximately
equal. If instead, participants imagine “random” to mean
an unbiased coin, ‘’‘non-random” corresponds to tossing a
biased coin, which would generate sequences with many 1s
or many 0s. Given these different possibilities, we formalize
both when simulating the calibrated subjective randomness
effect reported in Rapoport and Budescu (1992). All models
were implemented in the probabilistic programming language
WebPPL (Goodman & Stuhlmüller, 2014), and model code
can be found online1.

1https://web.stanford.edu/˜xfyuan/psych204Code.

The Fair-Coin Model

Model Description

Randomization Condition The Randomization Condition
corresponds to the same experimental scenario described
in Griffiths and Tenenbaum (2001). We incorporate their
model of subjective randomness into a probabilistic model
of communication described in Shafto, Goodman, and Frank
(2012). The integrated model assumes that when participants
are instructed to generate a random sequence, they try to
convince the experimenter that the “weight of the coin” is 0.5.
This will result in sequences that are more representative of a
random sequence, such as [0 1 0]. We denote a sequence of
length k to be Sk, which can be viewed as a random variable,
and a specific instance of it to be sk (k = 2,3,4). For instance,
S3 can take values like [0 1 0]. We obtain the probability
P(Sk = sk) by assuming that participants attempt to convince
the experimenter that the sequence is randomly generated.
The goal of the model is to maximize the probability that the
listener (i.e., the experimenter) would think the sequences are
generated by a fair coin. The model returns the probability of
specific k-tuples such as P(S2 = [01]).
Dyad Condition In the Dyad Condition, choices are made
incrementally. The model assumes participants generate
responses based on the previous choice made by their
opponent and themselves. Concretely, participant A first
simulates different alternatives (0 or 1) her opponent
(participant B) might choose in the current trial, and then
combine B’s previous responses with the current possible
responses. Participant A then predicts B’s current response
according to the probability that the combined sequence
is judged as random. Mathematically, the probability of
choosing 0 given the previous responses can be calculated
using equation (1).

P(Rk = 0|Sk−1 = sk−1)

=
P(Rk = 0|Sk−1 = sk−1)

P(Rk = 0|Sk−1 = sk−1)+P(Rk = 1|Sk−1 = sk−1)

=
P(Rk = 0∧Sk−1 = sk−1)

P(Rk = 0∧Sk−1 = sk−1)+P(Rk = 1∧Sk−1 = sk−1)

=
P(Sk = (sk−1,0))

P(Sk = (sk−1,0))+P(Sk = (sk−1,1))

(1)

With equation 1 and the probability P(Sk = sk) derived
in the Randomization Condition we can compute P(Rk =
0|Sk−1 = sk−1). For instance, assuming that a player’s most
recent two choices are [0 1], the probability that he/she would
choose 0 in the current trial is given by equation (2), where
P(S3 = [010]) and P(S3 = [011]) are computed from the
model predictions in the Randomization Condition.

P(R3 = 0|S2 = [01])

=
P(R3 = 0|S2 = [01])

P(R3 = 0|S2 = [01])+P(R3 = 1|S2 = [01])
(2)

https://web.stanford.edu/~xfyuan/psych204Code


=
P(R3 = 0∧S2 = [01])

P(R3 = 0∧S2 = [01])+P(R3 = 1∧S2 = [01])

=
P(S3 = ([01],0))

P(S3 = ([01],0))+P(S3 = ([01],1))

=
P(S3 = [010])

P(S3 = [010])+P(S3 = [011])

After participant A predicts B’s choice in the current trial,
A will make a choice according to his/her assigned role,
i.e., if A is a matcher, then A will match B’s response,
otherwise A will choose the opposite response. In addition,
participants might also be motivated to generate sequences
that are subjectively random so that their choice is not easily
predicted by their opponents. We include a weight term
w capturing how participants balance these two concerns.
The larger the w, the more weight participants put on their
opponents’ potential choices. In the current simulation, the
value of w is set to 0.6. Mathematically, the probability of
choosing 0 given previous responses for a matcher is:

P(RM
k = 0|SM

k−1 = sM
k−1∧SNM

k−1 = sNM
k−1)

=w∗P(RNM
k = 0|SNM

k−1 = sNM
k−1)+

(1−w)∗P(RM
k = 0|SM

k−1 = sM
k−1),

(3)

and a non-matcher:

P(RNM
k = 0|SM

k−1 = sM
k−1∧SNM

k−1 = sNM
k−1)

