
Proceedings of the 16th International Conference on Cognitive Modeling (ICCM 2018)

Proceedings of ICCM 2018

16th International Conference on Cognitive Modeling1

July 21-24, 2018

 University of Wisconsin, Madison, WI.

Edited by

Ion Juvina, Joseph Houpt, and Christopher Myers

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 Collocated with The 51st Annual Meeting of the Society for Mathematical Psychology at the University
of Wisconsin in Madison, WI.

Proceedings of the 16th International Conference on Cognitive Modeling (ICCM 2018)

Preface

The International Conference on Cognitive Modeling (ICCM) is the premier conference
for research on computational models and computation-based theories of human
cognition. ICCM is a forum for presenting and discussing the complete spectrum of
cognitive modeling approaches, including connectionism, symbolic modeling, dynamical
systems, Bayesian modeling, and cognitive architectures. Research topics can range from
low-level perception to high-level reasoning. In 2018, ICCM was jointly held with
MathPsych – the annual meeting of the Society for Mathematical Psychology at the
University of Wisconsin, in Madison, WI, USA, on July 21st-24th.

Acknowledgments

We would like to acknowledge the Society for Mathematical Psychology (SMP), the
Department of Psychology at the University of Wisconsin, Madison, and Springer, whose
combined support kept the conference fees low and allowed us to fund a number of
student awards. We also would like to acknowledge the people who brought the
MathPsych and ICCM conferences together for the first time (Andrew Heathcote, Amy
Criss, Frank Ritter, and David Reitter), the hard work of the MathPsych local organizer
(Joe Austerweil), the officers of the SMP (Brent Miller, Leslie Blaha, Jennifer Trueblood,
Scott Brown, and Pernille Hemmer), and University of Wisconsin conference services for
their logistical support. EasyChair was used to manage submissions and reviews and
generate this volume.

Papers in this volume may be cited as:

LastNameAuthorA, FirstInitialA., LastNameAuthorB, FirstInitialB., &
LastNameAuthorC, FirstInitialC. (2018). This is the title of the paper. In I. Juvina, J.
Houpt, & C. Myers (Eds.), Proceedings of the 16th International Conference on
Cognitive Modeling (pp. 6-12). Madison, WI: University of Wisconsin.

ISBN-13: 978-0-9985082-2-1

(C) Copyright 2018 retained by the authors.

ii

Proceedings of the 16th International Conference on Cognitive Modeling (ICCM 2018)

Conference Committees

General and Program Chairs

Ion Juvina, Wright State University

Joseph Houpt, Wright State University

Christopher Myers, The United States Air Force Research Laboratory

iii

Proceedings of the 16th International Conference on Cognitive Modeling (ICCM 2018)

Program Committee

Erik Altmann Michigan State University
Adrian Banks University of Surrey
Thomas Barkowsky University of Bremen
Leslie Blaha Pacific Northwest National Laboratory
Jelmer Borst University of Groningen
Mike Byrne Rice University
Richard Carlson Penn State Psychology
Christopher Dancy Bucknell University
Justin Estepp Air Force Research Laboratory
Francesco Gagliardi Italian Association for Cognitive Sciences
Moojan Ghafurian University of Waterloo
Kevin Gluck Air Force Research Laboratory
Fernand Gobet University of Liverpool
Glenn Gunzelmann Air Force Research Laboratory
Bill Kennedy George Mason University
David Kieras University of Michigan
Johan Kwisthout Radboud University
Ralf Mayrhofer University of Göttingen
Krishna Prasad Miyapuram Indian Institute of Technology Gandhinagar
Junya Morita Shizuoka University
Shane Mueller Michigan Technological University
David Noelle University of California, Merced
Enkhbold Nyamsuren The Open University
David Peebles University of Huddersfield
Nele Russwinkel Technische Universitat Berlin
Dario Salvucci Drexel University
Ute Schmid University of Bamberg
Michael Schoelles Rensselaer Polytechnic Institute
Jennifer Spenader University of Groningen
Robert St. Amant North Carolina State University
Christopher Stevens Air Force Research Laboratory
Terrence Stewart University of Waterloo
Andrea Stocco University of Washington
Ron Sun Rensselaer Polytechnic Institute
Greg Trafton Navy Research Laboratory
Marieke van Vugt University of Groningen
Sharon Wood University of Sussex
Iraide Zipitria The University of the Basque Country

iv

ICCM2018 Table of Contents

Table of Contents

An extensible framework for mechanistic processing models: From representational
linguistic theories to quantitative model comparison . 1

Adrian Brasoveanu and Jakub Dotlacil

Simulating Human-AI Collaboration with ACT-R and Project Malmo . 9

Zachary Brill and Christopher Dancy

Learning Effects Arise from Task-Indexed Adaptive Coding. 11

Thomas Christie, Dominic Mussack and Paul Schrater

Models of Bayesian Rationality for Conditional Reasoning: What are they good for? 17

Lukas Elflein and Marco Ragni

An Integrated Working Memory Model For Time-Based Resource-Sharing 19

Joseph Glavan and Joseph Houpt

Balancing Confidence and Information Costs in a Diagnostic Reasoning Task 25

Tim Halverson, Christopher Stevens, Chris Fisher, Ashley Haubert and Christopher
Myers

Two Simple NeuroCognitive Associative Memory Models . 31

Christian Huyck and Yuhue Ji

EEG classifiers can predict mind-wandering across different tasks . 37

Christina Jin, Marieke van Vugt and Jelmer Borst

Integrating Emotional and Rational Cognition. 40

Bill Kennedy and James Thompson

Visual Search without Selective Attention: A Cognitive Architecture Account 43

David Kieras

Core High-Level Cognitive Abilities Derived from Hunter-Gatherer Shelter Building 49

Jerald Kralik

A cognitive model of switching between reflective and reactive decision making in the
Wason task . 55

Othalia Larue, Alexander Hough and Ion Juvina

Proposal for an ACT-R Workshop at MathPsych/ICCM 2018 . 61

Christian Lebiere, Dario Salvucci, Michael Byrne, Niels Taatgen and Gregory Trafton

Comparing Models of Visual Search in Heterogeneous Search Fields . 63

Stefan Lindner, Lennart Arlt and Nele Russwinkel

Simple agglomerative visual grouping for ACT-R . 69

John Lindstedt and Michael Byrne

Modeling Perceptual Judgement in Believable Agents: A Signal Detection Approach 75

Spencer Lynn, Taylor Curley and Peter Weyhrauch

Similarity-based and Rule-based Reasoning in Raven’s Matrices . 77

Can Serif Mekik, Ron Sun and David Yun Dai

v

ICCM2018 Table of Contents

A Learning Support System for the Development of Phonological Awareness using a
Japanese Word Game . 83
Junya Morita and Junpei Nishikawa

A computational model of sensemaking in a weather prediction task. 85
Shane Mueller and Brittany Nelson

Predicting Learning and Retention of a Complex Task. 91
Jacob D. Oury, Farnaz Tehranchi and Frank E. Ritter

An SGOMS Model of Human StarCraft Game Playing in Autonomous Agents 97
Chad Peters, Robert West and Babak Esfandiari

Modelling metareasoning about decision thresholds in a perceptual learning task. 103
Vasundhara Rakesh and Nisheeth Srivastava

Mechanisms of Rule Resolution in Premotor Cortex: A Combined TMS/Computational
Modeling Study . 109
Patrick Rice and Andrea Stocco

The Implications of Guessing Types in Multinomial Processing Tree Models:
Conditional Reasoning as an Example . 115
Nicolas Riesterer and Marco Ragni

ACT-Droid meets ACT-Touch: Modelling differences in swiping behavior with real Apps . 121
Nele Russwinkel, Sabine Prezenski, Lisa Dörr and Frank Tamborello

An Architecture Approach to Modeling the Remote Associates Test . 127
Jule Schatz, Steven Jones and John Laird

Modeling Decision Making in a Biased Matchmaker Task . 133
Jaelle Scheuerman, Dina Acklin and Noelle Brown

Towards a Physio-Cognitive Model of the Exploration Exploitation Trade-off 135
David Schwartz and Christopher Dancy

Deploying a Model-based Adaptive Fact-Learning System in University Courses 137
Florian Sense, Maarten van der Velde and Hedderik van Rijn

Toward a theory of timing effects in self-organized sentence processing . 139
Garrett Smith and Whitney Tabor

Explaining Decisions of a Deep Reinforcement Learner with a Cognitive Architecture 145
Sterling Somers, Constantinos Mitsopoulos, Christian Lebiere and Robert Thomson

Modeling prototype effects in a binary classification task . 151
Robert St. Amant, Maryanne Fields and Craig Lennon

Modeling Instruction Fetch in Procedural Learning . 157
Bryan Stearns and John Laird

Modeling Visual Search in Interactive Graphic Interfaces: Adding Visual Pattern
Matching Algorithms to ACT-R. 163
Farnaz Tehranchi and Frank E. Ritter

Modelling the Effect of Time-on-Task Fatigue in Prolonged Driving. 169
Leong-Hwee Teo and Grace Ang

vi

ICCM2018 Table of Contents

Analysis of Learning Action Selection Parameters in a Neural Cognitive Model 175
Sverrir Thorgeirsson, Terrence C. Stewart and Chris Eliasmith

The Search Space in the Eyes of the Tracker . 180
David Tobinski and Oliver Kraft

Automatically translating logical strategy formulas into cognitive models 182
Jakob Dirk Top, Rineke Verbrugge and Sujata Ghosh

Modeling the Impact of Fake News on Citizens . 188
Stephanie Tulk, Niloofar Jebelli and William Kennedy

A Nerual Field Model of Word Recognition. 194
Andrew Valenti, Bradley Oosterveld and Matthias Scheutz

Modelling the Effect of Depression on Working Memory . 200
Maarten van der Velde, Marieke van Vugt and Niels Taatgen

ACTR-STAP: Connecting ACT-R to task software used by humans (and by other
computational frameworks). 206
Vladislav Daniel Veksler and Norbou Buchler

Cognitive Modeling in the context of Cyber Security . 208
Vladislav Daniel Veksler, Norbou Buchler, Blaine E. Hoffman, Daniel N. Cassenti,
Char Sample and Shridat Sugrim

The time course recovery of confidence judgments using interruptions. 210
Kevin Zish, Nathan Aguiar, Malcolm McCurry, Erik M. Altmann and J. Gregory
Trafton

vii

An extensible framework for mechanistic processing models: From
representational linguistic theories to quantitative model comparison

Adrian Brasoveanu (abrsvn@gmail.com)
Department of Linguistics, 1156 High Street

Santa Cruz, CA 95065, USA

Jakub Dotlačil (j.dotlacil@gmail.com)
ILLC, Science Park 107

1098 XG Amsterdam, The Netherlands

Abstract

We introduce a Python3 reimplementation of ACT-
R (Anderson and Lebiere 1998, Anderson 2007) in
which we build an end-to-end simulation of syntac-
tic parsing in a typical self-paced reading experi-
ment. The model uses an eager left-corner parsing
strategy implemented as a skill in procedural mem-
ory (following Lewis and Vasishth 2005), makes
use of independently motivated components of the
ACT-R framework (procedural memory, content-
addressable declarative memory – cf. Wagers et al.
2009), and explicitly models the motor and visual
processes involved in self-paced reading. The ACT-
R model can be embedded in a Bayesian statistical
model to estimate its subsymbolic parameters and
perform model comparison.

Keywords: ACT-R, Bayesian models, incremental
processing, syntax, semantics, self-paced reading

Introduction: framework & case study
The overarching goal of the research we report on
here is to build an extensible framework in which
formally and computationally explicit processing
models for natural language syntax and semantics
can be formulated. Specifically, we want to build
cognitively realistic models for incremental pars-
ing of discourse representations structures (DRSs,
Kamp 1981; Kamp and Reyle 1993) or similar rep-
resentations. In the models we built so far, the
semantic and syntactic representations are created
mostly in parallel, so we will be able to focus only
on modeling syntactic representations in this paper.

This extensible framework enables us to formu-
late mechanistic models of natural language pro-
cessing, which is the preferred level of explana-
tion in cognitive science (see Lewandowsky and
Farrell 2010 among many others). When build-

ing the framework, our strategy was to use an in-
dependently motivated, general cognitive architec-
ture, and to embed processing models for natu-
ral language in this architecture. Since parsing is
easy to embed in hybrid (symbolic and subsym-
bolic) cognitive architectures, we chose to focus
on them. Two hybrid architectures are in common
use in psycholinguistics, namely Soar (Hale 2014;
Young and Lewis 1999) and ACT-R (Dillon et al.
2013; Engelmann et al. 2013; Kush 2013; Lewis
and Vasishth 2005; Nicenboim and Vasishth 2018;
Rij 2012; Taatgen and Anderson 2002; Vasishth et
al. 2008). ACT-R is the more popular architecture,
so it was a natural choice for our framework.

Currently, psycholinguistic ACT-R models are
mainly used to model recall of syntactic structures
(Dillon et al. 2013; Engelmann et al. 2013; Lewis
and Vasishth 2005; Nicenboim and Vasishth 2018;
Vasishth et al. 2008). This focus on recall-related
modeling does not take advantage of the general-
ity of ACT-R as a cognitive architecture and its “no
magic” policy. If we want to make explicit all the
various parsing components and actions involved
in processing models for specific natural language
phenomena, we have to rely on the full implemen-
tation of ACT-R in LISP, which is not a very pop-
ular programming choice now. Furthermore, since
LISP is a relatively isolated programming language,
it does not have a thriving ecosystem of statistical
estimation / machine learning libraries that could
be leveraged in processing models. Being a cog-
nitive architecture, ACT-R comes with many pa-
rameters, but because of the relative paucity of the
LISP library ecosystem, these parameters are set to

ICCM2018

1

their default values or manually changed even when
LISP ACT-R is used. Manually changing param-
eters makes modeling hard to replicate and system-
atic quantitative model comparison hard to perform.

In this paper, we introduce a new Python3 im-
plementation of ACT-R (pyactr, Brasoveanu and
Dotlačil 2018, in prep.), which makes two main
contributions. On one hand, it is easy to combine
ACT-R modeling and Bayesian estimation methods:
ACT-R models are embedded in Bayesian models,
which makes it possible for us to systematically
explore parameter values and quantify our uncer-
tainty about them, perform quantitative model com-
parison, and replicate / build on previous modeling
work. On the other hand, the ACT-R component
comes with a working, extensible parsing frame-
work for syntax and semantics, which includes vi-
sual and motor interfaces and a variety of mod-
els for both syntactic and semantic phenomena.
The framework has a modular structure: alterna-
tive models for peripherals (visual, motor) and other
components can in principle be swapped in, and the
resulting models can be systematically compared.

We showcase the framework by modeling Exper-
iment 1 in Grodner and Gibson (2005) (also used in
Lewis and Vasishth 2005). This is a self-paced read-
ing experiment (non-cumulative moving-window;
Just et al. 1982). Participants read word-by-word
sentences in which the subject noun phrase (NP)
is modified by a subject or object extracted relative
clause (RC). A subject-gap example is provided in
(1), and an object-gap in (2).

(1) The reporter who GAP sent the photogra-
pher to the editor hoped for a story.

(2) The reporter who the photographer sent
GAP to the editor hoped for a story.

There are 9 regions of interest (ROIs) that we will
model, underlined in the examples above. These are
word 2 (the matrix noun in subject position) through
word 10 (the matrix verb). An ACT-R model for
these 2 sentences is demo-ed in Figure 1. The red
circle is the visual focus; the models goes through
a series of cognitive (parsing) steps and decides to
press the space bar to reveal the next word at cer-
tain times during this process. The temporal trace

incrementally produced by the model (with all in-
teracting modules, buffers, parsing actions etc.) is
visible in the background.

Figure 1: An ACT-R model for self-paced reading
(open the paper with Adobe Reader to see movie)

The remainder of this paper is dedicated to un-
packing this ACT-R model (ACT-R and eager left-
corner parsing) and quantitatively comparing three
variations on it that differ in several theoretically-
relevant ways (Modeling results). We conclude
with a summary and future research directions.

ACT-R and eager left-corner parsing
We unpack the ACT-R model of self-paced reading
demo-ed in Figure 1 at three different levels of de-
tail. We start with a broad overview of the ACT-
R architectural components we need. We then out-
line how various parts of an eager left-corner parser
are distributed over the ACT-R components. Fi-
nally, we discuss how the model functions on a per-
word basis; that is, we outline the cognitive steps
the model goes through starting immediately after
a word is revealed on the virtual screen and ending
with the point at which the model decides to press
the space bar to reveal the next word.

There are two types of memory in ACT-R:
(i) declarative memory (roughly, ‘knowing that’)
– knowledge of facts, which are represented as
chunks (attribute-value matrices), e.g., the lexical
chunk for the word car in (3); and (ii) procedu-
ral memory (roughly, ‘knowing how’) – the set of
productions that fire in series to generate cognitive
behavior / processes. These productions have the
form of rewrite rules in formal grammars (e.g., con-
text free / phrase structure grammars), but in ACT-

ICCM2018

2

R, they are conditionalized cognitive actions: the
ACT-R mind fires a production, i.e., takes the action
encoded in it, if the current cognitive state satisfies
the preconditions of that production.

(3) ISA: word
FORM: car
MEANING: JcarK
CATEGORY: noun
NUMBER: sg

(4) Goalą TASK: reading
FORM: car

ñ

Goalą TASK: retrieving category
Retrievalą ISA: word

FORM: car

An example production is provided in (4):

• if the current cognitive state is such that the goal
buffer (which drives cognitive processes in ACT-
R) encodes a TASK of ‘reading’ the FORM ‘car’,

• then (ñ) we take a cognitive action that takes us
to a new cognitive state,

• where the TASK is to retrieve the syntactic cat-
egory of that form, and in which we simultane-
ously place a request in the Retrieval buffer to
search declarative memory for a chunk of type
‘word’ that has the FORM ‘car’.

Implicit in this example production is that an
ACT-R mind is composed of modules, which in-
clude declarative and procedural memory, but also
visual and motor modules etc. Modules are not di-
rectly accessible: they can only be accessed through
associated buffers (e.g., the Retrieval buffer is as-
sociated with declarative memory). Buffers serve
a dual purpose: individually, they provide the in-
put/output interface to specific modules; as a whole,
however, buffers represent the current cognitive
state of the mind. Crucially, productions fire based
on the current cognitive state, i.e., conditioned on
the contents of various buffers. The ACT-R ar-
chitecture constrains cognitive behavior in various

ways, two of which are that buffers can hold only
one chunk, and only one production can fire at any
given time.

Let us now move on to how we can implement
an eager left-corner parser in ACT-R (building on
Lewis and Vasishth 2005; Resnik 1992; see also
Hale 2014 for an introduction). We distribute parser
components over ACT-R modules and buffers as
follows. Lexical knowledge is encoded in declar-
ative memory, knowledge of grammar and parsing
actions are encoded in procedural memory, expec-
tations about upcoming syntactic categories (which
guide parsing) are encoded in the goal buffer, in-
formation about the current partially-built syntac-
tic parse is encoded in the imaginal buffer (a sec-
ondary goal-like buffer), visual information from
the environment is transferred via the visual buffer,
and, finally, key press commands are issued via the
manual buffer. The visual module we implement is
EMMA (Salvucci 2001), and the motor module is
EPIC (Kieras and Meyer 1996; Meyer and Kieras
1997). Other choices are also possible.

Running this eager left-corner parser on a sim-
ple input sentence will shed more light on its in-
ner workings and how they are deployed in real
time. Assume we have a simple grammar with three
phrase structure rules S Ñ NP VP, NP Ñ Det N,
and VPÑ V. Also, assume that we are reading the
sentence A boy sleeps in a self-paced reading task.

We start with a screen in which all words are cov-
ered with dashes: - --- ------. Our goal stack
(stored in the goal buffer) consists of just S: our
goal is to parse a sentence. After the first space-bar
press, the first word is revealed: A --- ------, its
visual form is transferred via the visual buffer, and
its syntactic category Det (determiner) is retrieved
from declarative memory. At that point, we take a
series of cognitive steps – that is, we fire a series of
productions – that take us to a new state. The goal
stack in this new state is N NP S: we now have two
subgoals of finding an N (noun) and an NP (noun
phrase) on the way to finding an S. Also, we build a
partial syntactic structure of the form shown in Fig-
ure 2 and store it in the imaginal buffer. We see
here the left-corner nature of our parser: we trigger
all the syntactic rules that have the determiner a or

ICCM2018

3

a node dominating a as their left branch.

S

NP

Det

a

N

Figure 2: Partial tree after reading the determiner a

After another space-bar press, the noun is re-
vealed (- boy ------), its form is transferred via
the visual buffer and its syntactic category N is re-
trieved from declarative memory. At this point, we
trigger a series of productions that discharge all the
N, NP and S goals (this reflects the eager nature of
the parser) and replaces them with the single goal
of finding a VP (verb phrase). At the same time, a
richer partial tree, shown in Figure 3, is stored in the
imaginal buffer.1

S

NP

Det

a

N

boy

VP

Figure 3: Partial tree after reading the noun boy

Finally, the verb is revealed after one more space-
bar press: - --- sleeps. Its visual form is trans-
ferred via the visual buffer and its syntactic cate-
gory V is retrieved from declarative memory. At
that point, the VP goal is satisfied, resulting in an
empty goal stack H, and the final structure in Fig-
ure 4 is built and encoded in the imaginal buffer.

We have now examined our model at two levels
of detail: the general cognitive architecture (ACT-
R) and the way the eager left-corner parser is dis-
tributed over this architecture. We zoom in one

1Strictly speaking, only parts of the tree in Figure 3
are stored in the imaginal buffer at any given time: in
the broader spirit of ACT-R, syntactic chunks encode only
one level of embedding in the tree, e.g., rNPDet Ns or
rSNP VPs, but not both.

S

NP

Det

a

N

boy

VP

V

sleeps

Figure 4: Partial tree after reading the noun boy

more time to reach the final level of detail at which
we want to examine the parser, and describe the
series of cognitive steps it takes beginning imme-
diately after seeing a word and ending with the
decision to press the space bar to reveal the next
word. This sequence of steps is summarized in the
flowchart in Figure 5 below.

attend word
retrieve lex. info

about word

retrieve syntactic parse
if applicable (e.g., wh-word)

parse

move visual attention

press key

Figure 5: Flowchart of parsing process per word

As this flowchart indicates, we first attend to the
visual form of the word, then retrieve lexical infor-
mation about the word, and also a syntactic struc-
ture if applicable (e.g., we retrieve the wh-word at
GAP sites). We then proceed with all the parsing ac-
tions we can take given our eager left-corner parser.
When these parsing actions are complete – and only
then – we proceed in parallel to moving visual at-
tention and issuing the key-press motor command.

