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Abstract

The Turing-inspired Meta-morphogenesis project begun in
2011 was partly motivated by deep gaps in our understand-
ing of mathematical cognition and other aspects of human and
non-human intelligence and our inability to model them. The
project attempts to identify previously unnoticed evolutionary
transitions in biological information processing related to gaps
in our current understanding of cognition. Analysis of such
transitions may also shed light on gaps in current AI. This
is very different from attempts to study human mathematical
cognition directly, e.g. via observation, experiment, neural
imaging, etc. Fashionable ideas about “embodied cognition”,
“enactivism”, and “situated cognition”, focus on shallow prod-
ucts of evolution, ignoring pressures to evolve increasingly
disembodied forms of cognition to meet increasingly com-
plex and varied challenges produced by articulated physical
forms, multiple sensory capabilities, geographical and tempo-
ral spread of important information and other resources, and
“other-related meta-cognition” concerning mental states, pro-
cesses and capabilities of other individuals. Computers are
normally thought of as good at mathematics: they perform
logical, arithmetical and statistical calculations and manipu-
late formulas, at enormous speeds, but still lack abilities in
humans and other animals to perceive and understand geo-
metrical and topological possibilities and constraints that (a)
are required for perception and use of affordances, and (b)
play roles in mathematical, and proto-mathematical, discov-
eries made by ancient mathematicians, human toddlers and
other intelligent animals. Neurally inspired, statistics-based
(e.g.“deep learning”) models cannot explain recognition and
understanding of mathematical necessity or impossibility. A
partial (neo-Kantian) analysis of types of evolved biological
information processing capability still missing from our mod-
els may inspire new kinds of research helping to fill the gaps.
Had Turing lived long enough to develop his ideas on morpho-
genesis, he might have done this.
Keywords: Archimedes; Euclid; Kant; geometry; topology;
vision; evolution; biological information processing; limita-
tions of current computational models evolution as a blind
mathematician.

Introduction
There are deep gaps in current AI models, related to gaps in
theories of cognition, especially mathematical cognition (de-
spite impressive mathematical powers of computers). The
Turing-inspired Meta-Morphogenesis project, proposed in
2011 asks new questions about evolution of biological in-
formation processing, identifying what needs to be explained
and possible types of explanation corresponding to differ-
ent evolutionary stages.1 Large sums are being spent in the
hope that more training on more data can diminish, and even-
tually remove, those gaps, guided by research on how hu-
mans acquire the relevant competences and on brain mech-
anisms involved, but the research focuses on a subset of the

1References have been deleted in this version for lack
of space, but can be found, with links to online papers,
at http://www.cs.bham.ac.uk/research/projects/cogaff/
sloman-iccm17.pdf

relevant competences and mechanisms, leaving much unex-
plained. E.g. research that focuses on numerical compe-
tences, ignores geometric and topological competences, that
are arguably more fundamental, in ways that I’ll explain later.
Moreover research on statistics based learning cannot explain
discoveries of necessary truths, e.g. geometrical, topological
and arithmetic truths.

Many psychologists also ignore important mathematical
features of competences being investigated, because they
don’t clearly distinguish empirical from non-empirical learn-
ing. For example, not all psychologists studying number cog-
nition seem to realise that full understanding of cardinal and
ordinal numbers depends on grasping that one-to-one corre-
spondence (bijection) is a transitive and symmetric relation
(and therefore also reflexive), and moreover those properties
are necessary (i.e. non-contingent) features of bijection, but
not logical or definitional features. This was pointed out by
Kant in 1781, though he knew of no explanatory mecha-
nisms. My 1962 thesis (now online) defended Kant against
common criticisms, but I had never heard of AI then and I
lacked the opportunity to base a defence on computational
modelling, a gap I began trying to fill in my 1978 book.
Four decades later there still seem to be no working AI sys-
tems able to replicate the discoveries in topology, geome-
try and arithmetic, made by ancient mathematicians such as
Archimedes, Euclid, Zeno and others, nor the closely related,
hard to observe, discoveries unwittingly made by pre-verbal
human toddlers,2 or even squirrels and nest-building birds.