=w∗P(RM
k = 1|SM

k−1 = sM
k−1)+

(1−w)∗P(RNM
k = 0|SNM

k−1 = sNM
k−1)

(4)

Using a concrete example to illustrate how equation (3) and
(4) should be applied, we assume that the most recent two
choices made by the matcher is [0 1], and those two made by
the non-matcher is [1 1]. The probability of choosing 0 as a
matcher given her and her opponent’s previous responses is
computed using equation (5) and the one as a non-matcher is
computed using equation (6):

P(RM
3 = 0|SM

2 = [01]∧SNM
2 = [11])

=w∗P(RNM
3 = 0|SNM

2 = [11])+

(1−w)∗P(RM
3 = 0|SM

2 = [01]),

(5)

P(RNM
3 = 0|SM

2 = [01]∧SNM
2 = [11])

=w∗P(RM
3 = 1|SM

2 = [01])+

(1−w)∗P(RNM
3 = 0|SNM

2 = [11])

(6)

The value of the unknowns can be obtained from the
results of equation (1). With those probabilities, we calculate
the distribution of all the possible k-tuples and compare the
model prediction with the empirical data (Figure 1).
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Figure 1: Observed frequencies of k-tuples vs. predicted
probabilities of the Fair-Coin Model.

Figure 2: Observed distributions of 4-tuples and model
predictions for the Randomization Condition. Left:
Empirical data. Middle: Predictions of the Fair-Coin Model.
Right: Predictions of the Markov Model. The red line
indicates expected probability.

Single Condition For the Single Condition, the model
assumes that participants generate responses based on their
own previous choices, with the knowledge that their opponent
thinks they will generate a random sequence. They extend
their previous k−1 choices into a k-tuple that is subjectively
random. With that subjectively random k-tuple in hand, they
make the opposite choice.

Results of the Fair-Coin Model
Randomization Condition Figure 1, Left shows that the
model fits the data well, R2 = .94. Figure 2, Middle shows
that the model successfully captures the observation that more
heterogeneous tuples like [0 1 1 0] are more likely to be
generated than less heterogeneous tuples, e.g., [0 0 0 0].
Dyad Condition Although in the Dyad Condition we have
different formulae for the matchers and the non-matchers,
the simulation results show that the distributions of k-tuples
are the same. Therefore, we collapse these two cases
(Figure 3, Middle). The model predictions are well
aligned with the empirical data (Figure, 1, Middle), R2 =
.98. Critically, the model predicts that participants’ biased
subjective randomness is partially corrected as compared
with the Randomization Condition. The MAD and the SD
calculated from model predictions in Dyad Condition are
much smaller than the ones in the Randomization Condition
(Table 1 and 2).
Single Condition In the Single Condition, the formulae for
matchers and non-matchers are the same. Therefore, we
collapse the two cases. We find that the overall performance



Figure 3: Observed distributions of 4-tuples and model
predictions for the Dyad Condition. Plotting conventions are
the same as for Figure 2.

Figure 4: Observed distributions of 4-tuples and model
predictions for the Single Condition. Plotting conventions are
the same as for Figure 2.

of the model seems to be fine (Figure 1, Right), R2 = .94,
though it falls short of capturing the empirical observation
that the probability of generating heterogeneous sequences
like [0 1 0 1] is high.

The Markov Model
As seen from the model fitting results above, the Fair-Coin
Model leaves room for improvement in modeling the Single
Condition. Notice that in the empirical data, both sequences
that are more representative of the outcome of tossing an
unbiased coin (e.g., [0 1 0 1]) and the less representative ones
(e.g., [0 0 0 0]) have high probabilities. It is impossible for
the Fair-Coin Model to reproduce this effect. We thus explore
the possibility that participants adopt a different definition of
random sequences (e.g., a Markov process with transition rate
of 0.5). This hypothesis has the potential to explain the data
in the Single condition because in this case a representative
“non-random” sequence would be the outcome of a Markov
process with transition rate other than 0.5, thus including too
many or too few alternations in the sequences. Indeed, this is
what Rapoport and Budescu found. We next explain how this
model simulates each condition in the Rapoport and Budescu
experiment.