Modeling results
We estimate four different parameters associated
with the ACT-R parsing model outlined in the pre-
vious section. We could in principle estimate more,

ICCM2018

4

but we confine ourselves to these four parameters
for simplicity.

The first one is the angle parameter k that mod-
ulates visual encoding; the time of visual encoding
Tenc is given by the function K ¨D ¨ ek¨d , where k
is the angle parameter we estimate, d is visual dis-
tance, D specifies relevant visual object properties
(in our case, word length), and K is set to its default
value of 0.01. We estimate this parameter mostly
to show that parameters for peripheral modules can
be estimated at the same time as the more com-
monly estimated parameters associated with declar-
ative and procedural memory.

The second one is the time r it takes to fire a pro-
duction rule (a condition-action pair). This is nec-
essary because our processing models incorporate
linguistic theories in a fairly transparent way, which
makes it necessary to fire more rules per word / re-
gion of interest (ROI) than it would be possible with
the 50 ms default. It might be that a judicious use
of production compilation will increase rule-firing
time closer to its ACT-R default, but this is a topic
for future research. Apart from the need to estimate
rule-firing time in such ‘theoretically-transparent’
linguistic applications, the ACT-R + Bayes frame-
work we introduce here enables us to quantify our
uncertainty about rule-firing times in any ACT-R
model; as an anonymous reviewer points out, a good
understanding of the uncertainty associated with the
r parameter is relevant to ongoing discussions about
the need to possibly add noise to it, and will benefit
ACT-R models across the board.

The third and fourth parameters are the latency
factor F and the latency exponent f that modu-
late the latency of retrieval from declarative mem-
ory. Retrieval latency T is a function of activa-
tion A, specifically, F ¨ e´ f ¨A.2 The latency factor
F is commonly estimated, but the latency exponent
f is usually set to its default value of 1. We esti-
mate both of them here because the latency expo-
nent has proved crucial in estimating latencies in

2Base activation A is a function of time periods tk since
previous word usages k from 1 to n, where n is determined

by the frequency of the word: A “ log
ˆ

n
ř

k“1
t´0.5
k

˙

. For

reasons of space, we do not discuss spreading activation.

lexical decision tasks like the ones in Murray and
Forster (2004) – see Chapter 7 in Brasoveanu and
Dotlačil (2018, in prep.) for a detailed discussion.
Given that lexical retrieval is a necessary compo-
nent of any cognitively-realistic parsing model, we
estimate both parameters.

The model is fit to data by estimating the poste-
rior distributions of these four free parameters k, r,
F and f . Standardly, modelers rely on default val-
ues or manually changing the values, but this pro-
cess is subjective and time consuming (e.g., a grid-
based search over only 20 parameter values for just
these 4 parameters would require manually evaluat-
ing 204 “ 160000 combinations). In contrast, py-
actr enables us to easily interface ACT-R models
with standard statistical estimation methods imple-
mented in widely-used Python3 libraries. Specifi-
cally, we use ACT-R models as the likelihood com-
ponent of full Bayesian models (implemented in
pymc3). We are therefore able to take advantage
of much more efficient search methods in multi-
dimensional parameter spaces, specifically, Markov
Chain Monte Carlo (MCMC) methods, when we fit
the ACT-R parameters to experimental data.

k
halfnormal(0;1)

r
halfnormal(0;0.05)

F
halfnormal(0;0.3)

f
halfnormal(0;0.5)

ACT-Rpk;r;F ; f q ñ Latency

RT
normal(Latency ;10)

“

„ „„„

Figure 6: The structure of the Bayesian model

The structure of the Bayesian model is pro-
vided in Figure 6: vague / low-information pri-
ors for the parameters are listed at the top, the en-
tire ACT-R model provides the likelihood function,

ICCM2018

5

which outputs latencies (times between successive
key presses) that can be matched against the read-
ing times (RTs) observed in Grodner and Gibson
(2005, Exp. 1). Bayesian methods have many ad-
vantages, including the fact that we obtain full pos-
terior distributions for the parameters of interest.
We are therefore able to find good parameter val-
ues for hybrid (symbolic & subsymbolic) models,
and also to quantify our uncertainty about these val-
ues. Posterior estimates: k – mean=0.87, sd=0.32,
95% HPD r0,1.23s; r – mean=0.02, sd=0.006, 95%
HPD r0.01,0.03s; F – mean=0.01, sd=0.03, 95%
HPD r0,0.1s; f – mean=0.23, sd=0.47, 95% HPD
r0,1.34s.

The fit of the model is most easily evaluated by
examining its posterior predictions for the 9 ROIs,
plotted in Figure 7. The diamonds indicate the ob-
served mean RTs for each word, the segments pro-
vide the 95% CRIs (credible intervals) for the mean
RT predicted by our model, and the dots are the
predicted mean RTs. When evaluating the model,
recall that the parameters are estimated once for a
full run through the experiment – they are not esti-
mated ROI by ROI (falsely assuming independence
between ROIs), as it is usually done in the psy-
cholinguistic literature. That is, we model here in
one go the full, hybrid (symbolic and subsymbolic)
stochastic process of incremental parsing in a self-
paced reading task.

●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

subj
obj

reporter

who
sent /

the
the /

photographer

photographer /

sent

to the
editor

hoped

300

350

400

450

500

300

350

400

450

500

P
re

di
ct

ed
 R

T
s

(9
5%

 C
R

Is
)

an
d

ob
se

rv
ed

 R
T

s
(m

s)

Figure 7: Model 1: postulated subject gaps

Figure 7 shows that wh-gap retrieval is modeled
well: this is the 3rd word (sent) in the top panel
(subj-gaps) and the 5th word (also sent) in the bot-
tom panel (obj-gaps). But the spillover effect on the
word after the object gap – the 6th word (to) in the
bottom panel – is not captured; we return to this.

Finally, we see that the wh-word and the follow-
ing word (the 2nd and 3rd words in both panels) are
modeled well for both subject and object gaps. This
is particularly interesting because the model is for-
mulated so that it predictively postulates a subject
gap when parsing the wh-word. This postulated gap
has to then be reanalyzed for object gaps.

We therefore consider a second model that does
not postulate a subject gap as soon as the wh-word is
parsed. The posterior predictions of this model, pro-
vided in Figure 8, are clearly worse: the 95% CRIs
are completely below the observed mean RTs for the
wh-word in both conditions, and also for the word
immediately following the wh-word in the object-
gap condition. This indicates that the model un-
derestimates the parsing work triggered by the wh-
word, and it also underestimates the reanalysis work
that needs to be done on the word immediately fol-
lowing the wh-word in the object-gap condition.

●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

subj
obj

reporter

who
sent /

the
the /

photographer

photographer /

sent

to the
editor

hoped

300

350

400

450

500

300

350

400

450

500

P
re

di
ct

ed
 R

T
s

(9
5%

 C
R

Is
)

an
d

ob
se

rv
ed

 R
T

s
(m

s)

Figure 8: Model 2: no postulated subject gaps

Thus, our first model (postulated subject gaps;
Figure 7) is the better one. This model comparison
shows that our ACT-R + Bayes framework has em-
pirical bite; not everything goes. Furthermore, the

ICCM2018

6

framework can be used both for formalizing (sym-
bolic) processing hypotheses and for quantitative
hypothesis testing.

A final, third model we consider aims to capture
the spillover effect on the word following the re-
trieval of object gaps (the 6th word in the bottom
panel of Figure 7 above). In this model, parsing
actions proceed in parallel to moving visual atten-
tion and issuing key press commands, unlike the
flowchart in Figure 5 where we see that parsing has
to always precede visual and motor actions. This
is sufficient to capture the spillover effect for object
gaps, and also increases the precision of our model
(smaller CRIs), as shown in Figure 9 below.

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●
●

● ●

subj
obj

reporter

who
sent /

the
the /

photographer

photographer /

sent

to the
editor

hoped

300

350

400

450

500

300

350

400

450

500

P
re

di
ct

ed
 R

T
s

(9
5%

 C
R

Is
)

an
d

ob
se

rv
ed

 R
T

s
(m

s)

Figure 9: Model 3: ‘parallel’ reader

This increase in precision for Model 3 is clearly
visible in its much lower WAIC2 value:3 Model 1
(postulated subject gaps) – WAIC1 = 387.8, WAIC2
= 1469; Model 2 (no postulated subject gaps) –
WAIC1 = 433.1, WAIC2 = 1613; Model 3 (‘parallel’
reader) – WAIC1 = 389.8, WAIC2 = 553.4. These
WAIC values provide a good summary of the con-
clusions we drew based on the posterior-prediction
plots in Figures 7, 8 and 9: Model 1 is better than
Model 2 with respect to both WAIC1 and WAIC2,

3Watanabe-Akaike/Widely Available Information Cri-
terion; see Gelman et al. (2013, pp. 173-174) a.o. for dis-
cussion of both WAIC1 and WAIC2. We compute both
WAIC values based on the estimated posterior pyactr
RTs for the 18 ROIs (9 subject-gap ROIs + 9 object-gap
ROIs).

and Model 3 provides sharper posterior predictions
than either Model 1 or Model 2, as its WAIC2 value
shows (recall that WAIC2 is variance based).

As a final way to evaluate our processing mod-
els, we can compare observed RTs and model pre-
dictions for individual words (in individual items)
rather than focusing only on mean RTs, as we have
done above. Let’s focus only on the predictions
made by Model 1; a linear regression with observed
RTs for individual words as the response variable
and predicted word RTs as the sole predictor esti-
mates a slope of 1 (SE=0.009, t=5.7). That is, a
1 ms increase in predicted RTs corresponds to a 1
ms increase in observed RTs, indicating a very good
data fit for our models at individual word level.

Finally, we used Model 1 to predict both eye-
tracking (ET) and self-paced reading (SPR) data
from Frank et al. (2013) (a variety of syntactic struc-
tures, no RCs; we selected 22 sentences that the
parser, with its limited set of syntactic rules, parses
correctly). For eye-tracking, we simply remove the
key-press motor component from the model. Once
again, we run a linear regression with observed and
predicted word-level RTs as the response and pre-
dictor variables, respectively. The model fits both
kinds of data fairly well: SPR – 1ms increase in
predicted RT corresponds to 0.79ms increase in ob-
served RT (t=2.1); ET – 1ms increase in predicted
RT corresponds to 0.82ms increase in observed RT
(t=3.31). The relative decrease in fit (the slope is
not 1 anymore) is due to the fact that the model was
really tailored to the RC data in Grodner and Gibson
(2005, Exp. 1).

Conclusion
We introduced an extensible framework for mecha-
nistic processing models and investigated 3 models
incorporating an eager left-corner parser with visual
and motor interfaces. The models differed in vari-
ous theoretically-relevant respects, and the frame-
work was used to quantitatively compare these dif-
ferent models / theoretical hypotheses.

We have only done quantitative comparisons
based on posterior-prediction plots and WAIC val-
ues, but systematic across-the-board model compar-
ison via Bayes factors is possible in the framework,

ICCM2018

7

as well as modeling a variety of other tasks (eye
tracking, lexical decision).

Acknowledgments
We are grateful to Amanda Rysling, Donka Farkas,
Abel Rodriguez, Matt Wagers, the UCSC S-lab au-
dience (March 2018) and two ICCM 2018 anony-
mous reviewers for comments and discussion.

We want to thank Ted Gibson and Dan Grodner
for providing the items and full datasets for the two
experiments reported in their paper (Grodner and
Gibson 2005). Jakub Dotlačil was supported by
the NWO VENI 275-80-005 grant. The usual dis-
claimers apply.

References
Anderson, John R. (2007). How can the human mind oc-

cur in the physical universe? Oxford University Press.
Anderson, John R. and Christian Lebiere (1998).

The Atomic Components of Thought. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Brasoveanu, Adrian and Jakub Dotlačil (2018, in
prep.). Formal Linguistics and Cognitive Archi-
tecture: Integrating generative grammars, cogni-
tive architectures and Bayesian methods. Language,
Cognition, and Mind (LCAM) Series. The py-
actr library (Python3 ACT-R) is available here:
https://github.com/jakdot/pyactr. Dordrecht: Springer.

Dillon, Brian et al. (2013). “Contrasting intrusion profiles
for agreement and anaphora: Experimental and mod-
eling evidence”. In: Journal of Memory and Language
69.2, pp. 85–103.

Engelmann, Felix et al. (2013). “A Framework for Mod-
eling the Interaction of Syntactic Processing and Eye
Movement Control”. In: Topics in Cognitive Science
5.3, pp. 452–474. DOI: 10.1111/tops.12026.

Frank, Stefan L et al. (2013). “Reading time data for
evaluating broad-coverage models of English sentence
processing”. In: Behavior Research Methods 45.4,
pp. 1182–1190.

Gelman, A. et al. (2013). Bayesian Data Analysis, Third
Edition. Chapman & Hall/CRC Texts in Statistical Sci-
ence. Taylor & Francis. ISBN: 9781439840955.

Grodner, Daniel and Edward Gibson (2005). “Conse-
quences of the Serial Nature of Linguistic Input
for Sentenial Complexity”. In: Cognitive Science 29,
pp. 261–291.

Hale, John T. (2014). Automaton Theories of Human Sen-
tence Comprehension. Stanford: CSLI Publications.

Just, Marcel A. et al. (1982). “Paradigms and processes
in reading comprehension”. In: Journal of Experimen-
tal Psychology: General 111.2, pp. 228–238. DOI: 10
.1037/0096-3445.111.2.228.

Kamp, Hans (1981). “A Theory of Truth and Semantic
Representation”. In: Formal Methods in the Study of
Language. Ed. by Jeroen Groenendijk et al. Amster-
dam: Mathematical Centre Tracts, pp. 277–322.

Kamp, Hans and Uwe Reyle (1993). From Discourse to
Logic. Introduction to Model theoretic Semantics of
Natural Language, Formal Logic and Discourse Rep-
resentation Theory. Dordrecht: Kluwer.

Kieras, David E and David E Meyer (1996). “The
EPIC architecture: Principles of operation”. Un-
published manuscript from ftp://ftp. eecs. umich.
edu/people/kieras/EPICarch. ps.

Kush, Dave W (2013). “Respecting relations: Memory
access and antecedent retrieval in incremental sentence
processing”. PhD thesis. University of Maryland, Col-
lege Park.

Lewandowsky, S. and S. Farrell (2010). Computational
Modeling in Cognition: Principles and Practice. Thou-
sand Oaks, CA, USA: SAGE Publications.

Lewis, Richard and Shravan Vasishth (2005). “An
activation-based model of sentence processing as
skilled memory retrieval”. In: Cognitive Science 29,
pp. 1–45.

Meyer, David E and David E Kieras (1997). “A com-
putational theory of executive cognitive processes and
multiple-task performance: Part I. Basic mechanisms.”
In: Psychological review 104.1, p. 3.

Murray, Wayne S and Kenneth I Forster (2004). “Serial
mechanisms in lexical access: the rank hypothesis.” In:
Psychological Review 111.3, p. 721.

Nicenboim, Bruno and Shravan Vasishth (2018). “Mod-
els of retrieval in sentence comprehension: A compu-
tational evaluation using Bayesian hierarchical model-
ing”. In: Journal of Memory and Language 99, pp. 1
–34. DOI: https://doi.org/10.1016/j.jml.2017
.08.004.

Resnik, Philip (1992). “Left-corner parsing and psycho-
logical plausibility”. In: Proceedings of the Fourteenth
International Conference on Computational Linguis-
tics. Nantes, France.

Rij, Jacolien van (2012). Pronoun processing: Computa-
tional, behavioral, and psychophysiological studies in
children and adults. Groningen.

Salvucci, Dario D (2001). “An integrated model of eye
movements and visual encoding”. In: Cognitive Sys-
tems Research 1.4, pp. 201–220.

Taatgen, Niels A and John R Anderson (2002). “Why do
children learn to say “broke”? A model of learning
the past tense without feedback”. In: Cognition 86.2,
pp. 123–155.

Vasishth, Shravan et al. (2008). “Processing Polarity:
How the Ungrammatical Intrudes on the Grammati-
cal”. In: Cognitive Science 32, pp. 685–712.

Wagers, Matthew W et al. (2009). “Agreement attraction
in comprehension: Representations and processes”. In:
Journal of Memory and Language 61.2, pp. 206–237.

Young, Richard M. and Richard L. Lewis (1999). “The
Soar cognitive architecture and human working mem-
ory”. In: ed. by Akira Miyake and Priti Shah, pp. 224–
256.

ICCM2018

8

https://doi.org/10.1111/tops.12026
https://doi.org/10.1037/0096-3445.111.2.228
https://doi.org/10.1037/0096-3445.111.2.228
https://doi.org/https://doi.org/10.1016/j.jml.2017.08.004
https://doi.org/https://doi.org/10.1016/j.jml.2017.08.004

Simulating Human-AI Collaboration with ACT-R and Project Malmo

Zachary M. Brill (zmb004@bucknell.edu), Christopher L. Dancy (christopher.dancy@bucknell.edu)
Department of Computer Science, Bucknell University

701 Moore Ave, Lewisburg, PA 17837 USA

Keywords: ACT-R; Project Malmo; teamwork; human-AI in-
teraction; cognitive architectures, UCT.

Introduction
We use the ACT-R cognitive architecture (Anderson, 2007)
to explore human-AI collaboration. Computational models of
human and AI behavior, and their interaction, allow for more
effective development of collaborative artificial intelligent
agents. With these computational models and simulations,
one may be better equipped to predict the situations in which
certain classes of intelligent agents may be more suited to col-
laborate with people. One can more tractably understand and
predict how different AI agents affect task behavior in these
situations. To simulate human-AI collaboration, we are de-
veloping ACT-R models that work with more traditional AI
agents to solve a task in Project Malmo (Johnson et al., 2016).
We use existing AI agents that were originally developed as
the AI portion of the Human-AI collaboration. In addition,
creating a model in ACT-R to simulate human behavior gives
us the opportunity to play out these interactions much faster
than would be possible in real time.

Malmo Collaborative Challenge
The Collaborative AI Challenge was designed by Microsoft
to test the collaborative capabilities of artificial intelligence.
Built on top of Minecraft to create various environments and
agents, Project Malmo is an attractive platform for experi-
menting with AI agents. Microsoft challenged teams to de-
sign and implement an artificial agent capable of playing
alongside a human teammate in a game of Pig Chase, which
is an extension of the Stag Hunt task developed by Yoshida,
Dolan, and Friston (2008). This game requires a two-member
team to track down and catch a pig within an enclosed
meadow. Having only a limited number of actions (moving
one square takes one action), cooperation is key to success.
Cornering or “pinching” the pig with no escape route pro-
vides the maximum points to each agent for that round. How-
ever, the game also allows for a different kind of reward to
be earned. If an agent gives up and exits the pen, they will
also receive points, albeit fewer than if they had caught the
pig.

The AI Agent
The primary AI agent, created by the Bacon Gulch team (Gar-
riga, 2017), uses Bayesian inference and a planning algorithm
to 1) determine the other player’s approach and 2) plan its
next move. The Bacon Gulch agent’s Bayesian inference
identifies the other player’s strategy as either ‘focused’ or
‘random’. The actions taken by the partner determine this

inferred state. A ‘focused’ state is inferred when the team-
mate appears to share the same pig-catching goal as our arti-
ficial agent. If no clear movement towards the pig is being
made, perhaps the teammate is standing in one spot spinning
in circles, we assign their state to be ‘random’, and promptly
exit the pig pen, acquiring a small reward. Using Bayes’ the-
orem, we see the probability of action a being performed
given the agent is in state t P(a | t). With a strategy established,
the AI agent must plan its next move, taking it closer to the
goal state of capturing the pig.

UCT and Planning
The planning of moves is carried out by a domain-adapted
variant of the Upper Confidence bounds for Trees (UCT) al-
gorithm (Kocsis & Szepesvári, 2006). This variation on the
Monte Carlo Tree Search (MCTS) algorithm shines in a sim-
ple task, such as the Pig Chase, where there is not sufficient
complexity to require a learning algorithm (i.e., the playing
field is small enough that all moves can be considered in a
reasonable amount of time). The UCT algorithm builds a
search tree that has as its root the initial state. This initial state
is always the agent’s current square. From this initial state,
stochastic trajectories are simulated. A stochastic simulation
is desired because it diminishes the detrimental effects of the
pig’s random movement on the agent’s move planning, and
allows for a better exploration of possible moves, since any
valid move can be considered. A trajectory would be repre-
sented by a path in the tree, from which we could sum all the
reward values along that path. This determines our expected
outcome of following said trajectory. The path with the high-
est reward is chosen.

Figure 1: The Monte Carlo Tree Search algorithm proce-

dure (based on Chaslot et al., 2008)

Figure 1 provides a general illustration of how the UCT

algorithm works. Important to our research, is the simulation
stage as previously mentioned. From this simulation, the final
outcome, i.e. the score for the simulated round is backpropa-
gated through the tree, allowing the agent to decide its best
move given the current state.

ICCM2018

9

Simulating the Human with ACT-R
We are developing a cognitive model of the human acting as
part of a team in this task. We use these models to simulate
and predict how differences in AI agents, and human cogni-
tive states, may affect performance in human-AI collabora-
tion. The declarative module houses all factual knowledge
about the game’s current state, primarily locations of all rel-
evant objects e.g. ‘me’, my ‘teammate’, and the pig. ACT-
R’s procedural system (including utility) is used to complete
actions. Lastly, we use ACT-R’s motor module to make key-
strokes, thus enabling the agent to play the game using per-
ceptual-motor mechanisms similar to a human.

Model Strategy Overview
Previous work has shown that humans model their teammates
as having similar decision-making processes to their own
(Kennedy et al., 2008). In Kennedy et al.’s work, this projec-
tion of strategy improved the performance of a human-robot
team. Similarly, our initial approach involves mirroring the
AI agent’s strategy within our model. This design choice will
prove important in our analysis, enabling us to show shared
strategies as a predictor of performance. This is the basis of
our ACT-R model. Moreover, the model will grow to possess
gameplay strategies that differ from the AI’s, expanding our
ability to analyze the effect of strategy similarity on the
scores. Figure 2 details a high-level view of the model’s ap-
proach to playing the game.