A rich sample of approaches to the problems of character-
ising and explaining numerical competences can be found in
a BBS survey by Rips et.al., including commentaries and re-
sponses. Unfortunately influences on individual mathemat-
ical development now are so diverse, including biological,
physical, cultural, educational and individual differences, and
so little attention is paid to the problem of specifying imple-
mentable mechanisms, as opposed to verbal descriptions of
what brains or minds do, that the research is inevitably frag-
mentary and inconclusive and proposed theories lack the pre-
cision required to guide designs for testable working models.

Piaget drew attention to many combinations of compe-
tence and incompetence displayed by children, and produced
evidence that most did not understand that 1-1 correspon-
dence is a transitive relation until they are five or six years old.
It is also symmetric, unlike many transitive relations children
learn about (e.g. “taller than”, “heavier than”). Unfortunately,
calling this learning about “conservation” misleadingly sug-

2Like the 17.5 month old child apparently testing a conjecture
in 3D topology here http://www.cs.bham.ac.uk/research/
projects/cogaff/misc/toddler-theorems.html#pencil
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gests that understanding preservation of numerosity across
spatial rearrangement is related to understanding that matter
is conserved when rearranged. One-to-one correspondences
can hold between completely abstract entities that have no
matter to conserve. This is obvious to mathematicians, but
perhaps not all developmental researchers.

One common Piagetian test for understanding numerosity
tends to use examples of two types (e.g. apples, bananas)
and supertype (e.g. fruit) in situations where there are (e.g.)
more apples than bananas and children are asked whether
there are more apples or more fruit. At a certain age they tend
to say “more apples”. However, there is usually no attempt
to check that they have understood the question as intended.
I found that if a child is asked to count the apples, then to
count the fruit, then asked the same question, the correct an-
swer is given. Some then generalise, without help, to other
cases, e.g. giving the right answer to the question “Are there
more open windows or more windows?” asked of a build-
ing with far more windows open than shut. This suggests
that some children interpret the original question wrongly. I
don’t know if any psychologist has tried tampering with Pi-
aget’s experiment in this way. However, Margaret Donaldson
showed in 1978 that slight variants of some of Piaget’s other
experiments, produced significantly different results.

My aim is not to criticise Piaget or his (often less well in-
formed) followers but to draw attention to problems of em-
pirical research not based on deep theories. Is there a deep
theory in neuroscience capable of explaining what sort of late
developing neural mechanism can change the powers of a
child’s brain so that the necessary transitivity and symmetry
of one-to-one correspondence is grasped? This can be viewed
as a topological problem about two networks of connections,
e.g. a network formed by setting up a one-to-one correspon-
dence between elements of sets A and B, and one between
elements of B and C. We can see (How?) that if A, B and
C are disjoint sets, the two sets of links can always be con-
catenated to form one-to-one relationships between A and C.
Does anyone have a theory as to how brain mechanisms can
detect, or even represent, the impossibility of any counter-
example – i.e. the fact that the transitivity is a necessary
truth? The work of mathematical logicians (e.g. Frege, Rus-
sell and others) allows the transitivity to be proved (tediously)
in a formal logical system, but it was understood by ancient
mathematicians (and young learners), centuries before those
formal proof methods had been discovered. What happened
in their brains when the necessity of transitivity of bijection,
i.e. the impossibility of counter examples, was grasped?

Mathematical discoveries are not concerned with empirical
or contingent regularities but with necessary connections and
impossibilities (e.g. internal angles of a planar triangle neces-
sarily sum to half a rotation, and it is impossible for any num-
ber to be the largest prime). How could we check that a brain
mechanism is able to represent and use these notions of ne-
cessity and impossibility, which are features of mathematical
discoveries, but not empirical discoveries? The answer will

depend in part on a good theory of the semantics of modal
concepts – often taken nowadays to be “possible world” se-
mantics.3 However, ancient mathematicians did not need this
notion of a possible world: they were exploring compatible
and incompatible collections of relationships in this world,
often represented diagrammatically (Sloman 1962). .