Model Description
Randomization Condition Similar to the Fair-Coin model,
the Markov Model assumes that participants try to convince
the experimenter that the sequences they give are generated
by a random process. However, their notion of a “a random
process” is not “tossing an unbiased coin”, but rather a

generative process with a transition probability P(Rk 6= Rk−1)
equal to 0.5. If there is some bias in the generating process,
the transition probability should be less than 0.5, resulting
in sequences with fewer alternations, e.g., [0 0 0 0] and [1
1 1 1].2 As in the Fair-Coin Model, we denote a sequence
of length k to be Sk, and a specific instance of it to be sk
(k = 2,3,4). Using Bayes’ Rule, we obtain the posterior
probability of P(Sk = sk) when participants aim to show the
experimenter that the transition probability of the underlying
generative process equals to 0.5.
Dyad Condition For the Dyad Condition, the Markov model
is very similar to the Fair-Coin Model. It assumes that
participants believe that their opponent intends to simulate the
outcome of a generative process with transition probability of
0.5. Therefore, they use their opponent’s previous choices to
predict their opponent’s current choice and make a decision
according to their prescribed role. At the same time, they
are motivated to generate subjectively random sequences
so that their own responses are less predictable. Hence,
they will try hard to simulate the outcome of a generative
process with transition probability of 0.5. Mathematically,
the probability of choosing 0 given the previous responses
can be calculated using the same equation (1), but now
P(Sk = sk) is obtained from the Markov Model for the
Randomization Condition rather than the Fair-Coin Model for
the Randomization Condition. We then use Equation (3) and
(4) to calculate the probability of choosing 0 as a matcher or
a non-matcher conditioned on their own and their opponents’
previous responses. w was set to be 0.7 in the Markov
Model; since the Markov Model and the Fair-Coin Model
have different assumptions, there is no reason that the weight
w assigned to the predicted opponents’ responses (the Theory
of Mind reasoning component) should be equal in these two
models.
Single Condition Similar to the Fair-Coin Model, for
the Single Condition, the Markov model assumes that
participants generate responses based on their own previous
choices. Particularly, they know that their opponents think
that they intend to generate random sequences. Therefore, in
each trial they would make a response so that the opposite of
it combined with his/her previous responses will look like an
outcome of a Markov process with transition rate equal to 0.5
(see the online code for more detail).

Results of the Markov Model
Randomization Condition Figure 5, Left, shows that the
model fits the data well, R2 = .95. Figure 2, Right shows
that the model successfully captures the observation that more
heterogeneous tuples such as [0 1 1 0] are more likely to
be generated than less heterogeneous tuples such as [0 0 0
0]; still, the Markov Model was not statistically significantly

2Note that in the Randomization Condition and the Dyad
Condition we use this asymmetric prior, whereas in the Single
Condition we use a symmetric prior, assuming that a non-random
sequence would have either a large transition rate (0.75) or a small
transition rate (0.25).
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Figure 5: Observed frequencies of k-tuples vs. predicted
probabilities of the the Markov Model.

better than the Fair-Coin Model in this condition.
Dyad Condition Although in the Dyad Condition we
have different formulae for matchers and non-matchers, the
simulation results show that the distributions of k-tuples are
the same. Therefore, we collapsed these two cases (Figure
3, Right). The model predictions are well aligned with the
empirical data (Figure 5 Middle), R2 = .99. Critically, it
predicts that participants’ biased subjective randomness is
partially calibrated (see the MAD and the SD section).
Single Condition The model fits the data well (Figure 5,
Right), R2 = .98. Critically, it captures the findings that
both sequences that are more representative of the outcome
of tossing an unbiased coin (e.g., [0 1 0 1]) and those
that are less representative (e.g., [0 0 0 0]) have higher
probabilities. The model works because it assumes that
participants avoid producing sequences that are representative
of the outcome of a Markov process with transition rate 0.5;
thus, participants end up generating sequences with either too
many alternations (transition rate larger than 0.5) or too few
alternations (transition rate less than 0.5).
Model Comparison From the correlation plot we see that
Markov Model seems to fit the data better than the Fair-Coin
Model. However, since these two models have different
assumptions, traditional statistical tests for model comparison
are not applicable. Therefore, we use the R package “cocor”
which allows us to directly compare the correlations between
the empirical data and the model predictions of these two
models (Diedenhofen & Musch, 2014). The results showed
that the difference between the two correlations rFC and rM
in the Dyad condition is not significant, Dunn and Clark’s
z = −1.49, p = .136. It is also not significant in the
Randomization condition, z = −0.54, p = .589. However,
in the Single Condition, the correlation rFC is significantly
smaller than the rM , z = −3.29, p = .001. Overall the
difference between the two correlations rFC and rM is
significant, z =−2.47, p = .014. In other words, the Markov
Model provides a better fit to the data than the Fair-Coin
Model. Therefore, in the following section, we only present
the MAD and SD calculated from the predictions of the
Markov Model.
MAD and SD Consistent with the data, the model predicts
the same qualitative results for the MAD and the SD of the
three conditions (Table 1 and 2), i.e., the Randomization

Condition has the largest deviation from what would
be expected with truly random sequences and the Dyad
Condition has the smallest one. This suggests that the Markov
Model successfully captures the more calibrated subjective
randomness in the Dyad Condition.