Figure 2: Initial model strategy. This strategy is designed

to be as similar as possible to the AI’s.

While many of the actual implementations within ACT-R
are abstracted out of this flowchart, the visualization of this
strategy shows the initial focused state and the ways in which
the ACT-R agent not only makes its own moves, but how it
responds to the moves of its teammate.

Foundations of the Model
The foundation of our model’s strategy is an assumption of
shared goals. To achieve the highest possible scores in the
pig-chase game, both agents must attempt to catch or corner
the pig. Thus, our model initializes itself with the assumption
that its teammate will always attempt to reduce its distance to
the pig. Our model identifies this as a focused state, the same
state that is inferred by the AI agent. This state decision is
implemented using a simple algorithm in which our agent

pays attention to the teammate’s movements. If, during the
AI agent’s turn, a negative move is made, i.e. their distance
to the pig is increased, our agent determines them to be in an
unfocused state, analogous to the AI agent’s ‘random’ state.
This unfocused state determination then shifts our agent’s
goal towards leaving the pen and earning itself a (small) re-
ward. However, some adjustments to the model’s goal
change transition time would be valuable, as we could ana-
lyze the value of quitting and exiting immediately or waiting
some amount of moves to allow the AI agent to recover a
focused state.

Conclusion
The modelling of human behavior in a teamwork environ-
ment gives us the opportunity to not only add to previous re-
search focused on human-machine interaction, but also con-
tribute to our understanding of the aspects of human cogni-
tion that enable effective collaboration. Our primary goal is
to observe the impact a shared strategy between teammates
has on game performance. Using ACT-R and Project Malmo
allows potential future expansion to more complex collabo-
ration and environments, and the simulation of physiological
and affective modulation of human-AI collaboration (e.g., us-
ing ACT-R/Φ, Dancy, 2013); both of these are important for
the understanding of the consequences of integrating AI sys-
tems in different environments.

References
Anderson, J. R. (2007). How can the human mind occur in

the physical universe? New York, NY: OUP.
Chaslot, G. M. J. B., Winands, M. H. M., Uiterwijk, J. W. H.

M., van der Herik, H. J., & Bouzy, B. (2008).
Progressive strategies for monte-carlo tree search. New
Mathematics and Natural Computation, 4(3), 343.

Dancy, C. L. (2013). ACT-RΦ: A cognitive architecture with
physiology and affect. Biologically Inspired Cognitive
Architectures, 6(1), 40–45.

Garriga, A. malmo-challenge, (2017), GitHub repository,
https://github.com/rhaps0dy/malmo-challenge

Johnson, M., Hofmann, K., Hutton, T., & Bignell, D. (2016).
The Malmo platform for artificial intelligence
experimentation. In proceedings of the Twenty-Fifth
International joint conference on artificial intelligence
(IJCAI), New York, NY, 4246-4247.

Kennedy, W. G., Bugajska, M. D., Adams, W., Schultz, A.C.,
& Trafton, J. G. (2008). Incorporating mental simulation
for a more effective robotic teammate. In proceedings of
the Twenty-Third Association for the Advancement of
Artificial Intelligence conference on artificial
intelligence (AAAI), Chicago, IL, 1300-1305.

Kocsis, L., & Szepesvári, C. (2006, 2006//). Bandit based
monte-carlo planning. In proceedings of the 17th
European Conference on Machine Learning (ECML),
Berlin, Heidelberg, 282-293.

Yoshida, W., Dolan, R. J., & Friston, K. J. (2008). Game
theory of mind. PLOS Computational Biology, 4(12),
e1000254.

ICCM2018

10

Learning Effects Arise from Task-Indexed Adaptive Coding
S. Thomas Christie (tchristie@umn.edu)

Cognitive Science, 75 E River Rd
Minneapolis, MN, 55455 USA

Dominic Mussack (muss0080@umn.edu)
Department of Psychology, 75 E River Rd

Minneapolis, MN, 55455 USA

Paul R. Schrater (schrater@umn.edu)
Department of Psychology, 75 E River Rd

Minneapolis, MN, 55455 USA

Abstract

The brain is tasked with transmitting information quickly and
reliably while limiting energy use. It must encode information
without perfect knowledge of stimulus statistics, making effi-
cient encoding impossible. We consider the possibility that the
brain learns task-specific codes on-line, and that the efficiency
of these codes can increase with exposure to task statistics. Use
of task-indexed codes would parsimoniously explain, from in-
formation theoretic first principles, ubiquitous response time
and accuracy improvements during task learning, including the
Power Law of Learning. We also consider the implications of
task-specific codes on automaticity and cognitive costs.

Keywords: learning; practice; information theory; decision
making;

Introduction
Learning is characterized by adaptations of behavior which
are typically assessed as increases in accuracy. During learn-
ing, however, reaction times often continue to improve after
accuracy saturates (Shiffrin & Schneider, 1977). Learning
theories based on Bayesian statistics make normative predic-
tions about changes in accuracy (Jacobs & Kruschke, 2011),
but do not explain continued improvements in timing after ac-
curacy saturates. We propose that improvements in response
time can be explained by learning to efficiently transmit state
information. We thus make a novel proposal: learning in-
volves both improving accuracy and finding efficient codes
for transferring information within the brain.

Using tools from information theory to instantiate this as-
sumption, we develop a normative theory that explains how
the brain could learn a code with respect to a new task; this
predicts the Power Law of Learning, an exponential-like de-
cay in reaction time. To our knowledge, existing accounts
of practice curves for response time and accuracy are either
merely descriptive (see e.g. Newell & Rosenbloom 1981) or
mechanistic (exploring implications of an algorithmic imple-
mentation, e.g. ACT-R (Anderson et al., 1997), the instance
theory of automatization (Logan, 1988, 1992), or chunking
(Miller, 1956)).

We start with a description of a problem the brain must
solve: transferring information about the state of the world
from sensory areas to action selection areas, i.e. across an
information channel. In order to transmit this information

Figure 1: (A) The Power Law of Learning (Newell & Rosen-
bloom, 1981) describes an exponential decrease in response
times as a function of practice, which appears linear on log-
log scale. (B) Error rates show exponential-like decreases
with practice in many tasks (Heitz, 2014).

quickly, the brain should construct an efficient code of state
information, which in turn depends on stimulus statistics and
must be learned. When encountering a new task, subjects
must learn many things, including which sensory information
in the environment is relevant to the task (feature extraction)
and which actions provide the highest reward rate over time
(policy learning) as a function of time-varying circumstances
(state representation). Efficiently transferring and updating
state information is a problem distinct from these. In the
current paper, we introduce an ideal-observer model of the
efficient transmission problem, and show that learning an ef-
ficient encoding gives rise to curves that qualitatively match
practice curves seen in the literature (see Figure 1).

The current investigation can be seen as an application of
the Efficient Coding Hypothesis (ECH) to the time scale of
task learning. First proposed in the 1960s, ECH suggests that
the brain develops codes designed to transmit the maximum
amount of information with the fewest neural spikes (Bar-
low, 1961). This hypothesis has been supported by evidence
from the visual system of the fly (Laughlin, 1981), the pri-
mate visual area V1 (Vinje & Gallant, 2000), and the retina of
macaques and salamanders (Pitkow & Meister, 2012). In each
case, an efficient coding scheme is constructed using knowl-

ICCM2018

11

edge of stimulus statistics, which are learned on evolution-
ary or developmental time scales (Simoncelli & Olshausen,
2001). We propose that an analogous situation pertains to
task-related information learned on-line during task engage-
ment.

In what follows, we introduce our proposal using rele-
vant concepts from information and control theory. We in-
clude a simple worked example with numerical simulations
to demonstrate the production of response time and accuracy
curves as a function of coding efficiency. We then show that
these curves arise from Binomial, Multinomial, and Gaussian
stimulus distributions. Finally, we discuss the relationship be-
tween the current work and adaptive codes in the visual sys-
tem, as well as implications for understanding automaticity
and cognitive costs.

Efficient state encoding
When behaving on-line in an ecological environment, an or-
ganism must represent environmental information sufficient
to afford action selection. We assume that this information
must be transmitted from the senses, through the brain, which
will eventually result in an action. In this context, the brain
acts as an information channel, transmitting information be-
tween sensory input and action output.

While our approach is reminiscent of applications of infor-
mation theory to psychology from the 1950s and later (see
Lachman et al. 1979 for a review), we explicitly restrict our-
selves to David Marr’s computational level of analysis (Marr,
1982), in which we investigate the problem the brain is try-
ing to solve: transmitting stimulus information quickly over
a finite-capacity channel.

Problem description We borrow from control theory and
say that information about the world is compressed into a
state s, where the space of possible states S and the world-
information-to-state mapping are determined by the task be-
ing performed. Once the value of the state s is computed (say,
for a single trial of an experiment), it must be transmitted to
an action selection mechanism. This transmission process is
the concern of this work. In order to be transmitted over a
channel, s must be encoded into a form transmissible by the
channel medium (in this case, the brain). In accordance with
the computational level of analysis, we make no claim about
the form of the code, except to point out that that the same
information can be transmitted using either efficient or ineffi-
cient codes. Efficient codes are preferable from the perspec-
tive of maximizing transmission rates and reducing transmis-
sion costs.

We treat the state as drawn from a probability distribution
P(S). In general, the quantity of information that must be
transmitted in order to specify the state is equivalent to the
entropy of the state space:

H(S) =−∑
s∈S

P(S = s) log2 P(S = s)

In an efficient code, the average code length assigned to each

value of s is proportional to − log2 P(S = s). As such, con-
structing an efficient code requires knowledge of the distribu-
tion of P(S) (Cover & Thomas, 2012).

Inefficient code length Critically, P(S) must be learned
from experience, as individuals engaged in a new task do not
know the state frequency distribution. An inefficient coding
of a state s will result in a longer transmission than an efficient
code. Assume that an inefficient code is constructed using an
estimate of the state space distribution Q(S). The extra code
length is defined by the Kullback-Leibler divergence between
the two distributions, usually written as DKL or KL:

KL(P||Q) = ∑
s∈S

P(S = s) log2
P(S = s)
Q(S = s)

As an individual performing a task observes more realizations
of the stimulus state, they can update Q, and with many ob-
servations KL(P||Q)→ 0. This in turn allows the subject to
construct an (approximately) efficient code, transmit state in-
formation in a minimum amount of time, and select an action
more quickly. Thus, reaction times directly depend on the
efficiency of state encoding.

A simple example Suppose an individual is engaged in a
task in which they observe the outcome of a coin flip. They
are instructed to press a left arrow key if they observe heads,
and a right arrow key if they observe tails. The image of a
coin must be processed visually and turned into a state s ∈ S
(object recognition or feature extraction), and the mapping
between flip outcome and response is learned (policy learn-
ing). These processes contribute to response accuracy. In
addition, the state of each flip must be encoded and transmit-
ted through the brain to an action selection mechanism that
in turn drives a key press. This second process contributes to
response time.

Suppose the probability of a biased coin landing on heads
was P(S = heads) = 0.9, and each flip is modeled as be-
ing drawn from a Bernoulli distribution. For an unbiased
coin, the stimulus encoder mechanism (sender) could trans-
mit log2 2 = 1 bit of information to the action selector mech-
anism (receiver). If the sender knew the bias of this particular
coin, it would only need to transmit H(S) =−(0.9log2 0.9+
0.1log2 0.1) = 0.47 bits, on average, to specify the outcome
of each coin flip.

Assume that the sender has a prior belief that the coin is
unbiased, and thus has an estimate Qinit of P. This subjec-
tive ignorance means that the sender is unable to construct an
optimal code. Hence, the sender would construct a code that
requires 0.53 extra bits:

KL(P||Qinit) =∑
s∈S

P(S = s) log2
P(S = s)
Q(S = s)

=0.9log2
0.9
0.5

+0.1log2
0.1
0.5

=0.53

ICCM2018

12

Figure 2: (A) Typical decision making models involve transforming observations into a state, and then using the state to select
an action. (B) We claim that the transmission of state information to the action selection mechanism is subject to the constraints
of information transmission: the state must be encoded and transmitted through a noisy channel. This figure is adapted from
Stone (2015), with permission. (C) Taken together, we propose a refined model of action selection that accounts for transmission
time, which provides a normative explanation for practice effects. State information s is encoded using a task-specific encoding
(gqT for a task T) using an approximation q of the state frequency distribution p. The efficiency of this encoding depends on
the quality of the estimate q.

Power Law of Learning

As the sender observes more coin flips, its estimate Qinit of
P improves to Qobs, and the sender’s code becomes more
efficient. To investigate the characteristics of this update,
we simulated 10,000 coin flips for 2,000 subjects. For each
flip we calculated the maximum likelihood estimate Qobs of
P using every observed flip to that point, then calculated
KL(P||Qobs). We then averaged the KL-divergence across
all subjects for each number of flips. Results are shown in
Figure 3. When subjects have a weak prior, the code length
improvement has a linear relationship with stimulus observa-
tions when plotted in log-log space, exactly like the Power
Law of Learning (see Newell & Rosenbloom 1981). How-
ever, the initial rate of average code length decrease depends
on the strength of subjects’ prior beliefs that the coin is un-
biased. Code length improvement rates as a function of prior
strengths are shown in Figure 3C.

In our simulations, the linear power law relationship is
clearest when our virtual subjects have weak priors on stimu-
lus statistics. Accordingly, we suspect that the Power Law of
Learning arises as an experimental result exactly because this
is akin to the scenario in many psychology experiments, in
which subjects are unfamiliar with the task and have a weak
prior on stimulus statistics. The existence of strong, incor-
rect prior beliefs results in non-exponential learning curves,
an experimentally testable prediction.

Generality In the coin flip example, we focus on encod-
ing the value of draws from a Bernoulli distribution and show
power law decreases in transmission time. In Figure 3D, we
show similar results for both Multinomial (k = 16) and uni-
variate Gaussian distributions. These simulation results sug-
gest that the trend may not depend on the specific parameters

or form of the state distribution. Interestingly, each case re-
sults in a power law exponent of -1. Power law fits to response
time curves in the experimental literature give exponents be-
tween 0 and -1 (Newell & Rosenbloom 1981), indicating a
slower rate of learning in real subjects than the ideal observer
model presented here.

Aggregating across subjects In the psychology literature,
the smooth linear curves described by the Power Law of
Learning arise as a result of averaging across many sub-
jects. This observation has been leveled against Power Law
of Learning as a criticism (Heathcote et al., 2000), but as we
show below, this power-law decay is an effect of aggregating
many subject response times when each subject is learning
optimally. Indeed, an organism using efficient coding should
have trial-to-trial response time variance related to both their
updated code and the information content (‘surprise’) of each
observed state. Therefore, each subjects’ trend during learn-
ing should not be smooth. The between-subject variance of
simulated response times is shown as vertical gray lines in
Figure 3B.

Error rate improvements
As encoding efficiency increases with task practice, more in-
formation can be transmitted in a given unit of time. Forc-
ing a rapid response is known to lead to higher error rates in
many tasks (Heitz, 2014), presumably because subjects have
less time to incorporate information from their environment.
In the model we are proposing, a subject observes a stimu-
lus and must still transmit the value of that stimulus through
the brain to an action-selection mechanism. If a subject had
unlimited time to respond, they could send the value of the
stimulus with perfect fidelity. However, forcing a rapid re-
sponse introduces a scenario in which the sender may only

ICCM2018

13

Figure 3: (A) Response time is composed of fixed time costs (including the cost of efficiently transmitting state information),
plus extra transmission time due to use of an inefficient code, which decreases with practice. (B) This figure shows change
in KL(P||Q) as flips of a biased coin are observed, averaged across many subjects. KL(P||Q) measures the inefficiency of
state encoding, and decreases linearly in log-log space. This mirrors the Power Law of Learning. Grey lines represent 1 SE
of non-transformed values. (C) A strong, incorrect prior on the state frequency distribution initially slows learning. Each
line represents a different strength prior belief that an biased coin is actually unbiased. (D) The power-law relationship holds
for observations of state spaces following Binomial, Multinomial, and Gaussian distributions. In each simulation, values are
averaged across 2000 simulated subjects.

have time to transmit a partial representation of the stimulus.

Each transmission results in a corresponding reduction in
the uncertainty about the state from the perspective of the ac-
tion selection mechanism. A limitation on transmission time
(such as a forced-response time, or a task that rewards speed
over accuracy) could result in incomplete transmission of the
state, an incomplete reduction in the receiver’s uncertainty,
and a corresponding error in action selection. Error rates due
to incomplete task transmission should decrease as encoding
efficiency increases.

Suppose that in our coin flip example, the stimulus infor-
mation channel could sustain transmissions of 1 bit/second.
Suppose further that we, as experimenters, force a 500ms
response time. For the sake of this example, we assume
that non-transmission-related activities take zero time. The
sender’s initial code based on an assumption of coin fairness
Qinit requires 1 bit to transmit the flip outcome. Only 0.5 bits
can be transmitted before a response is required. We should
expect the sender to select actions with some non-zero error

rate.
We can calculate the expected error rate by recalling that

the entropy of the coin flip H(S) is from the perspective of
the receiver. The entropy equation H(S) = −∑s∈S Pr(S =
s) log2 Pr(S = s) provides a way of converting the remaining
uncertainty into a probability.

Hremaining(S) =0.5

=−∑
s∈S

Pr(S = s) log2 Pr(S = s)

=−Qinit(S = H) log2(Qinit(S = H))−
(1−Qinit(S = H)) log2(1−Qinit(S = H))

Solving for Qinit(S=H) gives 0.89, or an 89% chance that the
partial message received actually indicates heads. As more
samples are observed and the code is improved, eventually a
code is constructed with which only 0.47 bits must be trans-
mitted, as shown above. Using this code, the outcome of the
coin flip can be transmitted over the channel in < 500ms.

ICCM2018

14

We calculated expected error rates for transmitting the
value of the biased coin as a function of observations, and
therefore coding efficiency, for several forced-choice times.
We show the results in Figure 4.

Speed-accuracy tradeoff When subjects respond more
quickly, they often respond with lower accuracy (Heitz,
2014). This relationship is known as the Speed Accuracy
Tradeoff (SAT). The SAT is typically studied using stochas-
tic, dynamic stimuli such as the moving dot stimulus (see e.g.
Ball & Sekuler 1982). In these cases, subjects accumulate
information about the stimulus state over time. If forced to
respond quickly, or if given little time to accumulate infor-
mation, their accuracy suffers.

Recognizing that the transmission of state information in
the brain is not instantaneous - the position we take in this
paper - affords the possibility of investigating the SAT with
static stimuli. As noted above, a subject observing a stimulus
that requires 1 bit of information to be transmitted over a 1
bit/second channel, but given only 500ms to transmit the in-
formation, should suffer a decrease in accuracy. Varying the
entropy of the stimulus state space and the time subjects have
to respond should result in speed-accuracy curves like those
shown in Figure 4C. This is another testable prediction of our
theory.

Task-indexed adaptive encoding We emphasize that, as
with action selection policy and state space definition, state
encoding is determined with respect to the task being per-
formed. When a person encounters a new task with a new
state space, forming a new code specific to the task will en-
able efficient transmission in the long run. We call task-
specific code building adaptive because it involves adapting
a neural code to a specific task.

Discussion and conclusion
In this paper we introduce a normative theory of task-specific
efficient code learning. This theory provides a generative ex-
planation for the Power Law of Learning and exponential-like
decay curves without specifying a particular decision model.
Our only requirement on the decision process is that the state
information for a task be transmitted through a finite-capacity
channel. As such, this theory can be integrated into other
decision making frameworks, in particular neural or dual-
processing theories.

Neural plausibility The Efficient Coding Hypothesis de-
scribes a principle for optimal information transmission over
the lifespan of an organism interacting with their environ-
ment; adaptation occurs on the evolutionary or developmen-
tal timescale. Recent evidence suggests that neural codes can
also adapt at the millisecond timescale, apparently in order
to maintain a high degree of information transmission in the
face of rapidly changing stimulus statistics (Fairhall et al.,
2001; Brenner et al., 2000). These findings suggest that the
Efficient Coding Hypothesis may also apply to a fast tempo-
ral scale in addition to the relatively static tuning curves and

Figure 4: (A) Each bar represents the transmission of the
stimulus state on a trial. Limiting transmission time by forc-
ing a response can result in incomplete transmission of the
state. Nevertheless, more information can be transmitted as
coding efficiency improves. Zero error can only be achieved
when encoding is efficient enough to allow complete trans-
mission of the state information. (B) The outcome of a biased
coin flip takes 470ms to transmit over a channel at a rate of
1 bit/s. An initially inefficient code may result in incomplete
state transmission depending on the response time allowed,
resulting in errors. Errors decrease as encoding improves. (C)
Varying forced-choice time results in speed-accuracy trade-
off curves due to the resulting variable transmission of state
information.

ICCM2018

15

cell sensitivities that are the typical focus of analysis. In our
view, such findings support the plausibility of task-specific
code adaptation.

Relation to automaticity Work on automaticity and im-
plicit learning emphasizes that attentional capacity, response
time, accuracy, and multitasking performance all increase
with practice and the development of expertise in a task
(Logan, 1988). However, these improvements appear to be
strongly tied to specific tasks and environments. Learning
task-specific coding suggests a normative account of these ef-
fects. When transmitting information over a limited-capacity
channel, on-line learning of an efficient code enables more in-
formation to be transmitted in a given time. We suggest that
task automaticity may be equivalent to learning an efficient
task-specific code.

Cognitive costs Cognitive operations are referred to as
‘costly’ when they give rise to subjective fatigue and behav-
ioral aversion (see Shenhav et al. 2017 for a recent review).
We note that task aversion often subsides with practice and
the development of task-specific expertise, which appears re-
lated to the development of task automaticity. For that rea-
son, we speculate that decrease in cognitive costs with prac-
tice may be a direct result of learning an efficient encoding of
task states, and conversely that the the costs themselves arise
from transmitting information using inefficient codes. Min-
imizing transmission costs may also reduce metabolic costs,
which have been proposed as a primary driver of cognitive
costs (Christie & Schrater 2015).