So mathematical (as opposed to empirical) discoveries
about numbers, lines, angles, etc. require use of (alethic)
modal concepts (e.g. “possible”, “impossible”, “necessarily
true”, “necessarily false”). Standard ways of acquiring gen-
eral information by observing instances and collecting statis-
tics, cannot yield such mathematical knowledge, since that re-
quires more than observed regularities. Perhaps many badly
taught learners never get beyond memorising what they have
been taught, but that’s not what needs explaining.

I am not aware of any computational model that is able to
replicate not only those arithmetical and geometrical discov-
eries but also other topological impossibilities that children
seem to understand without mathematical training, for exam-
ple that two solid rings cannot become linked and unlinked
simply by being moved continuously, or that a shoe-lace can-
not be pulled out of lace-holes twice as fast by pulling both
ends at once. Nor does any AI model that I know of explain
this. There is no evidence that AI theorem provers that draw
conclusions from logical axioms can model what a young
child, or an intelligent squirrel or crow does, or what ancient
mathematicians did over 23 centuries ago, long before dis-
covery of modern logic and algebra, and Descartes’ use of
arithmetic to model geometry.

Kant pointed out that ancient mathematical discoveries
are characterised by being (a) non-empirical, (b) non-analytic
(i.e. not derivable from definitions using only logic) and (c)
non-contingent – the truths and falsehoods are instances of
necessity and impossibility as explained in my thesis. This
does not imply that mathematicians are infallible: they can
and do make mistakes of various sorts, though they often dis-
cover and correct their mistakes, as demonstrated in Proofs
and Refutations by Lakatos.

The 20th Century discovery that physical space is non-
Euclidean is often regarded as demonstrating that Kant was
wrong about mathematical knowledge, whereas it merely
shows that some of his examples were wrong. He could have
used the discovery that a subset of Euclidean geometry can
be extended in different ways, yielding Euclidean and non-
Euclidean geometries, as an example of a mathematical truth
that is synthetic, necessarily true and not empirically based.
Non-Euclidean geometries had been discovered before the
1919 eclipse showed that physical space was not Euclidean.
Such discoveries add to what needs to be explained by neuro-
science and modelled by AI.

Regarding arithmetic: is there a neural theory explaining
how brains generate and control parallel sequences of actions
required in counting operations of various sorts, with differ-
ent stopping conditions depending on the task and various

3https://en.wikipedia.org/wiki/Possible world
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ways in which counting errors can be detected and be cor-
rected, as described in Ch. 8 of CRP?4 An explanatory mech-
anism should explain how counting can be applied, via dif-
ferent senses and movable body parts, to events, continuous
processes (e.g. rotations, changes of direction, skin strokes,
or sound oscillations), to static objects, and to abstract enti-
ties (e.g. numbers, words), along with self-monitoring to de-
tect departures from strict one-to-one correspondence. More-
over, some mathematical discoveries can be made by noticing
novel features of such thinking processes, e.g. repeated pat-
terns. I suspect no known neural mechanism explains how re-
flection on processes produced by number generating mecha-
nisms can lead to the concept of a non-terminating sequence,
and then to an understanding that there are infinitely many
numbers. What allows a child to understand “never stops”?