Table 1: Mean absolute deviation (MAD) of the data and the
predictions of the Markov Model. D: Dyad, S: Single, R:
Randomization.

Data Model
D S R D S R

2− tuple 0.0150 0.0043 0.0435 0.0200 0.0000 0.0667
3− tuple 0.0105 0.0135 0.0273 0.0123 0.0211 0.0309
4− tuple 0.0087 0.0159 0.0174 0.0068 0.0160 0.0224

Table 2: Standard deviation (SD) around expectations of the
data and the predictions of the Markov Model. D: Dyad, S:
Single, R: Randomization.

Data Model
D S R D S R

2− tuple 0.0199 0.0057 0.0534 0.0231 0.0000 0.0770
3− tuple 0.0141 0.0150 0.0353 0.0155 0.0226 0.0465
4− tuple 0.0105 0.0194 0.0222 0.0092 0.0191 0.0257

Discussion
Empirical evidence suggests that people generate more truly
random sequences in competitive contexts. We explored
two probabilistic models to explain the calibrated subjected
randomness in a competitive game that was reported in
Rapoport and Budescu (1992). We find that Theory
of Mind models based on both the Fair-Coin and the
Markov formalizations of subjective randomness are able
to capture the calibrated subject randomness effects that
appear in an iterated competitive game (Dyad Condition
vs. Randomization Condition). However, the Markov
Model is better than the Fair-Coin Model in explaining
the intermediate degree of calibrated subjective randomness
that appears in a competitive game where participants must
specify their choices ahead of time (the Single Condition).

Why is the Markov Model better than the Fair-Coin Model
in simulating the Single Condition? The reason might be
that the transition probability of a generative process is more
cognitively accessible than “the weight of a coin”. When
people attempt to generate random sequences, it may be
easier to track the transition probability and make sure it
approximates 0.5 than to check whether one of the binary
responses is made more often than the other. In short,
transition probability might be a more convenient heuristic
than “the weight of the coin” in evaluating the randomness of
sequences.



In addition, it is worth noting that the Markov Model
and the Fair-Coin model share the common Theory of Mind
reasoning structure. The only difference between these two
is the assumption on how people define “random sequences”.
Kubovy and Gilden (1991) showed that participants attend
to multiple numerical properties of the sequence, such as
number of alternations, lengths of runs, and imbalance
between 0 and 1. The Fair-Coin model focuses on the
imbalance between 0 and 1, and the Markov Model focuses
on number of alternations and lengths of runs. The
results suggest that when online feedback is not available,
participants are more likely to rely on number of alternations
and lengths of runs to produce unpredictable sequences.

We note some limitations of these models. Both
the Fair-Coin Model and the Markov Model assume that
participants are probability matching rational agents and
generate binary responses in proportion to the interpreted
randomness. Therefore, one limitation is that the models
cannot predict a player’s behavior when his/her opponent
does not use the optimal strategy. For example, if matcher
“A” plays with a person who chooses “0” more often than
“1”, A would quickly notice it and choose “0” more (if
not always). However, the two models in the current study
would not make such predictions because of the assumption
that the other agent intends to generate random sequences.
Hence, a more complete model may retain uncertainty as to
what kind of opponent the participant is playing with. This
may also be formalized using a the reinforcement learning
algorithm (Lee et al., 2004), and it is worth comparing
the assumptions and predictions of the current probabilistic
approach with previous reinforcement learning approaches.
Another limitation is that we do not explicitly manipulate the
number of previous trials the models consider and compare
the corresponding performances. However, post-hoc analysis
indicates that in both the Fair-Coin model and the Markov
model, taking more previous trials into account results in
better calibrated subjective randomness, which is consistent
with the results of previous connectionist modeling that
manipulates the working memory capacity of the models
(West & Lebiere, 2001).

In summary, the current investigations suggest Theory of
Mind reasoning interacts with participants internal models of
subjective randomness in the generation of random sequences
in competitive contexts. Future computational approaches
should take this into account when modeling subjective
randomness.
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