Limitations and future work We have proposed that the
brain learns efficient codes on-line, but have intentionally
avoided specifying algorithmic or neural implementation de-
tails. In order to model behavioral data from a specific task,
we would need to specify a full decision model, an encoding
algorithm, and specify the characteristics of the information
channel, e.g. channel noise. Our current analysis serves as a
normative ideal-observer model against which actual behav-
ioral data can be compared.

References
Anderson, J. R., Matessa, M., & Lebiere, C. (1997). Act-r:

A theory of higher level cognition and its relation to visual
attention. Human-Computer Interaction, 12(4), 439–462.

Ball, K., & Sekuler, R. (1982). A specific and enduring
improvement in visual motion discrimination. Science,
218(4573), 697–698.

Barlow, H. B. (1961). Possible principles underlying the
transformations of sensory messages.

Brenner, N., Bialek, W., & Van Steveninck, R. d. R. (2000).
Adaptive rescaling maximizes information transmission.
Neuron, 26(3), 695–702.

Christie, S. T., & Schrater, P. (2015). Cognitive cost as dy-
namic allocation of energetic resources. Frontiers in neu-
roscience, 9, 289.

Cover, T. M., & Thomas, J. A. (2012). Elements of informa-
tion theory. John Wiley & Sons.

Fairhall, A. L., Lewen, G. D., Bialek, W., & Steveninck,
R. R. d. R. van. (2001). Efficiency and ambiguity in an
adaptive neural code. Nature, 412(6849), 787.

Heathcote, A., Brown, S., & Mewhort, D. (2000). The power
law repealed: The case for an exponential law of practice.
Psychonomic bulletin & review, 7(2), 185–207.

Heitz, R. P. (2014). The speed-accuracy tradeoff: history,
physiology, methodology, and behavior. Frontiers in neu-
roscience, 8, 150.

Jacobs, R. A., & Kruschke, J. K. (2011). Bayesian learning
theory applied to human cognition. Wiley Interdisciplinary
Reviews: Cognitive Science, 2(1), 8–21.

Lachman, R., Lachman, J. L., & Butterfield, E. C. (1979).
Cognitive psychology and information processing. hills-
dasle. Lawrence Erlbaum.

Laughlin, S. (1981). A simple coding procedure enhances
a neuron’s information capacity. Zeitschrift für Natur-
forschung c, 36(9-10), 910–912.

Logan, G. D. (1988). Toward an instance theory of automa-
tization. Psychological review, 95(4), 492.

Logan, G. D. (1992). Shapes of reaction-time distributions
and shapes of learning curves: A test of the instance the-
ory of automaticity. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 18(5), 883.

Marr, D. (1982). Vision: a computational investigation into
the human representation and processing of visual infor-
mation. w. h. WH San Francisco: Freeman and Company.

Miller, G. A. (1956). The magical number seven, plus or
minus two: Some limits on our capacity for processing in-
formation. Psychological review, 63(2), 81.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of
skill acquisition and the law of practice. Cognitive skills
and their acquisition, 1(1981), 1–55.

Pitkow, X., & Meister, M. (2012). Decorrelation and effi-
cient coding by retinal ganglion cells. Nature neuroscience,
15(4), 628.

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths,
T. L., Cohen, J. D., et al. (2017). Toward a rational and
mechanistic account of mental effort. Annual review of
neuroscience, 40, 99–124.

Shiffrin, R. M., & Schneider, W. (1977). Controlled and auto-
matic human information processing: Ii. perceptual learn-
ing, automatic attending and a general theory. Psychologi-
cal review, 84(2), 127.

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural im-
age statistics and neural representation. Annual review of
neuroscience, 24(1), 1193–1216.

Stone, J. V. (2015). Information theory: A tutorial introduc-
tion. Sebtel Press.

Vinje, W. E., & Gallant, J. L. (2000). Sparse coding and
decorrelation in primary visual cortex during natural vi-
sion. Science, 287(5456), 1273–1276.

ICCM2018

16

Models of Bayesian Rationality for Conditional Reasoning:
What are they good for?

Lukas Elflein and Marco Ragni {elfleinl, ragni}@cs.uni-freiburg.de
Cognitive Computation Lab, Georges-Koehler-Allee 79, University of Freiburg, 79111 Freiburg, Germany

Problem Description
A conditional is a statement that can be formulated by using
the word ‘if’, e.g., ‘if a disease is contagious then the illness
can spread’. It is often used for scientific reasoning, causal
reasoning or expressing relations between a precondition and
a consequent. If additional information is given e.g., a disease
is contagious or an illness cannot spread then inferences can
be drawn. We write ‘if p then q’ for the conditional. There are
four classical reasoning types: Modus Ponens (MP), Modus
Tollens (MT), Affirming the Consequent (AC), and Denying
the Antecedent (DA), we write for the inference (short: ∴):

MP :
p→ q, p
∴ q

MT :
p→ q,¬q
∴ ¬p

(1)

For abstract conditionals, Modus Ponens is accepted by most
people (97%), while Modus Tollens is accepted far fewer par-
ticipants (57%) (Oberauer, 2006). AC and DA are invalid but
are still accepted fairly often (44% for AC and 38% for DA):

DA :
p→ q,¬p
∴ ¬q

AC :
p→ q,q
∴ p

(2)

The theory of Bayesian Rationality (Oaksford, Chater, &
Larkin, 2000) claims that human reasoning about a condi-
tional ‘if p, then q’, can be described by the conditional prob-
ability P(q|p). The most prominent approach is the model by
Oaksford et al. (2000). The models for the Wason selection
task, i.e. the Dependence/Independence Models (Oaksford &
Chater, 1994) realize a similar probabilistic approach that we
also analyze. The three theories contain up to 3 fitting pa-
rameters each, with analogous interpretations: Where P(p) is
the probability that ‘p’ is plausible in the real world, analo-
gous for ‘q’. P(¬q|p) can be seen as the probability that the
stated ‘if... then’ rule is implausible. Now that we have intro-
duced the models of Bayesian Rationality, the main question
remains: What do they model? There are (at least) two intu-
itive interpretations of the Bayesian Rationality approach.

Table 1: Bayesian Rationality models for acceptance of con-
ditionals with a = P(p), b = P(q), e = P(¬q|p)

Oaksford 2000 Dependence Independence

MP 1− e 1 b

MT 1−b−a e
1−b 1−a 1−a

AC a (1−e)
b

a
b a

DA 1−b−a·e
1−a 1−b 1−b

1. Individual level: Each reasoner employs similar cogni-
tive/information processes. Bayesian Rationality describes
these general processes. They can be described by one set
of point-estimates of parameters that describes the reason-
ers.

2. Group level: In a group, reasoning processes may differ
between individuals, but the parameter point estimates are
a good description of the distribution of parameters.

We now put these two interpretations to the test.

Experimental Data from Oberauer (2006)
Often experimental reports in the literature just focused on
the percentages of participants endorsing each of the indi-
vidual patterns MP, MT, AC, and DA. A study conducted by
Oberauer (2006) instead reports answer patterns of individ-
ual participants. These are shown in Fig. 1 for two different
abstract conditionals (card-number and triangle-square). We
will abbreviate each reasoners answer by the tuple (MP, MT,
AC, DA). Many reasoners seem to accept all four inference
patterns or some few combinations (e.g., ‘only MP’, which
we write as ‘1000’). Most other patterns (e.g., ‘only DA’,
‘0001’) were observed almost never. This already hints at
a substantial inhomogeneity in the responses of the human
reasoners in reasoning about conditionals. This diversity

11
11

11
10

11
01

11
00

10
11

10
10

10
01

10
00

01
10

01
01

01
00

00
11

00
01

00
00

Pattern [MP, MT, AC, DA]

0

20

40

60

80

N
um

be
r

of
 a

ns
w

er
s

Card­Number
Triangle­Square

Figure 1: The basic inference patterns taken from Oberauer
(2006) study on conditionals. ‘1’ is acceptance and ‘0’ is a
rejection of the modus.

gets more pronounced if we do not pool the answers inde-
pendently, but analyze how subjects answered jointly for two
different conditionals (Fig. 2). Approximately 50% of the
participants are internally consistent in their answer patterns,
all others accept different conditionals when changing from
the card-number condition to the triangle-square condition.

ICCM2018

17

22
22

22
21

22
20

22
12

22
11

22
10

22
02

22
01

22
00

21
22

21
21

21
20

21
12

21
11

21
10

21
02

21
01

21
00

20
21

20
20

20
12

20
11

20
10

20
02

20
01

20
00

11
11

Joint Pattern [MP, MT, AC, DA]

0

10

20

30

40

50

60

A
bs

ol
ut

e
N

um
be

r
of

 A
nw

se
r

P
at

te
rn

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

F
re

qu
en

cy
 o

f A
nw

se
r

P
at

te
rn

Figure 2: Joint inference patterns from Oberauer (2006), ex-
cluding patterns which appear only once. ‘2’ means that the
conditional modus was accepted in both experimental condi-
tions.

Fitting the Models & Conclusion
How does this inhomogeneity in the data impact the model
parameters? We obtain best-fit estimates by minimizing the
Root Mean Squared Error between model prediction and
experimental data using the L-BFGS-B algorithm from the
SciPy package in Python. For the models presented in Ta-
ble 1, best-fit parameters can be estimated in two ways: On
the one hand, individual data aggregated into the four cat-
egories MP, MT, AC, DA can be used to obtain a single pa-
rameter value per experiment. This point estimate is shown in

0.0 0.2 0.4 0.6 0.8 1.0
Value of a

0

1

2

3

4

5

6

P
ro

ba
bi

lit
y

D
en

si
ty

 E
st

im
at

e
[%

]

Independence­Model
Dependence­Model
Chater&Oaksford 2000

Figure 3: Estimated distribution of the parameter a = P(p)
show multimodal distributions (curves) for three models.
Some of the aggregate point estimates agree roughly with the
central mode (red and blue dashed lines), some do not (green)

Fig. 3 and Fig. 4 as a dashed vertical line. On the other hand,
the full distribution of individual best-fit parameters can be
estimated. Each point estimate is weighted by its relative fre-
quency in the population of subjects in the experiment. The
distribution is smoothed via a kernel density estimation (gaus-
sian, bandwith 0.1). In Fig. 3 we can see the distribution of
the ‘a’ parameter, which reflects the probability of the an-

tecedent being true. The distribution has multiple local max-
ima (or modes).The aggregate point estimates are close to the
central mode at 0.5. The ‘b’ parameter, which reflects the
probability of the consequent being true, is also distributed
multimodally, with local maxima around 0, 0.5 and 1. The
aggregate point estimates are closer to ‘True’ (0.7).

0.0 0.2 0.4 0.6 0.8 1.0
Value of b

0

1

2

3

4

5

P
ro

ba
bi

lit
y

D
en

si
ty

 E
st

im
at

e
[%

]

Independence­Model
Dependence­Model
Chater&Oaksford 2000

Figure 4: Multimodal distribution of the kernel density esti-
mates of the parameter b = P(q) (curves). Most aggregate
point estimates (dashed vertical lines) are far from the global
maxima, some are close to local minima.

The first interpretation, i.e., ‘the models describe one uni-
versal cognitive process’ is incompatible with the parame-
ter fits. If there was only one process that all humans used
which was described by the model parameters, these param-
eters should be distributed unimodally – e.g., in a Gaussian
distribution with some (preferably small) dispersion. The sec-
ond interpretation, i.e., ‘the models describe how the majority
of the group reasons’, is also not valid. If this was the case,
parameters estimated from aggregated data would coincide
with (global) maxima of the individual parameter distribu-
tions. For the ‘b’ parameter (Fig. 4), this is clearly not the
case. Thus, the models do not describe the behavior of the
majority of the group in a meaningful way.

In future research, we will adapt these models to capture
processes and predict answers of individual reasoners.

Acknowledgments
This paper was supported by DFG grants RA 1934/3-1, RA
1934/2-1 and RA 1934/4-1 to MR.

References
Oaksford, M., & Chater, N. (1994). A rational analysis of

the selection task as optimal data selection. Psychological
Review, 101(4), 608.

Oaksford, M., Chater, N., & Larkin, J. (2000). Probabili-
ties and polarity biases in conditional inference. Journal of
Experimental Psychology: Learning, Memory, and Cogni-
tion, 26(4), 883.

Oberauer, K. (2006). Reasoning with conditionals: A test
of formal models of four theories. Cognitive Psychology,
53(3), 238–283.

ICCM2018

18

An Integrated Working Memory Model For Time-Based Resource-Sharing
Joseph J. Glavan (glavan.3@wright.edu)

Joseph W. Houpt (joseph.houpt@wright.edu)
Department of Psychology, Wright State University
3640 Colonel Glenn Hwy. Dayton, OH 45435 USA

Abstract

The time-based resource-sharing (TBRS) model envisions
working memory as a rapidly switching, serial, attentional re-
freshing mechanism. Executive attention trades its time be-
tween rebuilding decaying memory traces and processing ex-
traneous activity. To thoroughly investigate the implications of
the TBRS theory, we integrated TBRS within the ACT-R cog-
nitive architecture, which allowed us to test the TBRS model
against both participant accuracy and response time data in
a dual task environment. In the current work, we extend the
model to include articulatory rehearsal, which has been argued
in the literature to be a separate mechanism from attentional
refreshing. Additionally, we use the model to predict perfor-
mance under a larger range of cognitive load than typically
administered to human subjects. Our simulations support the
hypothesis that working memory capacity is a linear function
of cognitive load and suggest that this effect is less pronounced
when articulatory rehearsal is available.
Keywords: working memory; time-based resource-sharing;
ACT-R; attentional refreshing; articulatory rehearsal; compu-
tational modeling

Introduction
Working memory (WM) is vital for elemental cognitive pro-
cessing. It provides the cognitive system with the means for
manipulating and retaining information, such as the interme-
diate solution to an algebra problem, for short periods of time.
WM is often thought of as a storage system with a structurally
limited capacity (Case, Kurland, & Goldberg, 1982), similar
to a physical container. However, evidence is growing for
the interpretation of WM as a mechanism whose active main-
tenance yields a functional capacity (Barrouillet & Camos,
2015). That is to say that the actions of the WM mechanism
cause more items to remain accessible than it can strictly store
at a single time (e.g., in a buffer).

The time-based resource-sharing (TBRS) model
(Barrouillet, Bernardin, & Camos, 2004; Barrouillet &
Camos, 2015) advocates this view, proposing that WM is a
rapidly switching, serial mechanism that focuses executive
attention on a single memory trace at a time to rebuild its
activation (i.e., accessibility). This process, called attentional
refreshing, counteracts the continuous temporal decay
experienced by items in memory. While all memory items
decay, only one item can be refreshed at a time because of a
central bottleneck. To maintain access to a set of items, the
items must share their time (i.e. take turns) in the focus of
attention.

A popular paradigm for studying WM is a dual task where
the subject must memorize a list of items while responding to
some distractor task. The distractor task is intended to pre-
vent the use of higher-level strategies (i.e. mnemonics) so
that the number of items recalled, span, reflects a more pure

WM capacity. Barrouillet et al. (2004) recognized that this
approach may reduce the subject’s ability to engage in target
maintenance, but it cannot completely eliminate it. Instead,
they sought to carefully control and quantify the interference
from the distractor activity as cognitive load (CL).

In support of TBRS, Barrouillet, Camos, and colleagues
(e.g., Barrouillet et al., 2004; Barrouillet, Bernardin, Por-
trat, Vergauwe, & Camos, 2007) have repeatedly demon-
strated that the essence of CL is time away from maintenance,
rather than the number of distractors or their inherent diffi-
culty. By using distractor task response times as a proxy for
distractor processing time, they demonstrated that observed
WM span is an approximately linear function of CL. Specif-
ically, if CL is measured as the fraction of the total time on
task dedicated to the distractor task, then span = k(1−CL).
In this formulation, k is a free parameter reflecting an in-
dividual’s “pure” WM capacity. A meta-analysis of 14 ex-
perimental conditions indicated excellent fit for this function
(R2 = .98) and close agreement with Miller’s Magical Num-
ber 7± 2: span = −8.33CL+ 8.13 (Barrouillet, Portrat, &
Camos, 2011).

One of the goals of this paper is to explore whether the lin-
ear relationship between CL and span holds for more extreme
values. The mean CLs of the experimental conditions from
which the preceding regression comes range from approxi-
mately .25 to .65. By using measurements from the middle of
the CL continuum, it is possible that we have only observed
the locally linear, middle section of a function that is actually
non-linear (e.g., ogival). In other words, testing WM span at
the extremes of CL would provide a stronger test of the linear
function hypothesis. We explore this possibility by using our
model to simulate the full range of CL.

Oberauer and Lewandowsky (2011) took a similar ap-
proach with their connectionist model, TBRS*, and simulated
a much more complete range of the CL continuum. While
their model did find support for a linear effect of CL on WM
span, it makes a simplifying assumption that may limit its cor-
respondence with TBRS; TBRS* abstracts away the distrac-
tor processing portion of the task. To simulate each episode of
cognitive load, it samples a response time from a distribution
determined post-hoc from empirical observations. The criti-
cal insight of TBRS is that observed WM capacity is a prod-
uct of the interaction of maintenance and processing; there-
fore, a computational model of TBRS must be integrated to
explain both the memory and processing tasks. As we will
see, nuances in distractor processing can have remarkable ef-
fects on WM span.

The second goal of our paper is to integrate articulatory re-

ICCM2018

19

hearsal into the computational TBRS model. While the orig-
inal TBRS model regarded attentional refreshing as the pri-
mary mechanism behind memory maintenance, more recent
work has highlighted the importance of other mechanisms
(Camos & Barrouillet, 2014; Barrouillet & Camos, 2015).
In particular, the effect of articulatory rehearsal (cf. Baddeley
and Hitch (1974)’s phonological loop) on WM span depends
on the verbal/non-verbal nature of the stimuli used. To our
knowledge, no formal description of how attentional refresh-
ing and articulatory rehearsal work together to maintain in-
formation in WM currently exists in the TBRS literature.

We built our model within the cognitive architecture, ACT-
R (Anderson, 2007). The comprehensive nature of the archi-
tecture allows for modeling an entire task from start to finish.
Such a capability is imperative for our goal of a fully inte-
grated model. The architecture is composed of various mod-
ules that specialize in different areas of processing, from more
central functions like goal planning to more peripheral, per-
ception and action functionality. The modules communicate
with each other through limited capacity buffers that are each
able to hold a single piece of information called a chunk. A
production system, operating on if-then rules, coordinates the
behavior of the modules. Only a single production may fire
(i.e. be selected and executed) at a time. This limit, combined
with the modules’ buffers, comprises the bottleneck assumed
by TBRS.

One module of ACT-R in particular, the declarative mod-
ule, is especially useful for our purposes. It operates on re-
trieval requests where the production system sends the mod-
ule a set of features as a cue. The module compares the re-
quest to the chunks in declarative memory and returns the
chunk with the highest activation if it is above a threshold.
One component of the equation used to calculate chunk acti-
vation, base-level learning (discussed later), implements the
time-based decay and attentional refreshing assumptions of
TBRS. In brief, the more time that has passed since a chunk
was last retrieved, the less its activation will be, and the more
times a chunk has been retrieved, the greater its activation
will be.

A Benchmark Task
We chose an existing experiment from the literature, the third
experiment from Barrouillet et al. (2007), as a benchmark for
the model to meet. Using pre-existing data allows us to de-
velop the model around less contentious criteria than data
collected expressly for the purpose of fitting the model. It
also affords us with the opportunity to determine the model’s
novel predictions before conducting new experiments.

Subjects completed a variant of the common complex span
task where they were given a consonant letter to memorize
followed by a series of digits (distractors), presented one
at a time. Afterwards, they were to speak the list of to-be-
remembered letters (targets). Subjects completed three trials
for each list length, starting with one letter, and progressed
to longer lists so long as they successfully recalled at least

one of the three trials correctly. Every target was presented
for 1500 ms, followed by a 500 ms delay, and then 6400 ms
of distractors. CL was manipulated by changing the number
of distractors (4, 6, and 8) presented during this fixed inter-
val, effectively changing the pacing of the task. While the
same stimuli were used in all conditions, CL was further ma-
nipulated by how subjects were instructed to respond to the
distractors. In the parity condition, subjects were asked to re-
spond whether the distractor was odd or even. In the spatial
condition, subjects were asked to respond whether the distrac-
tor appeared in the top or bottom half of the display. Before
the experiment began, subjects underwent training where they
completed 96 distractor judgments (with feedback) and three
trials each of one- and two-item lists in the manner and at
the pace of their assigned experimental condition. WM span
scores were calculated by dividing the number of correctly re-
called trials for all lists by three (all-or-nothing unit scoring;
Conway et al., 2005). Each of the six conditions exerts a dif-
ferent demand on the subject, so we should expect to observe
different mean WM spans. The prediction of TBRS is that
while the raw spans may differ, they should be the same once
each condition is equated in terms of CL, and indeed this was
what Barrouillet et al. (2007) found.

The Model
The general behavior of the model1 can be organized into es-
sentially three levels of priority. The highest priority produc-
tions support perception. Whenever a stimulus appears on the
(virtual) display, the model moves its visual attention to en-
code it. Likewise, if something is available in the audicon,
the model shifts its attention to it. Once the model attends to
a stimulus, it then encodes the stimulus by retrieving its as-
sociated semantic information (i.e. chunk) from declarative
memory. The type of the chunk retrieved dictates which of
the intermediate-priority routines are followed next.

If an asterisk is presented, signifying the beginning of a
new list, the model creates a new list-context in its goal buffer
and sets a new goal to encode the next letter presented with an
additional feature marking it as the head of the list. If a letter
is presented, the imaginal module creates a new episodic rep-
resentation of the target that includes references to the current
temporal-context and list-context. If the word “recall” is pre-
sented, the model begins recalling and verbally reciting the
target list. We further describe the details of this process later
once maintenance has been addressed.

Distractor processing resembles a binary decision tree. At
each step, the model decides between responding and retriev-
ing more information. For example, when making parity
judgments, the model may first blindly guess or wait until
it has fully encoded the digit. Next, it may respond based on
the number alone or retrieve the parity of the number. Then
it may respond based on the number’s parity or retrieve the
response rule that connects the semantic concepts with their

1For a more thorough motivation and explanation of each of the
model’s assumptions and components, see (Glavan, 2017).