Another discovery that I believe is beyond current AI the-
orem provers was known to Archimedes and others: namely
adding the neusis construction to Euclidean geometry, allow-
ing motion of a straight-edge with two marks, makes it easy
to trisect an arbitrary angle, which is impossible in standard
Euclidean geometry.5 What would a neural explanation of
such a discovery process look like? Finding brain regions that
are active during such discoveries does not tell us how brains
encode universally quantified semantic content, or how they
derive new semantic contents. It cannot be assumed that such
discoveries are based on applying rules of modern logic (e.g.
predicate calculus) to logical axioms, in part because modern
logic was not available to ancient mathematics: it was mostly
created recently by thinkers like Boole, Peano, Frege, Rus-
sell and others. Moreover, Euclidean geometry was not ax-
iomatised using modern logic until 1899, by David Hilbert.
Trisection was proved impossible in that system, so discov-
ery of a construction that trisects an arbitrary angle must have
used a different mode of spatial reasoning. I suspect ancient
discoveries in geometry and topology were closely related to
the need to identify positive and negative affordances, shared
with other intelligent species. But evolution added some ad-
ditional, unknown(?) discovery or reasoning mechanism in
humans.

Meta-cognitive mechanisms, allowing internal processes
based on previous competences to become objects of reflec-
tion during their performance seem to be required for some
new mathematical insights. Many practical tasks can make
use of multiplication and division, e.g. making sure that ev-
ery member of a group has two shoes, or dividing N tasks be-
tween M people. Reflecting on this leads to the discovery that
some sets with N members can be divided into M equal sets,
but not into M+1 equal sets, and eventually that some num-
bers cannot be divided into any number of equal sets: they
are primes, already familiar to Euclid. It is not clear how the
impossibility is recognized, as opposed to mere repeated fail-
ure. Statistics-based learning mechanisms could not discover

4Revised edition online at http://www.cs.bham.ac.uk/
research/projects/cogaff/crp#chap8

5For more detail see http://www.cs.bham.ac.uk/research/
projects/cogaff/misc/trisect.html

impossibilities and necessary truths: those are not degrees of
probability. (However mathematical theorems about proba-
bilities are necessary truths, not probabilistic assertions!)

Piaget (who had studied Kant, Frege and Russell) under-
stood some of the problems. His two posthumous books were
on possibility and necessity, though he lacked the tools re-
quired to solve our problems.

Mathematical meta-cognition
Metacognitive reasoning processes seem to have enabled Eu-
clid (or a predecessor) to discover and prove that there cannot
be a largest prime number, so there must be infinitely many
prime numbers. How did evolution produce mechanisms with
such capabilities, and how do they work? Perhaps a “du-
plicate then differentiate” transition in our evolutionary his-
tory somehow produced meta-cognitive capabilities, allow-
ing comparisons of modes of thinking on different occasions,
leading to important insights concerning differences between
reliable and unreliable reasoning, enabling introspected rea-
soning processes to be described and modified while they
were being performed, and allowing mistakes of reasoning
to be discovered and eliminated, or successful modes to be
combined to form more complex modes.

Such meta-cognitive abilities would also have social con-
sequences, e.g. allowing strategies discovered during self-
debugging to be later taught to others.6 Every good math-
ematics teacher knows that learning to detect mistakes in
reasoning is a deep part of mathematical education. More
generally, the extension of meta-cognition from direct self-
observation to indirect other-observation can help with effec-
tive other-debugging processes. I don’t know if anyone has
an appropriately deep theory of how brains encode and ma-
nipulate self- and other- directed meta-cognitive information.
(Could Barnden’s ATT-Meta system be a start?)

Can we get clues from biological evolution?
If a bird is seen to be flying around in an elliptical orbit, it
will not be because the bird’s motion is caused by elliptical
physical motion of something outside the bird, as rotary mo-
tion of a leaf in a river whirlpool is caused by the motion of
the water. The bird will have information about its environ-
ment (e.g. about possible prey, a possible nesting site, or a
predator approaching its nestlings) and identified needs (e.g.
to get food, to find a good place for a nest, to find nesting ma-
terial, to distract a predator, etc.) It will also need the ability
to increase or decrease speed and change direction. Depend-
ing on the circumstances, the bird’s motion will use energy
(either in its muscles, or in wind or updrafts, or gravity), con-
trolled on the basis of constantly changing information, to
produce motion with intended results. There may or may not
be additional meta-cognition (self-awareness). Instead of be-
ing moved solely by external physical forces, as planets and

6However, it’s a fashionable mistake in some circles to assume
that mathematical discovery necessarily requires social uses of lan-
guage, just as its a fashionable mistake to assume physical embodi-
ment plays a role in all mathematical reasoning.
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clouds are, the bird has information-processing mechanisms
that control its motion. E.g. it can select some information
items rather than others then select and execute an action,
then switch to a different goal and different action. Evolu-
tion changes the amount and variety of information that can
be acquired, manipulated, stored and used, and the variety of
types of needs and goals that can drive such processes.

Long before humans existed, various mathematical struc-
tures and relationships, some but not all numerical, were in-
volved in control processes, including increasing or decreas-
ing turn angles, speed, height, joint angles, forces applied,
etc. At some stage humans developed meta-informational
(meta-cognitive) abilities to reflect on, reason about, increas-
ingly complex examples of such structures and relationships,
including possible future structures; e.g. shelters not yet built,
clothing not yet made from an animal skin, a meal whose in-
gredients are not yet assembled.

As yet unknown evolutionary changes must have supported
new proto-mathematical abilities for manipulating and using
information about structures, processes, actions, forces, etc.
including future possible (intended) cases. A large subset is
shared with other intelligent species. The mathematics that
we teach and do research on is just a small subset, and almost
certainly cannot be understood independently of the less ob-
vious mathematical competences we share with many other
species, especially topological and geometrical competences.
Different mathematical structures occur in percepts, in inten-
tions, in plans and, later on, in linguistic communications.

Evolutionary pressures for mathematical minds
Increasingly complex forms of life need to use increasingly
complex and varied information structures including motives:
information states concerned not with what is the case but
with what should be the case, i.e. not just belief-like but
also desire-like information contents of increasingly complex
kinds. I am not claiming that ALL intelligent behaviour is
based on current biological needs, or expected rewards, since
some motives are triggered as “internal reflexes” by opportu-
nities without any expected benefit, as can be seen in much
playful activity in young children, kittens, apes, and others.
What is learnt in such contexts can have consequences that
are later useful in ways that the individual could not possibly
predict. So although the mechanisms do not involve expected
rewards, the indirect benefits they previously produced in an-
cestors may explain the survival of the goal generating mech-
anisms in their descendants, though not how they formed in
the first place (using specially evolved construction kits).

There may be “branch points” during development where
different lineages take different branches, under control of
genome and environment. But at later stages of development
evolution can support greater environmental variation, so that
genetically programmed developmental choices may use in-
formation previously acquired during development. The fact
that common gene-based language potential can support de-
velopment of thousands of different languages in different

contexts illustrates this.
That requires the genome to have a mathematically abstract

language specification with very rich generative power, as
Chomsky pointed out long ago. I suggest that that is a com-
mon feature of biological intelligence, which began with evo-
lution of intelligent control systems in many species that have
never been able to use human languages. But they must have
rich internal languages for specifying percepts, goals, actions,
and environmental structures, including structures that were
never encountered by earlier members of the species. A spe-
cial case is ability to represent entirely new affordances–not
unique to humans. .

One of the deep discoveries of evolution was the need for
reflexes: actions triggered without the agent having any idea
what the benefits are. We need to generalise this to include
reflex triggering of new internal motivational states that join
other current motivational states, and may or may not lead to
action, depending on what else is going on. I call this “Archi-
tecture Based Motivation” (ABM) in contrast with “Reward
Based Motivation” (RBM) which requires every selected mo-
tive to be associated with some measurable expected utility.

ABM seems to be the basis of much exploratory and play-
ful behaviour, including developing linguistic abilities of dif-
ferent sorts, e.g. early babbling and later uses of increasingly
complex syntactic forms and growing vocabularies. This may
be a source of mathematical development and discovery in
young humans (with much individual variation). It also de-
pends on prior, presumably genome-derived, mathematical
competences required for exploring novel semantic contents.