ICCM2018

20

associated keyboard response. Once a response rule has been
retrieved, the model faithfully uses it to make a key press.
Thus, the model only makes errors by responding with in-
sufficient information. More sophisticated decision making
mechanisms could be included in the future, but this simple
strategy is sufficient for our purposes here. The model uses
the same strategy in the spatial condition but requires fewer
retrievals; in fact it only requires retrieving the associated re-
sponse rule.

The model learns the appropriate response mappings
through utility learning during training. If the model responds
incorrectly, it may learn to retrieve more information and re-
spond later; if the model does not respond in time, it will
be penalized and be more likely to respond earlier because
a guess has a better chance of being correct than a lapse,
which is always incorrect. In this way, the model should ex-
hibit a speed-accuracy trade-off (observed in Barrouillet et
al., 2007). In order to bias the model toward initially using
its knowledge of the task instructions over learning by purely
random guessing, we give the information-seeking produc-
tions greater starting utility than the early-response produc-
tions. Additionally, the model may continue to learn after
training through production compilation, which may elimi-
nate retrievals altogether by combining compatible produc-
tions. For example, the model may learn to associate a num-
ber’s parity with its appropriate response directly, bypassing
the need to retrieve a response rule (and reducing CL).

The model engages in maintenance, either attentional re-
freshing or articulatory rehearsal, whenever it is not busy. At-
tentional refreshing is implemented as simple retrieval from
declarative memory. It uses two productions that leverage the
remotely linked structure of the list. The first production initi-
ates maintenance by requesting any target chunk. The second
production uses the just retrieved item as the cue for a subse-
quent retrieval and loops until interrupted by a higher priority
routine. In a similar fashion, recall begins by first requesting
the head of the list, and then a second production vocalizes
the just retrieved target while using it as a cue to retrieve the
next item.

The maintenance and recall productions are able to suc-
cessfully iterate the list by using the just retrieved item as
a cue for the next item because of two terms that influence
the activation of a chunk. First, partial matching penalizes
chunks based on episodic/temporal dissimilarity – chunks
that were encoded at more disparate times receive a greater
penalty. We quantify the penalty using the logarithm of the
temporal difference: −η · ln

(
1+

∣∣εi − εrequested
∣∣). Without

compensation, this makes the just retrieved chunk the most
likely to be retrieved next (preventing iteration through the
list) and means that the consecutive target is as likely to be
retrieved next as the previous target. Hence, we include tem-
poral inhibition (Lebiere & Best, 2009) to penalize chunks
based on how recently they were retrieved. Note, this does
not force unidirectional refreshing. If an item were skipped
the transposition error may be followed by a fill-in error be-

cause the skipped item has not been inhibited.
The component of the activation equation that implements

TBRS’s assumptions regarding attentional refreshing is the
base-level learning mechanism. It treats every time a chunk
is cleared to declarative memory (e.g., following retrieval)
as a separate memory trace that decays as a power law. A
chunk’s base-level activation is the log-sum of its decaying
traces: ln

(
∑

n
j=1 t−δ

i j

)
. Thus, the longer it has been since a

chunk was retrieved, the less likely it is to be retrieved again
(recency effect), and the more often it has been retrieved, the
more likely it is to be retrieved again (frequency effect).

We do not assume an explicit maintenance strategy (i.e.
some fixed pattern like always starting from the beginning of
the list). Instead, the temporal dynamics of decay, refreshing,
and inhibition determine which item will resume maintenance
after interruption.

We propose that articulatory rehearsal supports mainte-
nance by establishing a more stable signal for cueing retrieval
than the temporal dynamics of attentional refreshing allow.
The audicon (cf. phonological loop, Baddeley & Hitch, 1974;
echoic memory, Cowan, 1984) is managed by the aural mod-
ule and is able to hold sensory information that the model
heard in the last 3 seconds in the crude order it was heard. We
suggest that the cognitive system can leverage the alternative
temporal and structural constraints of this sensory memory
register without a complex, CL-inducing strategy by leaving
the articulated target information in its raw sensory form (i.e.
without converting it to an episodic representation) and using
the oldest sensory chunk available to directly cue retrieval,
bypassing the episodic similarity penalty.

Maintenance, with articulatory rehearsal engaged, begins
in the same way as previously described for attentional re-
freshing: a simple retrieval for any target chunk is requested.
After one target has been retrieved, the next step depends on
whether there is a chunk available in the aural buffer. If not,
then another retrieval using the just retrieved item is requested
(i.e. attentional refreshing), and if the vocal module is free,
the just retrieved item is also subvocalized, loading the artic-
ulatory loop. If there is a chunk available in the aural buffer,
and the vocal module is free, then the aural chunk is subvocal-
ized and a retrieval of its corresponding target is requested. If
the declarative module is busy (e.g., with the distractor task)
but there is a chunk in the aural buffer and the vocal module is
free, then the aural chunk is subvocalized without involving
the retrieval mechanism, perpetuating the articulatory loop.

Simulation Study
The model has six free parameters: reward, inhibition decay,
episodic selectivity, base-level constant, and two retrieval la-
tency scaling parameters. All other parameters were fixed
at architectural defaults. We fixed the starting utility of the
information-seeking productions (see distractor processing
above) to the reward parameter to avoid adding an additional
free parameter.

As noted earlier, the bulk of the support for WM span as a

ICCM2018

21

Parity Spatial

Accuracy

0
.0

0
.4

0
.8

P
ro

p
o

rt
io

n
 C

o
rr

e
c
t

1 3 6 9 112 4 8 10 12

Mean Response Time

0
2

0
0

6
0

0

M
e

a
n

 R
T

 (
m

s
)

1 3 6 9 112 4 8 10 12

Total Processing Time
Per Inter−letter Interval

0
2

0
0

0
4

0
0

0

M
e

a
n

 T
P

T
 (

m
s
)

1 3 6 9 112 4 8 10 12

Working Memory Span

0
2

4
6

8
1

0

M
e

a
n

 S
p

a
n

1 3 6 9 112 4 8 10 12

0
.0

0
.4

0
.8

P
ro

p
o

rt
io

n
 C

o
rr

e
c
t

Number of Distractors

1 3 6 9 112 4 8 10 12

0
2

0
0

6
0

0

M
e

a
n

 R
T

 (
m

s
)

Number of Distractors

1 3 6 9 112 4 8 10 12

0
2

0
0

0
5

0
0

0

M
e

a
n

 T
P

T
 (

m
s
)

Number of Distractors

1 3 6 9 112 4 8 10 12

0
2

4
6

8
1

0

M
e

a
n

 S
p

a
n

Number of Distractors

1 3 6 9 112 4 8 10 12

Figure 1: The three leftmost panels show accuracy, mean response time, and mean total processing time per inter-letter interval
for the parity (darker bars) and spatial judgments (lighter bars). The far right panels show mean WM span. The top row
comes from the attentional refreshing-only version of the model, and the bottom row comes from the version with articulatory
rehearsal. Standard errors of the means from Barrouillet et al. (2007) are overlaid in red; note that Barrouillet et al. did not
report accuracy variance or means by number of distractors so we plot only the mean difference by task.

linear function of CL comes from studies where spans were
probed in the middle of the CL scale. To further test this hy-
pothesis, we simulated the benchmark task (Barrouillet et al.,
2007) in two different ways. In the first method, we forced
specific amounts of CL on the model by preventing any re-
freshing or rehearsal productions from firing during the first
portion of the inter-letter interval. We st allowed the version
of the model with articulatory rehearsal to continue repeating
items within the vocal-aural loop during this period as if the
central bottleneck was obstructed by a non-verbal task. This
provides a potentially undue advantage because the phono-
logical code used to access items during rehearsal can remain
intact in the articulatory loop.

In the second method, the model completed the parity and
spatial judgment tasks to induce CL. Recall that Barrouillet et
al. (2007) kept the inter-letter interval constant while using 4,
6, or 8 distractors to create three levels of CL; we add levels
with 1, 2, 3, 9, 10, 11, and 12 distractors. In this version of
the simulation, we estimate CL as the sum of distractor re-
sponse times per inter-letter interval (Barrouillet et al., 2007).
We expect there to be small differences between the two ap-
proaches because the predictor variables are not exactly the
same, but the overall trend should persist. Lastly, because we
are using lower levels of CL, some conditions should produce
WM spans greater than those observed in the original study;
therefore, we allowed the model to encounter target lists as
long as 10 items, whereas the original study stopped at 7.

We used MindModeling@Home (Harris, Gluck, Mielke,

& Moore, 2009) to speed up our extensive simulation of the
large parameter space. We began fitting the model’s free
parameters by first enumerating a coarse grid of the six-
dimensional parameter space with 10 repetitions of each con-
dition. We used a weighted linear composite score from
Glavan (2017) that uses multiple dependent variables (accu-
racy, mean response time, mean total processing time, mean
span, and the slope of the regression of span on CL) to quan-
tify the model’s misfit to the human data (Barrouillet et al.,
2007). In this step, we only considered the six experimen-
tal conditions common to the model and the human study.
Based on these results, we fixed the reward, latency expo-
nent, and latency factor parameters at 7.0, 0.3, and 0.7, re-
spectively, because they reasonably approximated most of the
accuracy and response time trends in the human data2. We
then conducted a more focused, fine-grained enumeration of
the three-dimensional parameter space using 20 repetitions.
For this search, we used the RMSE of the predicted CL and
span to the regression line from Barrouillet et al. (2011) as
our measure of fit because in this paper we are more con-
cerned with the model’s ability to fit the proposed function of
CL and because the remaining free parameters did not seem
to affect accuracy or response time. It turned out that the re-
sults from the attentional refreshing and articulatory rehearsal
versions of the model agreed on the best-fitting parameteriza-
tion of inhibition decay (5.7), episodic selectivity (6.0), and

2For a more detailed exploration of the relationships among pa-
rameters, see Glavan (2017).

ICCM2018

22

base-level constant (15), so we used this final parameteriza-
tion to simulate 1000 runs of the model in the two CL and
the two maintenance versions of the model. The accuracy,
mean response time, mean total processing time per inter-
letter interval (a proxy for CL because the inter-letter interval
was constant), and mean WM span predicted by the atten-
tional refreshing-only and articulatory rehearsal versions of
the model are shown in Figure 1. Figure 2 shows the WM
span as a function of CL.

0
2

4
6

8

0.0 0.4 0.8

0
2

4
6

8

0.0 0.4 0.8

Parity
Spatial
1
2
3
4
6
8
9
10
11
12

Cognitive Load

M
e

a
n

 S
p

a
n

Figure 2: Mean WM span as a function of cognitive load.
The attentional refreshing-only version of the model is pre-
sented on the left, and the version with articulatory rehearsal
is presented on the right. The top two panels come from forc-
ing specific levels of CL on the model, whereas CL in the
bottom panels is estimated from performance on the parity
(diamonds) and spatial (squares) judgment tasks. In the bot-
tom panels, the color of the plotting symbols indicates the
number of distractors processed between the presentation of
each target. Results from Barrouillet et al. (2007) are plotted
in black. Regression lines (solid for the human data, dashed
for the model) are also included.

Discussion
As expected, the distractor results were similar regardless of
whether articulatory rehearsal was included (Figure 1). Re-
sponse times were approximately 100 ms longer for the ar-
ticulatory rehearsal version because the model is repeating
targets to itself while the declarative module is busy process-
ing distractors. Thus, simply making articulatory rehearsal
available as a cognitive strategy may increase CL.

The primary difference between these two models is in
WM span. When CL is fixed (Figure 2, top panel), span is
approximately linear for both models. The articulatory re-
hearsal version predicts a smaller effect of CL and resulted in

more variation around the line. This shallower function may
reflect the slower but more stable nature of the articulatory re-
hearsal signal for attentional refreshing. The maximum span
at lower CL may be lower than the attentional refreshing ver-
sion because the refreshing loop can cycle faster than the ar-
ticulatory loop, but the span at higher CL may be higher than
the attentional refreshing version because the direct retrieval
of targets via the articulatory cue, which does not decay with
increasing (non-verbal) CL is more able to refresh items than
when the episodic similarity penalty is involved.

When CL was not fixed, and the distractor task perfor-
mance was simulated (Figure 2, bottom panel) span results
largely agreed with the forced-CL version. An interesting
prediction of the model is that mean span may not always
continue to decrease with increased processing pace as sug-
gested by previous descriptions of TBRS. Consider the con-
ditions of Figure 1 with the most distractors per inter-letter
interval. Rather than predicting continuously increasing total
processing time, the integrated model predicts that when the
presentation rate of distractors is too high, the agent switches
strategies in order to maximize performance (e.g., guessing,
because fast guesses are better than guaranteed lapses). Criti-
cally, the model predicts that WM span can actually increase
with regard to distractor pace in these conditions because
the strategy change reduces the CL (Figure 2, lower right).
While the majority of TBRS-related studies have assumed a
homogenous processing strategy across conditions, our inte-
grated model demonstrates that the relationship between pro-
cessing and storage proposed by TBRS holds even when this
assumption is violated.

Our results give support to the hypothesis that WM span
is a linear function of CL with the following caveats. Fig-
ure 2 only reflects the model’s ability to fit the regressions
of Barrouillet et al. (2007, 2011). We cannot guarantee that
other parameterizations of the model could not fit alternative
span functions (e.g., S-shaped, etc.). A full analysis of the
model’s flexibility is needed (Roberts & Pashler, 2000). Sec-
ond, one could reasonably argue that WM span in Figure 2
(top left) begins to asymptote. From the current efforts, it is
difficult to determine if this is noise. If WM span does level
off at maximum CL, we hypothesize that this minimum will
depend on the overall task time. Under full CL, no main-
tenance takes place, so recall should be a function of only
time-based decay.

A significant difference between the forced-CL and task-
driven versions of the model is the temporal distribution of
CL between to-be-remembered stimuli. In the forced-CL ver-
sion, all of the CL occurs during the first portion of the inter-
letter interval, whereas in the task-driven version, CL is dis-
persed across the entire interval. TBRS does not distinguish
between these conditions because it treats CL as the overall
proportion of processing time over total task time. In process
models, such as ours, it becomes clear that the distribution of
CL may interact with the observed WM span. For example,
when CL is forced toward the first half of task time, span mea-

ICCM2018

23

sures likely reflect the amount of information that could still
be reinforced following the period of CL. When CL is forced
toward the second half of task time, span likely reflects the
surviving activation of items following their consolidation.
De Schrijver and Barrouillet (2016) showed that free time (for
maintenance) coalesced into a single interval has an advan-
tage in terms of mean span over time that is distributed over
distractors, which may help to explain the overall lower spans
observed in the task-driven version compared to the forced-
CL version. Our larger point, that CL is also a function of
time, as opposed to a summary proportion like that proposed
by Barrouillet et al. (2004), demands further exploration of
the effect of the distribution of CL on WM span.

We tried to further explore the increased variability of the
model compared to the human data, and while the model ap-
pears sensitive to the stimulus and subject variance, we have
not been able to reproduce span functions with as little vari-
ance as the human data. One explanation may be the all-or-
nothing scoring of span; Conway et al. (2005) has suggested
that partial-unit scoring is less sensitive to individual variabil-
ity. Indeed, the more recent literature seems to have begun to
use the percentage of items correctly recalled over this mea-
sure of WM span (e.g., Camos & Barrouillet, 2014).

We hope to expand the model in the future to use ACT-
R’s spreading activation mechanism (i.e. association) and
more sophisticated representations of context instead of par-
tial matching. This may enable the model to produce in-
trusion errors and clustering effects (Farrell, 2012; see also
Glavan, 2017).

In conlcusion, we provided a process-level, computational
model that supports TBRS’s prediction that WM span is a lin-
ear function of CL. We also propose a novel interpretation of
articulatory rehearsal as a stable signal to guide attentional re-
freshing. We hope that this model will inspire future process-
level consideration of WM. Real world cognition takes place
on a dynamic, continuous timescale. We know that WM, its
constraints, and concurrent cognitive load are each related to
various forms of higher-level cognition (e.g., decision mak-
ing, reasoning, and problem solving; Conway et al., 2005;
Payne, Bettman, & Johnson, 1988). Our work lays the foun-
dation for coordinating each of these disciplines within a sin-
gle, integrated computational process model.

References

Anderson, J. R. (2007). How can the human mind occur in
the physical universe? Oxford University Press.

Baddeley, A. D., & Hitch, G. J. (1974). Working memory.
Psychology of Learning and Motivation, 8, 47–89.

Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time
constraints and resource sharing in adults’ working mem-
ory spans. Journal of Experimental Psychology: General,
133(1), 83.

Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E., &
Camos, V. (2007). Time and cognitive load in working

memory. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 33(3), 570.

Barrouillet, P., & Camos, V. (2015). Working memory: Loss
and reconstruction. Psychology Press.

Barrouillet, P., Portrat, S., & Camos, V. (2011). On the law
relating processing to storage in working memory. Psycho-
logical Review, 118(2), 175.

Camos, V., & Barrouillet, P. (2014). Attentional and non-
attentional systems in the maintenance of verbal informa-
tion in working memory: The executive and phonological
loops. Frontiers in Human Neuroscience, 8, 900.

Case, R., Kurland, D. M., & Goldberg, J. (1982). Operational
efficiency and the growth of short-term memory span. Jour-
nal of Experimental Child Psychology, 33(3), 386–404.

Conway, A. R., Kane, M. J., Bunting, M. F., Hambrick, D. Z.,
Wilhelm, O., & Engle, R. W. (2005). Working memory
span tasks: A methodological review and users guide. Psy-
chonomic Bulletin & Review, 12(5), 769–786.

Cowan, N. (1984). On short and long auditory stores. Psy-
chological bulletin, 96(2), 341.

De Schrijver, S., & Barrouillet, P. (2016). Consolidation and
refreshing in working memory. (Poster presented at the 57th

Annual Meeting of the Psychonomics Society)
Farrell, S. (2012). Temporal clustering and sequencing in

short-term memory and episodic memory. Psychological
Review, 119(2), 223.

Glavan, J. J. (2017). Exploring the time-based resource-
sharing model of working memory through computational
modeling (Unpublished master’s thesis). Wright State Uni-
versity. (http://rave.ohiolink.edu/etdc/view?acc
num=wright149609967802364)

Harris, J., Gluck, K. A., Mielke, T., & Moore, L. R. (2009).
Mindmodeling home... and anywhere else you have idle
processors. In A. Howes, D. Peebles, & R. Cooper (Eds.),
Proceedings of the ninth international conference on cog-
nitive modeling. Manchester, United Kingdom: University
of Manchester.

Lebiere, C., & Best, B. J. (2009). Balancing long-term rein-
forcement and short-term inhibition. In Proceedings of the
31st annual conference of the cognitive science society (pp.
2378–2383).

Oberauer, K., & Lewandowsky, S. (2011). Modeling work-
ing memory: A computational implementation of the time-
based resource-sharing theory. Psychonomic Bulletin &
Review, 18(1), 10–45.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1988). Adap-
tive strategy selection in decision making. Journal of Ex-
perimental Psychology: Learning, Memory, and Cogni-
tion, 14(3), 534.

Roberts, S., & Pashler, H. (2000). How persuasive is a good
fit? a comment on theory testing. Psychological Review,
107(2), 358.

ICCM2018

24

Balancing Confidence and Information Costs in a Diagnostic Reasoning Task
Tim Halverson (thalverson@gmail.com)

Oregon Research in Cognitive Applications, LLC.
Springfield, OR 97477 USA

Christopher Stevens (christopher.stevens.28@us.af.mil) Chris Fisher (christopher.fisher.27.ctr@us.af.mil)
Cognitive Science, Models & Agents, Air Force Research Laboratory

Wright-Patterson AFB, OH 45433 USA

Ashley Haubert (Ashley.Chafin@udri.udayton.edu)
University of Dayton Research Institute

Dayton, OH 45469 USA

Christopher Myers (christopher.myers.29@us.af.mil)
Cognitive Science, Models & Agents, Air Force Research Laboratory

Wright-Patterson AFB, OH 45433 USA

Abstract

Decision making requires balancing response accuracy and in-
formation acquisition costs. Computational cognitive models
can be used to assess these trade-offs. Observed data and mod-
els of a multi-cue decision task are presented where informa-
tion acquisition cost and environmental validity were varied.
Willingness to respond, an aspect of confidence measured here
with the number of cues viewed before responding, decreased
when there was no cost and increased faster over time when
the environment was consistent. Three variations of a model,
based on Instance-based Learning Theory, are presented. The
final model explains the majority of observed trends in re-
sponse time, cues viewed, response accuracy, and reward. De-
creased willingness to respond was explained with an increase
in response threshold, and information acquisition cost as a de-
crease. Contrary to expectations, the consistent / no-cost con-
dition required the highest threshold to fit the observed data.
The implications and future directions are discussed.

Keywords: decision making; multiple cues; cue cost; cue con-
sistency; confidence; ACT-R; Instance-Based Learning Theory

Introduction
A fundamental dilemma in decision making is balancing the
trade-off between accuracy and cost. Searching for informa-
tion can improve the likelihood of selecting the best alterna-
tive, but doing so can be costly in terms of time, resources,
and opportunity (Chittka et al., 2009). If sufficiently confi-
dent, one should commit to a decision. If not, one should seek
more information. Thus, it is important for a decision maker
to be able to assess their confidence in a decision based on
the current evidence. But how confident is confident enough?
It is not currently well understood how people evaluate their
confidence in a decision and how they use this confidence to
guide their decision making, especially in complex environ-
ments where information search is possible.

Confidence is a broad term with many associated meanings
in past literature. Our interest here is in confidence in a more
limited sense: the strength of a person’s belief in the value of
a decision alternative. Thus, as confidence increases, a person
should be less likely to check additional cues because they

already believe they have found the best alternative. Two im-
portant factors that should moderate this relationship are en-
vironmental consistency and information search costs. More
consistent environments should result in greater confidence
because cues are more predictive of outcomes and therefore
fewer of them are needed to make judgments with the same
degree of accuracy. Information search costs should make
a person more reluctant to seek additional information and
therefore require lower confidence to commit to a decision.
This relationship is analogous to threshold adjustment in drift
diffusion models (Ratcliff et al., 2016).

In this paper, we present three models that explore the dy-
namics of decision confidence in a multi-cue diagnosis task
that requires participants to decide which information to seek
about a patient’s condition. Each model is capable of self-
terminating information search, determining the preference
of cues, and choosing a response from two options. The
models differed in terms of the how the decision threshold
is determined; the threshold governs the amount of informa-
tion gathered before committing to a decision. In the follow-
ing sections, related literature is reviewed, the task environ-
ment is described, and results from an empirical study are
described. Finally, the three models are described in detail
and their abilities to explain the empirical data is discussed.

Related Literature
In this section, we briefly review literature relevant to the
research questions highlighted above. First, we review a
utility-based learning approach used in computational cogni-
tive models called Instance-Based Learning Theory. Next, lit-
erature associated with modeling confidence within decision-
making is reviewed.

Instance-Based Learning Theory
Gonzalez et al. (2003) proposed Instance-based Learning
Theory (IBLT) to explain how decisions are reached in dy-
namic environments. In IBLT, decisions are based on an

ICCM2018

25

accumulation of instances of interactions with an environ-
ment. These instances consist of the situation (relevant task
features), the decision given the situation, and the reward re-
ceived given the response. Decisions are made by determin-
ing which response has the greatest utility, which is based on
the combined (i.e., blended) reward values from all instances
that match the current decision context (Lebiere, 1999). This
use of ”utility” is different than production utility in ACT-R’s
production system. IBLT also proposes a decision process
that includes (1) recognizing instances in the environment,
(2) judging instances as either typical, which uses greatest
utility mentioned above, or atypical, which uses heuristics to
determine the utility, (3) deciding to search for more infor-
mation or make a decision, and (4) gather feedback about the
decision, whether that is provided or inferred.

IBLT has been applied to a variety of tasks, most notably
repeated binary-choice tasks (Lejarraga et al., 2010). Mod-
els using IBLT do well at predicting a wide variety of effects
of environmental consistency and payoff. In such tasks, the
model makes a binary decision based on repeated experience
from a single cue. To our knowledge, IBLT has not been ap-
plied to tasks in which multiple cues can be selected for each
individual decision. Nor are we aware of any IBLT model
that determines its own experience-based threshold for self-
terminating information search. Models equipped with these
capacities are reported here, in which the environmental con-
sistency and the cost of revealing cues were demonstrated to
affect participants’ willingness to respond, measured by the
number of cues viewed by participants before responding.

Confidence
IBLT operates on the simple and rational principle that one
should always choose the response alternative with the best
expected utility. However, there is uncertainty in many real-
world environments, such that it is not obvious whether an
agent has enough information to make an accurate compar-
ison between alternatives. Here we apply IBLT to better
understand how people make these information-search deci-
sions.

Previous research suggests that people approach multi-cue
decision-making by bringing to bear a set of ecologically
valid heuristics designed to reduce the cognitive demand of
a decision (Gigerenzer simple heuristics). According to one
such heuristic, called Take-the-best, one should base one’s
decision on the cue with the highest validity (the conditional
probability of an alternative given the value of the cue). If that
cue doesn’t point to one of the alternatives, then consider the
next most valid cue, etc. According to this approach, a per-
son’s confidence in a decision is a function of the validity of
the last cue checked. As more cues are checked, the validity
of the last checked cue decreases, resulting in lower confi-
dence (Gigerenzer, 1991). However, it is not clear how such
heuristics might be learned or modified in new environments

Past work has shown that subjective confidence can be
modeled as a drift diffusion process. Diffusion models rep-
resent evidence accumulation as a random-walk between one

or more decision boundaries (Ratcliff et al., 2016). Each de-
cision boundary represents one decision alternative. When
the model reaches a boundary, it chooses the corresponding
alternative. Pleskac & Busemeyer (2010) showed that allow-
ing the accumulation process to continue after making a deci-
sion and re-sampling from it later produces a good account of
subjective confidence, accuracy, and speed in two-alternative
forced choice tasks. Diffusion models have been successful
in modeling decision-making in a variety of domains (Rat-
cliff et al., 2016), but it is not clear how to scale such models
up to complex environments requiring sequential information
search and decisions.

Three-cue, Binary-response Decision Task
We used a multi-cue diagnostic choice task with a medical
cover story (Myers et al., 2015). Participants assumed the role
of emergency room doctors whose task is to assign patients to
an intensive care unit (ICU) for the treatment of heart attacks
or to a nurse’s bed for observation. In order to make this
determination, participants could check for the presence of
three symptoms (cues): chest pains, irregular heart rhythms,
and other symptoms. Each of the three cues had an asso-
ciated probability of returning a True value in a given trial.
The cue probabilities for a positive symptom were as follows:
cue1 (Chest Pains) = 0.25, cue2 (Irregular Heart Rhythms) =
0.40, and cue3 (Other Symptoms) = 0.75. These cues were
related to the patient’s true state according to the following
probabilistic rule: if cue2 (Irregular Heart Rhythms) and cue3
(Other Symptoms) are True, then the patient is having a heart
attack; the patient is not having a heart attack otherwise.

This rule was valid on 80% or 90% of the trials, depending
on the between-subjects experimental condition. At the start
of each trial, none of the cues were visible to the participant.
The participant could choose to check any combination of
the three cues in order to decide where to send the patient.
Cues could cost the decision-maker in points or be free of
cost (only taking time to click, view, and encode), depending
on the between-subjects experimental condition.

Feedback was provided after every trial in the form of
points. Correct responses received 100 points and incorrect
responses lost 100 points. If there was a cost to check cues,
then any points spent to do so was deducted from this amount.
Points received (or lost) during a trial were added to a running
total that was visible to the participant throughout the exper-
iment. The more points participants received, the better their
compensation at the end of the experiment.

Method
Eighty students, 45 female and 35 male, ranging in age from
18 to 45 years old (mean = 22.95) from the University of
Dayton participated in the experiment. Participants were paid
$10 plus a bonus award of up to $10 depending on the partic-
ipant’s final score.

To determine the effects of information costs and environ-
ment consistency, a 2 (environment consistency: 90%, 80%)
x 2 (cue cost: 0, 30) between-subjects factorial design was

ICCM2018

26

used. Participants were randomly assigned to each of the
four conditions. Each participant completed the same set
of trials, the order of which was randomly sequenced across
participants. Participants completed 267 trials. This num-
ber ensured that enough instances of the correct symptom-
to-response mapping was experienced across the trials. Data
from trials were averaged into blocks, where each block con-
tained 30 trials except for the last (9th) block, which con-
tained 27 trials.

Observed Data
Analyses of Variance were conducted on four key depen-
dent variables: response accuracy, reward received, response
time, and number of cues viewed. Each analysis used a lin-
ear mixed-effects model; information acquisition (cue) cost
and environment consistency were between-subject fixed ef-
fects, block was a within-subject fixed effect, and participant
ID was a repeated-measure grouping factor. We begin with
results for response accuracy.

Response Accuracy. There was a significant main effect of
cue cost, F(1,683) = 9.57, p < 0.01, and a significant main
effect of environmental consistency, F(1,683) = 444.53, p <
0.01. Response accuracy was significantly higher in high
environmental-consistency (MHigh = 80.7%; MLow = 63.4%)
and in the no cue-cost groups (M0−Cost = 73.5%; MHighCost =
70.7%; see Figure 1, top-left).

Reward Received. There was a significant two-way in-
teraction between cue cost and block, F(1,683) = 17.875,
p < 0.01, where average reward over blocks increased at a
faster rate in the high environmental-consistency condition
than in the low environmental-consistency condition. There
was a significant main effect of cue cost, F(1,683) = 425.76,
p < 0.01, and a significant main effect of environmental con-
sistency, F(1,683) = 281.04, p < 0.01. Reward received
was significantly greater in high environmental-consistency
(MHigh = 42.83; MLow = 12.50) and in the no-cost groups
(M0−Cost = 46.28; MHighCost = 8.17; see Figure 1, top-right).

Response time. There was a significant two-way in-
teraction between cue cost and environmental consistency,
F(1,683) = 42.28, p < 0.01, where response times for the
high environmental-consistency group were less than the
low environmental-consistency group (MHighConsist = 4.40s;
MLowConsist = 5.27s) in the no-cost conditions, but the same in
the high-cost conditions (MHighConsist = 3.70s; MLowConsist =
3.63s). There was also a two-way interaction between cue
cost and block, F(1,683) = 17.87, p < 0.01, where the
high environmental-consistency groups decreased response
times at a significantly faster rate across blocks than the low
environmental-consistency groups. There was a significant
main effect of cue cost, F(1,683) = 78.94, p< 0.01, a signif-
icant main effect of environmental consistency F(1,683) =
9.177, p =< 0.01, and a significant main effect of block,
F(1,683) = 17.07, p < 0.01 (see Figure 1, bottom-left).

Cues Viewed. There was a three-way interaction between
cue cost, environmental consistency, and block, F(1,683) =

Figure 1: Observed (black) and base model (gray) response
accuracy, response time, reward received, and cues viewed as
a function of block, consistency (80%, 90%) and cue cost (0,
30). Error bars show ±1 standard error.

8.881, p < 0.01. There were significant two-way interac-
tions between cue cost and block F(1,683) = 7.149, p <
0.01), and between cue cost and environmental consistency,
F(1,683) = 57.322, p < 0.01. There was a main effect
of cost, F(1,683) = 1126.289, p < 0.01) and environmen-
tal consistency, F(1,683) = 5.13, p = 0.02; see Figure 1,
bottom-right).

Model Overview
A computational cognitive model was developed using the
ACT-R 6 cognitive architecture (Anderson et al., 2004). This
model incorporates many of the ideas from IBLT (Gonzalez et
al., 2003) and built on a model of the same task with slightly
different conditions (Myers et al., 2015).

The model interacts with an environment based on the task
described above. The task environment presented the set
of 267 stimuli-sets (three potential cues and an expected re-
sponse) based on the cue consistency manipulation, shuffling
the order of those stimuli-sets. The model completed each set
of trials 50 times per condition, with the model and environ-
ment reset after each iteration.

As the model performed each trial, it built a representa-
tion (trial-instance chunks) within ACT-R’s imaginal buffer.
Each trial-instance chunk contained five slots on which de-
cisions were based. Three situation slots represented values
of selected cues. If the model checked a cue, the value was
either ”YES” (present) or ”NO” (not present). If the cue was
not checked, it was ”UNKNOWN.” One slot represented the
model’s decision for that trial of either ”0” (nurses bed) or ”1”
(ICU). The final slot contained the reward from the response.

The model followed a straightforward process (see Fig-

ICCM2018

27

ure 2, which proceeded as follows:

1. Determine response threshold: The model performed two
blended retrievals, one for each potential response. Each
retrieval determined the average utility (i.e., value) for a
response based on the reward from all trial-instances in
which that response was encoded. The highest blended
value was used as the decision threshold (see step 5). In
other words, future responses are expected to be better than
the average of all previous correct and incorrect responses.

2. Determine cue order: Cue selection order was determined
by three calls to the blending module, one for each cue.
Each blend included all trial-instances in which that cue
was encoded. The order in which cues were visited was
determined by the descending order of the blended values.

3. Select cue: The model attended, clicked, and encoded the
next cue, as determined by step 2.

4. Determine the utility of each response: A blend determined
the utility of both potential responses based on all cues en-
coded thus far.

5. Is a response’s utility above threshold? If one of the re-
sponse utility determined in step 4 was above the threshold
value determined in step 1 minus the cost associated with
the number of cues revealed, then the model responded
(i.e., go to step 6). If not, then the model selected another
cue (i.e., go to step 3).

6. Respond with the response with highest utility: The model
responded with the response of the blended trial-instance
with the highest utility selected in step 6. After the re-
sponse had been encoded, the model proceeded to the next
trial and continued with step 1. The trial-instance from this
trial was merged into declarative memory.

All blend retrievals used the arithmetic mean of feedback
values and the default blending module parameters.

While the model learned all combinations of cues and re-
sponses through interaction with the environment, the model
included a cue-counting heuristic that fired only if all three
cues had been encoded and a response was not selected based
on the utility of a decision. The model responded with
”nurses bed” if one symptom were present, with ”ICU” if
three symptoms were present, and randomly if two symptoms
were present. An analysis of the observed data supported this
bias. When participants selected (and presumably attended)
all three cues, they responded in a fairly predictable manner.
When zero or one cue was true, 90% of all responses were
”nurses bed.” When all three cues were true, 95% of the all re-
sponses were ”ICU.” When two cues were present, responses
were evenly split between the two.

All model parameters were fixed across the four exper-
imental conditions. Three declarative memory parameters
were varied to provide the best fit to the data. Base level
learning, which controls the rate of declarative memory acti-
vation decay, was set to 0.4 (default 0.5). Base level constant,

Start

2. Determine
cue order

3. Select cue
4. Determine the

utility of each
response

5. Is a
response’s utility

above
threshold?

6. Respond with
the reponse with

highest utility

Yes

No

1. Determine
response
threshold

Figure 2: A representation of the model’s main stages.

which is added to the activation of all declarative memory
chunks, was set to 1.4. Retrieval threshold, which sets the
minimum activation for declarative (or blended) retrievals,
was set to 1.2 (default 0). Spreading activation was enabled
for the imaginal buffer, which held the trial-instance chunk.

Figure 1 and Table 1 show the results of the model’s
predictions. This base model does a marginal job of
predicting reward (r2 = .60;RMSD = 7.32) and accuracy
(r2 = .45;RMSD = 0.04). However, the number of cues
viewed (r2 = .52;RMSD = 0.71) and response time (r2 =
.93;RMSD = 1.22) are not as differentiated by cost as is seen
in the observed data.

The remainder of this section discusses two additional
models that are variations of this base model. Each subsec-
tion identifies shortcomings found in the previous version of
the model, proposes solutions, and shows the results.

Adaptive Threshold Model

The first variation recognizes that feedback and cost values
used in the experiment are arbitrary values and may not be
equally represented in people’s cognitive processes across all
conditions. The observed data shows that interaction between
cue cost and consistency affected the number of cues viewed
by the model. In the previous model, past response utilities
and cue cost directly affected the number of cues viewed by
the model by changing the response threshold. Perhaps these
factors were weighted differently by the participants under
different conditions.

A scaling factor was applied to the sum of the decision
threshold and cue cost. This scaling factor was varied, by
condition, between 0.2 and 3.0 in 0.2 increments to find a
good fit. The threshold-scaling parameters were: (a) 1.0 for
both high cue-cost conditions, (b) 1.2 for the high consistency
/ low cost condition, and (c) 1.5 for the low consistency /
low cost condition. Changes to the declarative parameters es-
tablished in the base model were varied slightly (BLL ±0.1;

ICCM2018

28

Table 1: R-squared and RMSD for the base, adaptive threshold, and fixed threshold models. Values shown are the mean of the
individual condition fits.

Model
Metric Base Adaptive Threshold Fixed Threshold

Cues Acc RT Reward Cues Acc RT Reward Cues Acc RT Reward
r2 .52 .45 .93 .60 .48 .44 .70 .59 .62 .44 .91 .61
RMSD 0.71 0.04 1.22 7.32 0.42 0.04 0.92 9.08 0.42 0.04 0.90 8.53

Figure 3: Observed (black) and adaptive threshold model
(gray) response accuracy, response time, reward received, and
cues viewed as a function of block, consistency (80%, 90%)
and cue cost (0, 30). Error bars show ±1 standard error.

BLC & RT ±0.6) and used only if the the change resulted
in a substantial difference. The declarative parameters that
differed from the base model were BLL (0.5) and BLC (1.8).

Figure 3 and Table 1 show the results of the model’s
predictions. The cues viewed were much more differenti-
ated in the adaptive threshold model than in the base model
(RMSD = 0.42 vs. RMSD = 0.71). However, the shape
of those predictions were slightly worse (RMSD = 0.48 vs.
RMSD = 0.52). In addition, the response time fit decreased
substantially (r2 = .70 vs. r2 = 0.93). The next model in-
cludes an arguably simpler version of threshold modulation.

Fixed Threshold Model
The final variation simplifies the decision phase by using a
fixed threshold for each condition, much like drift diffusion
models of other decision tasks (Pleskac & Busemeyer, 2010).
An adaptive threshold was used initially because it might ac-
count for learning trends in the observed data, as the thresh-
old changed based on past performance. But perhaps people
use fixed (or more stable) biases based on their level of con-
fidence with the task. So next we explored the use of a static

Figure 4: Observed (black) and fixed threshold model (gray)
response accuracy, response time, reward received, and cues
viewed as a function of block, consistency (80%, 90%) and
cue cost (0, 30). Error bars show ±1 standard error.

threshold that perhaps reflects a strategic shift based on the
condition, rather than trial-by-trial variation.

A constant threshold was used for the decision phase. This
value was varied, by condition, between 0 and 80 in incre-
ments of 5 to find a good fit. The threshold parameters were:
(a) 20 for both high cost conditions, (b) 70 for the high consis-
tency / low cost condition, and (c) 55 for the low consistency /
low cost condition. All declarative memory parameters were
identical to those used in the base model.

Figure 4 and Table 1 show the results of the model’s predic-
tions. Every fit metric improved or stayed the same, relative
to the adaptive threshold model. Most importantly, the trends
in cues viewed (r2 = .62) and response time (r2 = .91) im-
proved substantially. The majority of the error remaining in
the predictions lies in the intercepts for the number of cues
viewed in the low-cost conditions. No additional straightfor-
ward changes were found that would make the model view
three cues every trial, short of directly encoding that strategy.
Regardless, the model does an excellent job of predicting the
majority of the meaningful trends observed in the data.

ICCM2018

29

Discussion
Accuracy in the observed and predicted data varies substan-
tially by consistency. If the environment is less consistent,
people are less sure of how to answer. When faced with a
cost, as in the current task, people respond more quickly. Un-
expectedly, people are only marginally (2.8%) more accurate
when additional time is used to check cues in the no-cost con-
ditions. In addition, response times are substantially slower
(largely due to looking at more cues). The moderate accuracy
improvement and substantial time decrements in the no-cost
conditions means less reward, both in terms of points earned
and financial compensation. So why are people acting some-
what irrationally when there are no cue costs?

The modeling suggests a straightforward explanation is
that people hold information to a higher ”standard” when
there is no cue cost; the model requires higher and more con-
sistent decision utilities when there is no cue cost. This higher
information utility requirement does not vary at a fine-grained
time scale. A static threshold predicts the results better than
did a threshold that changes consistently based on recent ex-
periences. Future research will need to explore other thresh-
old dynamics, like thresholds that monotonically decrease
across conditions. While such thresholds did not improve dif-
fusion models of perceptual decision tasks (Voskuilen et al.,
2016), they could prove useful here.

Further, when there are no cue costs and the environment
is more consistent, a higher threshold is needed to explain
the cues-viewed three-way interaction. This greater threshold
bias (15 points or 27% higher) is counterintuitive strictly as
a measure of confidence. If it were, then the bias would in-
dicate a lower confidence in a more consistent environment.
That is unlikely. A more likely explanation is that the thresh-
old differences start to describe a mechanism that accounts
for participants’ strategic choice to withhold responses in un-
certainty and when external pressures (i.e., cue cost) are ap-
plied. Perhaps the interplay between response utility (as a
measure of familiarity) and the threshold bias (as a measure
of willingness to respond) could produce a mechanism that
explains decision confidence in this context. Further research
is required to provide a more general model of confidence.

Conclusion
The cognitive modeling presented here suggests that IBLT
provides a good framework to explain decisions when those
decisions are made from experience and in situations when
the cost of acquiring that experience varies. When there is
cost to gathering information, that cost will lower the thresh-
old used to select responses based on decision utilities. In ad-
dition, decision thresholds increase when there is no cost to
gathering information. The precise function for determining
that threshold increase is beyond the scope of this research,
but we plan to address that shortcoming in the future.

The model developed here requires further validation with
additional levels of cue cost. With only two levels of cost, the
model may not properly characterize the variation in people’s

willingness to respond as a function of cost. In addition, the
model should be validated with, and extended to make pre-
dictions of, subjective confidence. We are currently planning
a study with the same task paradigm that will include addi-
tional cost levels and collect subjective confidence ratings.

Acknowledgments
The opinions expressed herein are solely those of the au-
thors and do not necessarily represent the opinions of the
United States Government, the U.S. Department of Defense,
the U.S. Air Force, or any of their subsidiaries, or employ-
ees. This research was supported by the Air Force Office of
Scientific Research, grant 13RH06COR. The first author was
supported by an appointment to the Postgraduate Research
Participation Program at the U.S. Air Force Research Labora-
tory, 711th Human Performance Wing, Human Effectiveness
Directorate, Warfighter Readiness Research Division, Cog-
nitive Models and Agents Branch administered by the Oak
Ridge Institute for Science and Education through an intera-
gency agreement between the U.S. Department of Energy and
USAFRL.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of
the mind. Psychological Review, 111(4), 1036–1060.

Chittka, L., Skorupski, P., & Raine, N. E. (2009). Speed-
accuracy tradeoffs in animal decision making. Trends in
Ecology and Evolution, 24(7), 400–407.

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-
based learning in dynamic decision making. Cognitive Sci-
ence, 27(4), 591–635.

Lebiere, C. (1999). Blending: An ACT-R mechanism for
aggregate retrievals. In Act-r workshop. George Mason
University, USA.

Lejarraga, T., Dutt, V., & Gonzalez, C. (2010). Instance-
based Learning: A General Model of Repeated Binary
Choice. Journal of Behavioral Decision Making, 25(2),
143–153.

Myers, C. W., Gluck, K. A., Harris, J., Veksler, V. D., Mielke,
T., & Boyd, R. (2015). Evaluating Instance-based Learn-
ing in Multi-cue Diagnosis. In Proceedings of the inter-
national conference on cognitive modeling (pp. 198–199).
Groningen, The Netherlands.

Pleskac, T. J., & Busemeyer, J. R. (2010). Two-stage dynamic
signal detection: A theory of choice, decision time, and
confidence. Psychological Review, 117(3), 864–901.

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016,
April). Diffusion Decision Model: Current Issues and His-
tory. Trends in Cognitive Sciences, 20(4), 260–281.

Voskuilen, C., Ratcliff, R., & Smith, P. L. (2016). Compar-
ing fixed and collapsing boundary versions of the diffusion
model. Journal of Mathematical Psychology, 73, 59–79.