As evolution produced increasingly complex organisms,
with increasingly complex time-varying needs, and complex
articulated bodies capable of rich and varied interactions with
the environment, the requirements for mathematical abstrac-
tion in information processing increased, including use of ge-
ometrical and topological information about spatial structures
and both observed and desired changes in spatial relation-
ships, unlike organisms that simply depend on physical in-
fluences such as wind or water or the intervention of other
organisms to produce the changes they need, e.g. use of other
organisms for seed dispersal.

Simple types of information-based control are online: in-
formation is used as it is acquired and immediately over-
written by new information, e.g. if an animal moves continu-
ously towards a fixed or moving edible target. More sophisti-
cated organisms combine information fragments acquired at
different times to produce richer information-structures con-
cerning the environment, e.g. a human (or urban animal) stor-
ing and integrating information about the layout of a town and
later using the information to work out a route that will reach
a new target. This uses offline information processing, and
offline control: actions may be selected long before they are
performed, unlike online homeostatic control. The richer the
environment, the more varied its structures, routes, materials,
and other resources, the more powerful the organism’s mathe-
matical resources will need be to be able to create and reason



about novel possibilities for achieving goals, avoiding dan-
gers, etc. Because of the need to cope with novelty by getting
things right first time, empirical learning from repeated trials
will be of limited use. This is where mathematical compe-
tences are so biologically useful: solutions can be evaluated
in advance by reasoning, using structural relationships, in-
stead of having to be evaluated only by repeated testing.

There are differences between a planetary system in which
mathematical relationships restrict motions resulting from
forces and what goes on in the majority of biological con-
trol systems: where, instead of physical processes directly
producing or modifying behaviour, there are intervening in-
formation processing mechanisms. E.g. sensory systems ac-
quire information and motor control mechanisms use that in-
formation in selecting between control alternatives. The con-
trol actions may be influenced by information from several
sources: e.g. information about an internal need (e.g. for
energy-rich food, or for water) can be combined with infor-
mation about opportunities and obstacles in the environment,
or lurking predators. These are unlike processes combining
physical forces.

In many cases physical attractive forces increase as dis-
tance is diminished, which in the case of physical control
leads to increasing acceleration. That could be disastrous for
an organism approaching a target: so it is useful be able to
detect closeness to the target and use that information to pro-
duce deceleration (using stored energy for braking). Where
the target is a prey animal that is likely to attempt escape, ac-
celeration right up to contact may be useful, but that requires
additional control mechanisms, e.g. producing appropriate
motion of claws, or beak or jaws, to capture (or perhaps kill)
the prey while avoiding a dangerous impact for the predator.

Even in a very simple single-celled organism, mathemat-
ical relationships play a role in control of osmotic pressure,
which can be altered by absorption of nutrients or secretion of
waste products. One of the important differences between
forces and information contents is that forces remain active
in the presence of other forces, and their effects combine to
produce “resultant” forces, whereas an information item can
be temporarily disabled by being ignored, until some urgent
task has been completed. So it is essential in organisms to
be able to use information to control which other information
items have causal powers at which times.

Mathematical competences required for use of such infor-
mation in selecting and controlling actions are found in many
non-human species. These are important aspects of percep-
tion and use of what James Gibson called “affordances” in
the environment . However Gibson focused on a subset of
affordances, mainly those that are relevant to online control
of actions by the perceiver, whereas humans can perceive and
make use of positive and negative affordances for other indi-
viduals, and “proto-affordances” – that involve possibilities
for change in many aspects of the environment that are not
produced by the perceiver and which may be irrelevant to the
needs of the perceiver, for example, perceiving that if a cer-

tain apple drops off the tree it will not hit the ground because
it will land on a rock, whereas if the rock is moved the result
will be different. Humans, (and some other organisms?) can
also deal with negative affordances that are impossibilities.7

Moreover, control relationships can change as an animal
grows: genetic mechanisms must somehow enable control-
ling forces to be varied as sizes, weights, moments of inertia,
geometrical relationships and muscular strength change in a
growing animal, as D’Arcy Thompson and others have noted.

Besides control based on quantitative relationships, evo-
lution also uses information about structures and structural
relationships, insofar as genetic information plays a role in
specifying parts and relationships between parts of develop-
ing chemical and physical structures. In humans, another
kind of mathematical power is involved in the ability of in-
dividuals to develop linguistic competences that make use of
complex and varied grammatical structures for information-
bearing utterances, and competences that build complex se-
mantic interpretations based on structural relationships (com-
positional semantics).

Evolution: the blind mathematician
In all these cases the evolutionary and developmental con-
trol mechanisms seem to make use of repeated discovery
of new structures that can be abstracted from particular in-
stances and later combined with different information in new
contexts, while performing complex controlled actions, and
while interpreting complex structured perceptual input. Some
information about newly discovered abstractions is somehow
encoded in genetic mechanisms that allow the information
gained to be used in later products of evolution. And in many
cases it is crucial that the replication is not a matter of re-
peated blind copying of the same structure: what is passed on
is at a level of abstraction that can be instantiated in different
instances, for example (a) when used for continued control
of organisms or parts of organisms while growth produces
different sizes, weights, size-ratios, moments of inertia, etc.
during development and (b) when used in newly emerging
species with different details caused by changes in other parts
of the genome.

So evolution can be described as “discovering” that new
mathematical structures are possible, and that they can be
used for new control functions, during reproduction, during
development, and during particular actions. Moreover, the
evolutionary and developmental histories can be regarded as
proofs of those mathematical possibilities, even though there
is no mathematical mind at work in discovering the theo-
rems or creating the proofs. In that sense biological evolu-
tion can be regarded as a “blind theorem prover”, rather than
Dawkins’ “blind watch-maker”.

Computers are much faster and more accurate than humans
at performing certain kinds of mathematical operations, in-
cluding numerical and statistical operations, and using arith-

7http://www.cs.bham.ac.uk/research/projects/
cogaff/misc/impossible.html
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metic, algebra and logic to derive conclusions, solve prob-
lems and make plans. But not all mathematical discover-
ies made by humans are based on arithmetic, algebra and
logic. Examples include the ancient geometrical and topo-
logical discoveries leading up to Euclid’s Elements8 made by
ancient mathematicians, e.g. Euclid, Archimedes, Pythago-
ras, Zeno and others; and also the implicit mathematical dis-
coveries regarding syntactic and semantic structures used in
human languages.

Even pre-verbal toddlers, and other animals, such as crows,
elephants, weaver-birds and squirrels, seem to have spatial
(e.g. topological) reasoning competences unmatched by cur-
rent automated theorem provers and highly trained robots.9

However, non-human mathematical reasoners and very young
humans lack meta-cognitive abilities to reflect on their math-
ematical discoveries or to explain and defend them against
criticism. That limitation may also have afflicted our adult
ancestors who first started to make unreflective and unsys-
tematic use of some of their practical reasoning abilities.

I suspect the variety of evolved mathematical competences
is far larger and deeper than anyone has noticed. Researchers
are currently struggling to sort them out. E.g. there is a no-
tion of density (of grains of salt or sand, of leaves, or flock-
ing birds) and a notion of an area or volume occupied with
uniform density, which leads to a notion of amount or nu-
merosity that varies both in proportion with the density and
with the area or volume, because total amount, or numeros-
ity, as opposed to (cardinal) number increases or decreases as
either the density, or the area/volume increases or decreases.
Understanding that can lead to inferences about increasing
numerosity as density remains constant and area or volume
increases, or as density increases while area or volume re-
mains constant. This can support judgements of partial or-
derings of amount or numerosity. But it does not provide a
basis for comparing two regions A and B where area or vol-
ume of A is greater than that of B, but density of occupancy
of B is greater than that of A. Understanding the tradeoff be-
tween change in total space and change in density requires
a kind of mathematical sophistication that is a pre-cursor to
the understanding of integral calculus. I don’t know whether
anyone understands the mechanisms used in such cases, nor
how they produce new competences during development.