ICCM2018

30

Two Simple NeuroCognitive Associative Memory Models
Christian R. Huyck (c.huyck@mdx.ac.uk)

Department of Computer Science
Middlesex University

London UK

Yuhue Ji (YJ097@live.mdx.ac.uk)
Department of Computer Science

Middlesex University
London UK

Abstract

Human memory is associative and emerges from the behaviour
of neurons. Two models, based on commonly used biologi-
cal neural models are presented. The first model uses static
synapses to approximate timing behaviour for a Stroop task
with congruent conditions responding faster than incongruent
conditions. The second model uses plastic synapses to learn
a semantic net; it then duplicates the behaviour of a question
answering task. This behaviour not only answers correctly, its
times are similar to that of human subjects. These models are
flawed in many ways, for instance, they use hundreds of neu-
rons instead of the billions of neurons in the brain. They are
thus not proposed as anything near a complete final model, but
instead as early steps toward the development of more sophis-
ticated neurocognitive associative memory models.

Keywords: Associative Memory; Cell Assembly; Hebbian
Learning; Spiking Neuron.

Introduction
Human memory is associative in its nature (Anderson &
Bower, 1973). Concepts are associated with related concepts,
with, for instance, Dog associated with Bone and Canine.
Similarly, human cognition is a product of the behaviour of
the brain in general, and neurons in particular. Since asso-
ciative memory is a key component of the human mind, and
the mind is a product of the activity of neurons, developing
simulations of associative memory in neurons is important.

One modern description of associative memory is the se-
mantic net (Quillian, 1967). This symbolic representation
has been widely used in knowledge representation schemes in
Artificial Intelligence. Sub-symbolically, many connectionist
and simulated neural systems have been developed to account
for associative memory (for a review see (Lansner, 2009)).
The authors are, however, unaware of any cognitive models
of associative memory based on spiking neurons. As associa-
tive memory emerges from the behaviour of spiking neurons,
such a model is important.

What is a good way to evaluate a cognitive model of asso-
ciative memory? This paper describes two simple neurocog-
nitive models of associative memory. The first accounts for
the Stroop effect (Stroop, 1935) using static synapses. The
second accounts for some subcategorisation hierarchy effects
that subjects (Collins & Quillian, 1969) show in answering
questions; this model makes use of plastic synapses, but has
a rigid training regime.

These neuro-cognitive models are simple. They are based
on simple neural models, and the second uses a simple Heb-
bian learning rule. As they are simple, they are flawed. These
flaws are discussed, along with relatively simple mechanisms
to add to build better neuro-cognitive models of associative
memories. The conclusion includes future work in this area.

Literature Review
The task modelled in this paper is associative memory. There
has been a great deal of associative memory modelling and
psychological exploration of associative memory, and there
is evidence that a crucial component of this memory at the
neural level is the Cell Assembly (CA). Below this psycho-
logical and neuropsychological area is reviewed along with
the neurobiological area of synaptic modification, and neural
modelling.

Associative Memory
Human memory is associative. Concepts do not exist in iso-
lation, but in a network of associations. A semantic net is
a symbolic representation of this memory (Quillian, 1967).
Collins and Quillian ran a psychological study that supports
this (Collins & Quillian, 1969). In this study, subjects were
given a statement such as a canary is yellow, and asked to say
if it was true or false. It took subjects longer to respond false,
but they also took longer if the fact was associated with a
super-category of the item. They hypothesised that bird was
the super-category of canary and animal the super-category
of bird. It took longer to respond to a canary has skin than to
a canary can fly, and the shortest was a canary is yellow. Sim-
ilarly, the time to answer a question about direct hierarchical
relations were longer the higher up the hierarchy. Shortest
was a canary is a canary, followed by a canary is a bird,
followed by a canary is an animal.

The Stroop effect (Stroop, 1935) is a consequence of as-
sociative interference. The original task has a colour name
presented in a coloured ink. So, the word blue might be pre-
sented in red ink. One task is for the subjects to name the
colour of the ink, in the example red. If the word and ink
are congruent, the subjects respond faster and make fewer er-
rors than if they are incongruent. This is a well known and a
well studied phenomenon (MacLeod, 1991). Associative in-
terference applies to many domains beyond colours and is a

ICCM2018

31

window into human associative memory.

Cell Assemblies
The CA hypothesis is that the CA is the neural basis of,
among other things, concepts (Hebb, 1949). A CA is a group
of neurons that has relatively high synaptic connectivity, and
relatively highly weighted synaptic connectivity. Thus, once
the CA starts to fire, there is a cascade of firing that causes
many of the other neurons in the CA to fire. This firing is
the neural basis of a psychological short-term memory. The
synaptic change required to make this connectivity is a long-
term memory. Hebbian learning naturally leads to this type
of structure.

There is a large community of researchers that, in essence,
assumes that the CA hypothesis is correct, and the authors in-
clude themselves in this category. Though Hebb merely theo-
rised the CA based on the limited biological evidence to hand,
significant neurobiological evidence for CAs (see (Huyck &
Passmore, 2013) for a review) has accumulated in subsequent
decades. Indeed the authors are unaware of any evidence con-
tradicting the CA hypothesis. However, the brain’s complex-
ity leaves the exact nature of CAs unclear.

Simulated spiking neurons are powerful computational de-
vices. It is relatively simple to build systems based on spiking
neurons that are incompatible with the CA hypothesis. These
systems are suspect as models of human psychological be-
haviour.

Synaptic Plasticity
In computational neuro-biological circles, the most popular
learning rule is currently spike timing dependent plasticity
(Bi & Poo, 1998) (STDP). It is Hebbian; that is, the synaptic
weight is increased if the pre-synaptic neuron tends to con-
tribute to the post-synaptic neuron firing. There are many
approaches to developing computational models of STDP.

There are also a wide range of learning mechanisms be-
yond STDP. One particularly useful system (Zenke, Agnes,
& Gerstner, 2015) uses several learning rules to learn stable
CAs. The network consists of both inhibitory and excitatory
spiking neurons. In their simulations, STDP alone leads to
unstable systems and stored CAs are erased over time. There
is a rule that depresses synapses at high firing rates, and a re-
lated rule that increases synapses at low firing rates; both are
based solely on one neuron, and are thus non-Hebbian. There
are short term potentiation and depression rules. Metaplastic-
ity rules are explored, and there are a range of time dynamics.

This enables the system to not only retain stored CAs, but
to learn new CAs. This addresses the long standing neural
stability plasticity dilemma (Carpenter & Grossberg, 1988).
If learning remains on, so that new things can be learned, the
old memories, stored synaptically, can be erased.

The range of synaptic weight modification mechanisms
shows biology contrasts and complements mathematics. Sim-
ple mathematical rules help to explain the mechanisms, and
can be implemented readily. They are usually approximations
to biological mechanisms that are still poorly understood. In

particular, the dynamic nature of the neural system, with spik-
ing effecting synapse weights and synapse weights influenc-
ing spiking, makes it difficult to understand.

One simple rule is known as Oja’s rule (Oja, 1982). This
rule leads to the synaptic weight reflecting the likelihood that
the post-synaptic neuron fires when the pre-synaptic neuron
fires, their correlation. It has two components, an increase
rule when the neurons co-fire, and a decrease rule when the
pre-synaptic neuron fires, but the post-synaptic neuron does
not. It can be modelled as the early part of equations 1 and 2.

∆+wi j = R∗ [(1−wi j)∗2(WB−Wk)] (1)

∆−wi j =−R∗ [wi j ∗2(Wk−WB)] (2)

In these equations R is the learning rate, and wi j is the
current synaptic weight. The exponential components of the
equations are the compensatory modifiers, not used in Oja’s
rule and explained below. Using these rules, if the post-
synaptic neurons fires 40% of the times when the pre-synaptic
neuron fires, the weight will be approximately 0.4.

In addition to Oja’s correlation component, the equations
have a compensatory component that forces the total synap-
tic weight of a neuron toward a value WB. The compensatory
modifier is the exponential value at the end of the equations,
and current synaptic weight of a neuron is Wk. The simula-
tion below uses a pre-compensatory rule, where only the total
synaptic weight of the pre-synaptic neuron is considered in
the weight update.

The compensatory rule initially speeds learning, but also
limits the synaptic weight. This limit prevents runaway
synaptic growth. The authors have used these rules exten-
sively (Huyck & Mitchell, 2014), and it has been suggested
that compensatory processes are required for Hebbian learn-
ing (Zenke & Gerstner, 2017).

Simulating Neurons
There are many different computational models of neurons
(see (Brette et al., 2007) for a review). One widely used class
of model is a spiking point neuron, and one popular model is
the adaptive exponential integrate-and-fire model (Brette &
Gerstner, 2005).

The authors are involved in the Human Brain Project
(HBP). To increase reproducibility and enable others to eas-
ily use models, the HBP uses a standard set of tools. Nest
(Gewaltig & Diesmann, 2007) is commonly used to simulate
neurons. PyNN (Davison et al., 2008) is used as middleware
to specify the topology and eases the switch from one neural
simulator or emulator to another.

Integrate and fire neurons are simple models of neurons,
but they are widely used, and can accurately model firing be-
haviour of biological neurons. They are also computationally
efficient to simulate.

One key question about cognitive behaviour is time. It has
been noted that many connectionist schemes do not have time
in them naturally (Elman, 1990). This is not the case with

ICCM2018

32

simulations of biological neurons as they have a biological
time course. Moreover, the time course of the neural be-
haviour is the same as the time course of the psychological
behaviour it produces. So, while there are many connectionist
models of associative memory (e.g. (Willshaw, Buneman, &
Longuet-Higgins, 1969)), simulated biological neural models
of associative memory are needed.

Stroop Model
There are many empirical findings that fall into the cate-
gory of the Stroop effect (MacLeod, 1991). The cognitive
explanation of the effect include horse-racing models based
on different processing strength (Cohen, Dunbar, & McClel-
land, 1990), different perceptual acquisitions (Melara & Al-
gom, 2003) and different selective attention (Roelofs, 2003).
Different computational models have been proposed to sim-
ulate the Stroop effect based on different cognitive theo-
ries. The first connectionist model of the Stroop effect was
built in a multi-layer perceptron and trained using supervised
learning via back propagation (Cohen et al., 1990). In the
same year, Phaf and colleagues developed a selective atten-
tional model for the Stroop effect (Phaf, Van der Heijden,
& Patrick, 1990). A more detailed model was built with
sub-networks of sensory detection, motor response, atten-
tion control and habitual response (Kaplan, Şengör, Gürvit,
& Güzeliş, 2007). In those models, the difference in response
time was achieved by setting higher distraction on colour
naming. A Hopfield network model for the Stroop effect was
built and trained with combined patterns of attention and sen-
sory inputs(Yusoff, Grüning, & Browne, 2011). The network
converged to trained patterns based on the part-completion
results of the attentional modulation in the testing set.

The authors have simulated the Stroop effect with simu-
lated neurons using in Nest with PyNN.1 Neurons represent-
ing ink colour, word, and outputs are modelled with leaky
integrate-and-fire neurons. There are CA groups represent-
ing ink colour and word, and both are divided into two sub-
groups representing red or blue conditions. Excitatory con-
nections within a CA spread activation leading to further ac-
tivation. Inhibitory connections across conditions slow this
spread. For instance, neurons in the CA for blue ink inhibit
neurons in red word and vice versa. Synapses from the ink
CAs excite their associated output neurons yielding the re-
sulting time.

The response times, see table 1, were different across dif-
ferent conditions in colour-naming, which was interpreted as
an interference of voluntary control (MacLeod, 2014).

Semantic Net Model
A plastic neural model of the question answering task
(Collins & Quillian, 1969) was developed. The neural model
was a variant of the adaptive exponential integrate-and-fire
model (Brette & Gerstner, 2005). The learning mechanism

1The code for both models is available on
http://www.cwa.mdx.ac.uk/NEAL/code/questionICCM.tar.gz.

Table 1: Response time in experiments and simulation

Conditions Experiments (ms) Simulation(ms)
Ink incongruent 795 660
Ink congruent 605 436

Prime
Hierarchy

?

..

.

Question�
�

�
�

�
��	

�

?

-
A
A
A
A
A
A
AAU

Provided Answer

?
Equal

?

System Answer

6

Timer

?
Output

Animal

-

-�
6

Operation

���	

Property

6

?

Figure 1: Gross Topology of the Question Answering As-
sociative Memory. Boxes represent sets of neurons. Thick
boxes and arrows are plastic. The oval represents the ques-
tion with spike sources instead of neurons.

was a compensatory Hebbian mechanism, see equations 1 and
2. The training regime was quite precise and the synapses
were changed from plastic to static during the simulation, so
that they no longer changed after training.

A pre-compensatory learning rule was developed in Nest
as a synapse model. A pre-compensatory rule targets the total
synaptic strength leaving a neuron, WB in equations 1 and 2.
Since the target and current strength need to be stored on the
neuron, a new neural model was also developed in Nest. This
modified the adaptive exponential integrate-and-fire model
by including this constant and variable. The compensatory
synapse changed the variable during synaptic weight change.

Figure 1 represents the final neural system. The system
consists of three sets of neurons that have learned the seman-
tic net. There is an animal inheritance hierarchy in the animal
neurons. Associations are three way between animal, opera-
tion and property. For instance, if the canary is yellow asso-
ciation is stored, the synaptic weight between animal canary
and operation is has increased weights, as do the synapses be-
tween canary and property yellow, and between is and yellow.

ICCM2018

33

Training took place in two phases. The first phase learned
the animal hierarchy and the second learned the associations.

Initially a well connected net of 200 neurons, the animal
neurons, was trained to store 20 concepts and 19 direct hi-
erarchical relations in a three level hierarchy (Animal (Am-
phibian) (Fish Shark Salmon Bass Pike) (Bird Canary Ostrich
Robin Goose Pigeon) (Mammal Dog Cat Rat Bear Monkey
Human)). A single concept was represented by 10 neurons
with the first five being used for the hierarchy, and the second
five used for associations. This was a simple model of a CA.

Neurons were stimulated externally in epochs. Each epoch
went through a CA phase, a hierarchy phase and a one neuron
firing phase lasting a total of 5000 ms of simulated time. The
CA phase stimulated (to firing) each of the 10 neurons in a
CA, and then inhibited the entire net after 40 ms. All 20 CAs
were stimulated in turn, one after the other 50ms apart. This
was followed by the hierarchy phase with each of the 19 di-
rect hierarchical relations presented by stimulating (to firing)
the first five neurons of each of the pairs; the entire net was
inhibited after 40ms and the next pair was presented. This
was followed by a period where each neuron was fired one at
a time 11 ms apart. This allowed each synapse to apply the
Hebbian decrease rule equation 2. Without this, the synapses
between the neurons in the first half of a CA and the synapses
between neurons in the second half only go up as they al-
ways fire together. This total epoch length was 20x50ms for
the CAs, plus 19x50ms for the hierarchical relations, plus
200x11 for the one neuron firing phase, which was rounded
to 5000. Hierarchical training took 30 epochs for 150000ms
or 150 seconds. In the early epochs neurons fired once dur-
ing CA and hierarchy presentation, but as the synaptic weight
increased, they fired for several times. Inhibition 40ms after
presentation allowed the next item to be presented.

The system was run in 1 ms time steps, and the compen-
satory mechanism considered the neurons co-firing if they
fired in the same cycle or with the post-synaptic neuron fir-
ing within 10ms of the pre-synaptic neuron. In this manner, a
simple CA for each animal concept is learned, and the hierar-
chical relations are learned.

The animal-animal synapses are saved, synapses with
small values are pruned for efficiency, and they are loaded
back in as static synapses for the second phase of training.
In this phase, there were the 20 animal CAs in 200 neurons,
50 operation neurons, and 50 property neurons. The oper-
ation neurons were well connected internally, so that each
neuron synapsed with every other neuron, and the property
neurons were well connected internally. The second five neu-
rons in each animal CA were well connected with both the
operation and property neurons; so each had 100 additional
synapses leaving them. Similarly each of the operation and
property neurons had connections to those five animal neu-
rons per CA, so each had 100 synapses to the animal neurons.
The operation and property neurons connected to each other
more sparsely with each connecting to 10 neurons (evenly
distributed) in the opposite net.

These three nets were trained in two phases; the first
learned the five CAs in the property and operation neurons.
The second phase learned the five three way associations. Af-
ter this the weights were saved.

These saved synaptic weights were loaded into the test sys-
tem with the low weights pruned for efficiency. During test-
ing, all synapses are static. The question is presented by ex-
ternal simulation. There are two types of question: animal
relation property or animal isA animal. Both questions start
the (neural) timer. The output neurons are two CAs, one for
true and one for false. If the timer completes without the
true CA coming on, the timer turns on the false CA, and that
is the output. In this case, on means that the CA is firing
persistently. The true and false output CAs have mutually
inhibitory synapses.

For both types of question, the correct provided answer is
stimulated; it fires persistently. Neurons in a CA can fire with-
out causing the circuit to fire persistently; once a CA is firing
persistently, it ignited. If the question is an animal relation
property one, the animal and operation are stimulated. If there
is a property associated, via learning, it becomes active. This
then turns on the system answer. The equal net is a set of CAs
that are only ignited if both the provided and system answers
are firing. If there is an equal answer, it turns on the true out-
put CA. The associations spread directly from the base level
animal (canary), but can not spread until the super-level cat-
egory (bird or animal) is activated. Thus it takes longer to
retrieve these associations.

When the animal isA animal question, the second type, is
asked, the animal, provided answer and timer are all stimu-
lated. Operation is not stimulated, but the prime hierarchy
CA is. This sends extra activation to all of the animals, which
supports the spread of activation up the hierarchy. As before,
the association is retrieved (or not) by the memory, in this
case the animal, turning on the system answer CA.

Following Collins and Quillian (Collins & Quillian, 1969),
the property associations are labelled P followed by the level,
and the superset relation S followed by the level. The results
are shown in table 2. Here S0 refers to the sentence a pigeon
is a pigeon, and P3 refers to the sentence a canary has skin.
The false sentences are labelled with False and are a canary
has gills and a pigeon is a fish. The Collins column is the
time reported in the paper (Collins & Quillian, 1969).

The associations are retrieved in the correct order by inher-
itance, but are clearly off time wise. It could easily be argued
that the start times are due to input and output processes not
accounted for by the model. So, 954ms, for instance, could be
added to each of the systems times. Still, the timings are off
significantly, with the system’s times varying over less than
200ms and the subjects’ over almost 500ms.

Discussion
The static Stroop model described above shows that it is rea-
sonably easy to develop a spiking model of a particular asso-
ciative memory. It is not entirely clear how well this mech-

ICCM2018

34

Table 2: Associative Question Retrieval Time in ms.

Question Type Collins Answer(ms) System (ms)
P0 1300 51
P1 1380 61
P2 1460 62
P False 1450 235
S0 1000 46
S1 1170 59
S2 1240 130
S False 1400 235

anism scales. However, the number of neurons should scale
linearly to the number of concepts. Similarly, if the associa-
tions are stored in synapses, and there are a constant number
of associations for each concept, they should be storable in a
topology like the sparse topologies of the brain.

While neural models have the advantage of parallelism,
the real advantage to using neural systems is that they learn.
The question answering model described above makes use
of learning. While the Hebbian compensatory learning rule
has a degree of biological plausibility, the presentation mech-
anism and shift from plastic to static neurons is clearly not
plausible. One could argue that particular neuro-transmitters
turn off plasticity, but the authors feel that is really stretching
the metaphor. Instead, we view this model as a step toward
more complete ones, and a very early step at that. It is using
10 neurons to represent a concept. The 10 neuron CA would
persist indefinitely if not explicitly stopped. Once the neu-
rons have stopped, they do not fire again unless stimulated
from the environment, which is clearly biologically unrealis-
tic. The words are stimulated directly from the environment;
there is no attempt to read, and there is no attempt to actually
ground these words in the environment. While it is clearly in-
complete, the system does exhibit some symbolic properties
of a semantic net. It also exhibits the right direction of timing
for spread of activation of a reasonable cognitive model. It
should be relatively simple to improve this so that it more ac-
curately generates these times. This could be done by chang-
ing synaptic connectivity, or perhaps moving from a 5-5 CA
in the hierarchical structure to a 10-5 CA. The neural param-
eters could be changed to support slower ignition.

However, improving the model by parameter fitting seems
like an unpromising way forward for a significantly better
neural associative memory. Instead the model could be im-
proved by simple additions. For instance, the learned portion
of the question answering model has no inhibitory neurons.
Inhibitory neurons can also be used to reduce overall activa-
tion, but also support competition between concepts. The CA
for fish is mutually incompatible with the CA for bird, so the
two may have mutually inhibitory synapses.

The question answering model has also used synapses for
associations. While synapses are clearly involved in associ-
ations, larger associated cell assemblies may share neurons.

That is, neurons are involved in both CAs. When a CA ig-
nites, neurons in it that are involved in other associated CAs
are particularly efficient at priming those CAs and may even
lead to their ignition. The authors have explore hierarchical
CAs (Huyck, 2007) with shared neurons.

Another problem with the model, and indeed most neu-
ral models of learning, is that the neurons that learn are di-
rectly stimulated from the environment. Clearly, this is not
the case in the brain with at most the sensory neurons being
directly stimulated from the environment. Somehow learn-
ing must move from the sensory neurons into other areas.
Again, the authors have made some progress on this (Huyck
& Mitchell, 2014) using a Fatiguing Leaky Integrate and Fire
neural model that spontaneously fires when it has not fired
recently. Integrating spread into new areas into an associa-
tive memory, in addition to increasing biological plausibility,
would also address input bandwidth problems of, for exam-
ple, large neuromorphic machines.

The plastic question answering system only used one learn-
ing rule, though it did turn off learning. A better system might
take advantage of several learning rules. In particular, the
system could benefit from long and short term synaptic mod-
ification. The current rule changes the synaptic weight after
the next firing, and that weight remains changed (though it
of course may be modified again). This is not biologically
plausible, as long-term synaptic modification is neither per-
manent (though it can last for months) nor instantaneous. The
authors have explored short term dynamics, and hope to con-
tinue in the associative memory context. The long-term firing
and synaptic dynamics need to be explored so the associative
memory both stores old memories, and learns new memories.

Finally, the presentation mechanism in both models was to
merely turn on stored neurons that represent symbols. This
really is just a different way of using symbols. If the sys-
tem could learn concepts from interaction with the environ-
ment, there would be scope for appreciably more complex
concepts; this is the symbol grounding problem, and some
progress on learning concepts can readily incorporate mech-
anisms for closely associating symbols with those concepts.