Still more mechanism is required for comparisons of areas,
volumes, lengths and amounts of stuff occupying areas or vol-
umes. Those require understanding of new kinds of number
that occupy spaces between the natural numbers. Ratios, or
fractions may seem at first to suffice, so that we can talk of
a jug being half, three quarters, five sixths, full etc., but an-
cient mathematicians discovered (to their horror) that those
ratios do not suffice. In particular something more is needed
if the side of a square and its diagonal are to be thought of
both having definite lengths, as was understood by the time

8http://www.gutenberg.org/ebooks/21076
9Examples involving human toddlers can be found here

http://www.cs.bham.ac.uk/research/projects/cogaff/
misc/toddler-theorems.html

of Euclid’s Elements.

Limited mathematical abilities of AI systems
Computers are generally thought of as good at doing math-
ematics. But that is based on a limited view of the scope
of mathematics. Computers can perform logical, arithmeti-
cal (and therefore statistical) calculations, and operations on
text strings, at enormous speeds, because those processes are
readily mapped onto operations on bit patterns – especially
in combination with random access memory (RAM) opera-
tions that allow contents of memory locations to be checked
or modified at very high speed (unlike operations on the tape
of a Turing machine). Moreover developments in AI, soft-
ware engineering, theoretical computer science, networking
technology, and increasingly sophisticated fabrication pro-
cesses have expanded the abilities of (networks of) computers
so that they increasingly form interfaces to a host of everyday
functions, and outperform humans in many activities.

Yet there are many aspects of human (and non-human) in-
telligence that are not yet modelled on computers, and seem
to be particularly hard to model. Many cases go unnoticed
by researchers because because they involve not just abili-
ties to act (e.g. catching, throwing, assembling, stacking,
etc.) but also abilities to understand possibilities, necessi-
ties and impossibilities, which abound in both mathematics
and everyday life. These aspects of human and animal intel-
ligence cannot be derived from statistics based learning, nor
expressed in probabilistic frameworks, because they are con-
cerned with what is possible, impossible, or necessarily the
case, not probabilities. And many are about structures, not
measures.

The Turing-inspired Meta-Morphogenesis project includes
trying to understand many intermediate forms of information
processing between the very simplest organisms and current
highly intelligent animals, in the hope that we may stumble
across cases that we have never previously thought of that
provide new clues regarding mechanisms required and used
in brains. The project has already identified a need for evo-
lution to make use of both the fundamental construction kit
(FCK) provided by the physical universe and also many de-
rived construction kits (DCKs) produced by biological evo-
lution. Some are concrete construction kits for producing
physical and chemical structures and processes. Others are
abstract construction kits for producing information struc-
tures and information processing mechanisms. It is hoped
that eventually we’ll understand the sorts of construction kit
required to replicate human mathematical intelligence in ma-
chines, so that we’ll know how to make a baby Kantian robot
that can grow up to make discoveries like Euclid.

For more on the meta-morphogenesis project see:
http://www.cs.bham.ac.uk/research/projects/
cogaff/misc/meta-morphogenesis.html
FOR MISSING REFERENCES SEE:
http://www.cs.bham.ac.uk/research/projects/
cogaff/sloman-iccm17.pdf

http://www.gutenberg.org/ebooks/21076
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-morphogenesis.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-morphogenesis.html
http://www.cs.bham.ac.uk/research/projects/cogaff/sloman-iccm17.pdf
http://www.cs.bham.ac.uk/research/projects/cogaff/sloman-iccm17.pdf

	Introduction
	Mathematical meta-cognition
	Can we get clues from biological evolution?
	Evolutionary pressures for mathematical minds
	Evolution: the blind mathematician
	Limited mathematical abilities of AI systems