Conclusion
This paper has presented two neurocognitive models of asso-
ciative memory. The first uses static synapses and duplicates
the timing behaviour of performance on a Stroop task. The
second uses a Hebbian compensatory synaptic modification
rule to learn a semantic net. Performance on a question an-
swering task is similar to behaviour of human subjects. Both
models are implemented in leaky integrate and fire neurons.

These two models are simple, but it is hoped that they are
just two early steps in the development of a more sophisti-
cated neural associative memory mechanism. These models
can be extended by the use of inhibitory neurons, support-
ing competition between CAs; associations including shared
neurons, supporting a range of degrees of association; the use
of neural models that support spread of CAs beyond neurons

ICCM2018

35

that are directly activated by the environment, allowing the
neural system to learn to use neurons that are not directly
stimulated by the environment; and the combined use of mul-
tiple synaptic modification rules, providing improved flexi-
bility with learning and more biological accuracy.

There will be two main strands in task development: sym-
bolic bootstrapping and symbol grounding. Symbolic boot-
strapping can use existing or newly developed symbolic se-
mantic nets. These encodings can be learned by a neural sys-
tem, and new associations can be learned by, for instance,
interpreting text. Large semantic nets can be learned in large
neuromorphic systems with millions of neurons, which can
support exploration of CA and association dynamics.

Symbol grounding will be used for agents (virtual and
robotic) that perform tasks. Initial bootstrapped semantic nets
may provide memory, but new concepts and associations will
be learned from the environment. This will address one of the
key problems of AI.

The goal is to generate a substantially better neural associa-
tive memory. This memory will be evaluated on, among other
things, the Stroop task, and the question answering task.

Acknowledgments
This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No 720270 (the Human Brain Project).

References
Anderson, J., & Bower, G. (1973). Human associative mem-

ory. J. Wiley & Sons.
Bi, G., & Poo, M. (1998). Synaptic modifications in cul-

tured hippocampal neurons: dependence on spike tim-
ing, synaptic strength, and postsynaptic cell type. Jour-
nal of Neuroscience, 18:24, 10464–10472.

Brette, R., & Gerstner, W. (2005). Adaptive exponential
integrate-and-fire model as an effective description of
neuronal activity. J. Neurophysiol., 94, 3637–3642.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman,
D., Bower, J., . . . Destexhe, A. (2007). Simulation
of networks of spiking neurons: A review of tools and
strategies. Journal of Computational Neuroscience, 23,
349–398.

Carpenter, G., & Grossberg, S. (1988). The art of adap-
tive pattern recognition by a self-organizing neural net-
work. IEEE Computer, 21, 77–88.

Cohen, J., Dunbar, K., & McClelland, J. (1990). On the
control of automatic processes: a parallel distributed
processing account of the stroop effect. Psychological
review, 97(3), 332.

Collins, A., & Quillian, M. (1969). Retrieval time from se-
mantic memory. Journal of verbal learning and verbal
behavior, 8(2), 240–247.

Davison, A., Brüderle, D., Eppler, J., Muller, E., Pecevski,
D., Perrinet, L., & Yqer, P. (2008). PyNN: a common
interface for neuronal network simulators. Frontiers in
neuroinformatics, 2.

Elman, J. (1990). Finding structure in time. Cogntivie Sci-
ence, 14(2), 179–211.

Gewaltig, M., & Diesmann, M. (2007). NEST (neural simu-
lation tool). Scholarpedia, 2(4), 1430.

Hebb, D. O. (1949). The organization of behavior: A neu-
ropsychological theory. J. Wiley & Sons.

Huyck, C. (2007). Creating hierarchical categories using cell
assemblies. Connection Science, 19:1, 1–24.

Huyck, C., & Mitchell, I. (2014). Post and pre-compensatory
Hebbian learning for categorisation. Computational
Neurodynamics, 8:4, 299–311.

Huyck, C., & Passmore, P. (2013). A review of cell assem-
blies. Biological Cybernetics, 107:3, 263–288.

Kaplan, G. B., Şengör, N., Gürvit, H., & Güzeliş, C. (2007).
Modelling the stroop effect: A connectionist approach.
Neurocomputing, 70(7-9), 1414–1423.

Lansner, A. (2009). Associative memory models: from the
cell-assembly theory to biophysically detailed cortex
simulations. Trends in neurosciences,, 32(3), 178–186.

MacLeod, C. (1991). Half a century of the Stroop effect:
An integrative review. Psychological Bulletin, 109:2,
163–203.

MacLeod, C. (2014). The stroop effect. Encyclopedia of
Color Science and Technology, 1–6.

Melara, R., & Algom, D. (2003). Driven by information: a
tectonic theory of stroop effects. Psychological review,
110(3), 422.

Oja, E. (1982). A simplified neuron model as a principal
component analyzer. Journal of Mathematical Biology,
15, 267–273.

Phaf, R., Van der Heijden, A., & Patrick, T. (1990). Slam:
A connectionist model for attention in visual selection
tasks. Cognitive psychology, 22(3), 273–341.

Quillian, M. (1967). Word concepts: A theory of simula-
tion of some basic semantic capabilities. Behavioral
Science, 12, 410-30.

Roelofs, A. (2003). Goal-referenced selection of verbal ac-
tion: modeling attentional control in the stroop task.
Psychological review, 110(1), 88.

Stroop, J. (1935). Studies of inteference in serial verbal reac-
tions. J. of Experimental Psychology, 18, 643–662.

Willshaw, D., Buneman, O., & Longuet-Higgins, H. (1969).
Non-holographic associative memory. Nature, 222,
960–962.

Yusoff, N., Grüning, A., & Browne, A. (2011). Modelling
the stroop effect: Dynamics in inhibition of automatic
stimuli processing. In Advances in cognitive neurody-
namics (ii) (pp. 641–645). Springer.

Zenke, F., Agnes, E., & Gerstner, W. (2015). Diverse synaptic
plasticity mechanisms orchestrated to form and retrieve
memories in spiking neural networks. Nature commu-
nications, 6, 6922.

Zenke, F., & Gerstner, W. (2017). Hebbian plasticity requires
compensatory processes on multiple timescales. Phil.
Trans. R. Soc. B, 372(1715).

ICCM2018

36

EEG classifiers can predict mind-wandering across different tasks

Christina Y. Jin (yi.jin@rug.nl)

Marieke K. van Vugt (m.k.van.vugt@rug.nl)

Jelmer P. Borst (j.p.borst@rug.nl)

Institute of Artificial Intelligence and Cognitive Engineering, Bernoulliborg, Nijenborgh 9

9747 AG Groningen, the Netherlands

Keywords: mind-wandering; single-trial ERP; support vector
machine; sustained-attention-to-response task.

Background

Mind wandering is the process of thinking task-unrelated

spontaneous thoughts while performing a certain task

(Schooler et al., 2011; Smallwood & Schooler, 2015). The

dynamics of mind wandering remain a puzzle, because it is

difficult to track when someone is mind wandering based

only on behavior. The goal of this study is to develop a

machine-learning classifier that can determine someone’s

mind-wandering state online using electroencephalography

(EEG) data.

 Research showed that mind-wandering involves a

decoupling from cortical processing of the task stimuli

(Baird, Smallwood, Lutz, & Schooler, 2014; Kam & Handy,

2013; Kirschner, Kam, Handy, & Ward, 2012; Smallwood,

Beach, Schooler, & Handy, 2008). We used several EEG

markers related to this decoupling that had been suggested

by previous research: P1, N1, P3 as the ERP measures,

power in alpha (8.5~12Hz) and theta (4~8Hz) bands, as well

as inter-site phase clustering (ISPC).

Method

We trained machine learning models on EEG features to

classify the subject’s current state in into mind-wandering or

on-task. To examine whether mind-wandering signatures

were task-specific, we also attempted to cross-classify

between two tasks. The paradigms we used in this study

were a sustained-attention-to-response task (SART) and a

visual search task. While SART is common in mind-

wandering research, we wanted to compare this to a task

that relies more strongly on visual processing. In both tasks,

probe questions asking for a self-report of the thoughts at

that moment were randomly inserted and subjects’

responses to the probes were used as classifier to label the

preceding trials as mind-wandering or on-task. We analyzed

six trials proceeding each probe, which account for roughly

30~36 seconds. This practice followed the assumption that

the periodic fluctuations in attention might be supported by

very low frequency (0.01~0.1Hz) coherence within the

default mode network (Sonuga-Barke & Castellanos, 2007).

Scalp EEG was recorded while subjects performed the tasks.

The ERPs of interest were computed by a single-trial

method, which is like a template-matching process

(Bostanov, 2004; Bostanov & Kotchoubey, 2006).

Furthermore, the clean EEG signal at A10, A19, B7 and

C21 from a Biosemi 128 system (approximately PO7, Pz,

PO8 and Fz in the 10-20 system) was band-pass filtered and

Hilbert transformed to be decomposed into alpha and theta

bands. Average power was computed for baseline (-

400~0ms) and after stimulus onset (0~600ms) separately.

Coherence was computed as the inter-site phase clustering

(ISPC) between each combination of the selected electrodes

in both bands.

 We used support vector machine (SVM) as the training

algorithm to use EEG markers to predict the current mind

wandering state. Markers were z-transformed before

entering the machine. The optimal regularization parameter

C and γ were obtained through grid search. Considering

individual differences in EEG patterns, model fitting was

performed on each individual. If the data sample size was

imbalanced between classes, we copied the cases from the

minority class to make the training sample balanced

(oversampling). Models were validated by leave-one-out

cross validation (LOOCV). Performance was measured as

prediction accuracy, sensitivity (true positive rate with

positive defined as mind-wandering) and specificity (true

negative rate with negative defined as on-task). Seventeen

participants were included in the analysis.

Results

The reported mind-wandering rate during task performance

varied across subjects (M=0.44, SE=0.04, range=0.15-0.82).

The behavioral performance was disrupted when

participants were in a mind-wandering compared to an on-

task state. Response accuracy was significantly decreased in

SART (t(16)=-2.13, p=0.049, d=0.52) and marginally

decreased in the visual search task (t(16)=-1.87, p=0.079,

d=0.46). Response time increased in the visual search task

(t(16)=2.20, p=0.043, d=0.53) while in SART there was no

difference between conditions (t(16)=-1.61, p=0.127,

d=0.39).

Machine learning performance for each subject is shown

in Figure 1. For the training and testing data based on the

same task, the prediction accuracy ranged from 0.46 to 0.92

across individual models (M=0.62 for SART, M=0.65 for

visual search task). For the across-task prediction, we

ICCM2018

37

trained models from SART data and tested them on data of

the visual search task (SART-VS) and vice versa (VS-

SART). The obtained prediction accuracy ranged from 0.47

to 0.84 (M=0.61 for SART-VS, M=0.60 for VS-SART).

The obtained sensitivity and specificity varied considerably

across individuals. Sensitivity ranged from 0 to 0.97 with a

mean of 0.49. Specificity ranged from 0.05 to 1 with a mean

of 0.56. Overall, the prediction accuracy is above the chance

level of 0.5. A t-test conducted between the obtained

accuracy and 0.5 confirmed this difference (t(67)=10.05,

p<0.001).

Figure 1: Machine learning performance of each

individual data when training and testing them on the same

task (SART, VS) or in an across-task way (SART-VS, VS-

SART). SART = sustained-attention-to-response task, VS =

visual search.

Discussion

Our study aimed to find task-independent

neurophysiological EEG markers that can be used as the

basis to differentiate mind-wandering from the on-task state.

To achieve this goal, we had participants perform both an

inhibition control task – SART – and a visual search task.

On average, classification accuracy was above chance level.

Moreover, even though classification accuracy was not very

high, it was task general: it was possible to train on one task

and use the obtained model to predict the data on another

task. Results of this research confirm the potential to use

EEG-based machine-learning classifiers to detect mind-

wandering, without having to first train on the new tasks. In

that way, the detection of mind-wandering could be less

interfering and interruptive, allowing us to understand better

when, how, and why mind-wandering occurs.

 However, several cautionary remarks should be made.

Although we were able to classify mind-wandering across

tasks, general classification accuracy was relatively low.

This is probably due to the difficult distinction we are trying

to make; although there were small behavioral differences

between the mind-wandering and on-task states, our

participants did not stop performing their main task while

mind-wandering, which made the two states highly similar.

Unfortunately, this means that the current results cannot be

directly used in clinical or industrial applications. If it were

to be applied in some industrial application or medical

practice like neurofeedback, performing some spatial

filtering on EEG might be helpful because it extracts more

discriminable EEG markers which might improve the

prediction accuracy.

 Second, the unbalanced sensitivity and specificity showed

that the models were biased towards detecting one of the

two classes. In a supplementary Spearman’s rank correlation

analysis between mind-wandering rate, sensitivity and

specificity, we found that sensitivity was positively

correlated to the mind-wandering rate during both tasks

(r(15)=0.89, p<0.001 in SART, r(15)=0.83, p<0.001 in VS),

while the specificity was negatively correlated to the mind-

wandering rate (r(15)=-0.77, p<0.001 in SART; r(15)=-0.91,

p<0.001 in VS). This indicated that the trained models

were better at detecting the majority class. However, as we

balanced the sample size in each class before training the

SVM, this cannot be the result of learning the probability of

each class. A possibility is that subjects held different

standards when they decided their attentional states. Those

who engaged more with the primary task might have a

tendency to decide their momentary attentional state as on-

task. On the contrary, those who engaged more with the

mind-wandering process might tend to report off-task

thinking. The blurred line between on-task and mind-

wandering state when giving self-reports might cause the

data to be imprecisely labeled, which further influenced the

machine learning result.

ICCM2018

38

 To sum up, our research shows the potential to predict

mind-wandering using interpretable neurophysiological

EEG markers combined with machine learning. The

classifier is task-independent because we achieved

prediction accuracy over chance level in across-task

predictions. Results of this study can be used to track mind-

wandering more continuously in experimental settings.

References

Baird, B., Smallwood, J., Lutz, A., & Schooler, J. W.

(2014). The decoupled mind: Mind-wandering

disrupts cortical phase-locking to perceptual

events. Journal of Cognitive Neuroscience, 26(11),

2596-2607. doi:10.1162/jocn_a_00656

Bostanov, V. (2004). BCI competition 2003-data sets Ib and

IIb: feature extraction from event-related brain

potentials with the continuous wavelet transform

and the t-value scalogram. IEEE Transactions on

Biomedical engineering, 51(6), 1057-1061.

Bostanov, V., & Kotchoubey, B. (2006). The t-CWT: a new

ERP detection and quantification method based on

the continuous wavelet transform and Student’s t-

statistics. Clinical Neurophysiology, 117(12),

2627-2644.

Kam, J. W. Y., & Handy, T. C. (2013). The neurocognitive

consequences of the wandering mind: a

mechanistic account of sensory-motor decoupling.

Frontiers in Psychology, 4, 725.

doi:10.3389/fpsyg.2013.00725

Kirschner, A., Kam, J. W. Y., Handy, T. C., & Ward, L. M.

(2012). Differential synchronization in default and

task-networks of the human brain. Frontiers in

Human Neuroscience, 6, 139.

doi:10.3389/fnhum.2012.00139

Schooler, J. W., Smallwood, J., Christoff, K., Handy, T. C.,

Reichle, E. D., & Sayette, M. A. (2011). Meta-

awareness, perceptual decoupling and the

wandering mind. Trends in Cognitive Sciences,

15(7), 319-326. doi:10.1016/j.tics.2011.05.006

Smallwood, J., Beach, E., Schooler, J. W., & Handy, T. C.

(2008). Going AWOL in the brain: Mind

wandering reduces cortical analysis of external

events. Journal of Cognitive Neuroscience, 20(3),

458-469. doi:10.1162/jocn.2008.20.3.458

Smallwood, J., & Schooler, J. W. (2015). The science of

mind wandering: empirically navigating the stream

of consciousness. Annual Review of Psychology,

66, 487-518.

Sonuga-Barke, E. J. S., & Castellanos, F. X. (2007).

Spontaneous attentional fluctuations in impaired

states and pathological conditions: A

neurobiological hypothesis. Neuroscience &

Biobehavioral Reviews, 31(7), 977-986.

doi:https://doi.org/10.1016/j.neubiorev.2007.02.00

5

ICCM2018

39

https://doi.org/10.1016/j.neubiorev.2007.02.005
https://doi.org/10.1016/j.neubiorev.2007.02.005

Integrating Emotional and Rational Cognition

William G. Kennedy (wkennedy@GMU.Edu)
Center for Computational Social Science, George Mason University

Fairfax, VA 22030 USA

James C. Thompson (jthompsz@GMU.Edu)
Department of Psychology, George Mason University

Fairfax, VA 22030 USA

Abstract

It has long been understood that cognition involves at least a
rational side and an emotional side. However, approaches to
how these are integrated in our minds has not been done well.
We propose an integration approach that has the emotional
side affect the rational process and we discuss how this will
be done building on the ACT-R architecture.

Keywords: Cognitive architectures; rational cognition;
beyond rational cognition.

Introduction

At least since Plato’s charioteer with two horses

representing man’s two natures have we been dealing with

how both of these natures are managed within our minds

(cite). We study rational cognition primarily because it is

the classic, reliable, and (hopefully) repeatable cognition we

see in experimental psychology laboratories and typically

model in this conference. We build models in ACT-R (R for

rational) (Anderson and Lebiere, 1998) and also as Bayesian

models and neural network models to study rational

cognition.

However, we know that emotions, emotional cognition,

affect, and other forms of “beyond rational” reasoning also

play a large role in determining behavior. Emotion is often

discussed as a “cognitive moderator” (see Belavkin, Ritter,

and Elliman, 1999). However, emotions seem to have a

more important role in cognition that just as a “moderator.”

Emotions might be necessary to come to a decision as

Damasio reports on two patients, Phineas Gage and “Elliot”

(1994, pg 39). There he tells the story of the modern

Phineas Gage patient, Elliot, with apparently no damage to

his intellect or any “neurological dysfunction”, but the

inability to make a decision. The problem was that he could

not decide between alternatives and would continue to

consider options long after it was reasonable.

We do not have this effect in our cognitive architectures

because we require them to make a decision. That seems to

presume the emotional contribution to regulate the thinking

so as to make a decision in a reasonable time frame. That

last step, to break out of the exploration of possibilities and

decide, seems to be a necessary emotional component of

thought.

Current Approaches

The current approaches to integrating rational and emotional

cognition vary from no integration, to some involvement of

emotion in rational cognition, to selecting which form of

cognition dominates. Each will be briefly reviewed.

Emotion in ACT-R

The R of ACT-R is rational. However, there have been

models of stress and physiological conditions that provide

clues to how emotion might be integrated into the ACT-R

framework. The earliest papers on ACT-R and emotions

(Belavkin, Ritter, and Elliman, 1999; Ritter, Belavkin, and

Elliman, 1999; and Belavkin, 2001) focused on emotion as

representable within the ACT-R architecture, as the gain in

performance associated with productions. The last

referenced Yerks-Dodson (1908) and the positive and

negative effects of stress on performance. Cochran, Lee, and

Chown (2006) discussed emotions as appraisal and arousal

levels affecting memory activation. Stress and performance

was modeled by Ritter, Schoelles, Klein, and Kase (2007)

who used overlays to adjust ACT-R parameters. Dancy

(2013) connected a model of human physiology to ACT-R

and modified ACT-R parameters based on the physiology

model. In last year’s cognitive modeling conference (ICCM

2017) there were four papers addressing emotion and

cognition, related to attention, attachment, rumination, and

the relationships among emotion, mood, and personality.

None of these treatments of emotion present a change in the

ACT-R theory or architecture in that they all include handle

emotion within the current architecture. We are proposing

changing the architecture to address emotional aspects of

cognition.

Emotion in Soar

Addressing emotion with Soar has been discussed as far

back as feedback from an exercise of Soar agents in 1997

(Laird, et al. 1998). That feedback lead to a research effort

to include emotion in models of agents used in teaching

(Gratch and Marsella, 2004), but that was a separate part of

the architecture, not integrated. John Laird himself notes

that so far, emotion has been used in Soar only to establish

the reinforcement reward and that incorporating emotion

within an architecture could be important to future designs

(Laird, 2012).

ICCM2018

40

Emotion in Agent-Based Models

Agent models in computational social science have started

to incorporate emotions. Epstein’s “Agent_Zero” learns to

respond to fear (Epstein, 2014) and the PECS architecture

(Schmidt, 2002) selects either physiological, emotional,

cognitive (rational), or social cognition options based on

situational analysis. This is a selection, not an integration,

but is considering the appropriate forms of cognition.

Architectural Approach

Our approach is architectural in that we are inspired by the

brain’s modular processing of emotions and we propose to

change how the ACT-R theory and architecture functions,

not just how a model operates. We propose three aspects of

emotional impact on the normal (rational) processing of

productions, the core of a cognitive architecture’s rational

processing.

Changing the Processing of Conditions

The left-hand side of a production or rule is the set of

conditions under which the rule would fire. The basic design

is the same for both ACT-R and Soar and in both, the

ordering of the conditions, which all must be true for the

rule to fire, does not matter. (The common model does not

get to this level of detail, yet (Laird, Lebiere, and

Rosenbloom, 2017). Our idea is that in an elevated

emotional, or potentially any stressful state, we may not test

all the conditions to get to the action. If the conditions were

ordered in some way, then any production could be

processed differently based on the level of stress by

reducing the number of conditions evaluated and the rest

ignored, i.e., handled as if they were true. The level of stress

would determine how many or which of the conditions,

would be processed: more stress, fewer conditions tested.

Interfering with Memory Retrievals

In ACT-R, a memory reference requires two productions to

fire. The first makes a request declarative memory to recall

a fact from memory and the second processes the retrieved

item. Under high levels of stress, this two-step process

could be disrupted by a change in the goal buffer such as the

loss of some or all attributes and/or values during the

latency in the recall process, similar to forgetting why we

walked into a room… Another approach towards the same

effect would be for the memory retrieval process to fail to

make any retrieval. This would make memory-based

productions unreliable during periods of high stress.

Interfering with Normally Sequential Rules

Finally, another architectural effect we propose is that multi-

step rule-based strategies may not be successfully completed

even though the necessary are productions are available in

procedural memory and the external environment would

support their firing. This could be accomplished in at least

two ways. The first is that the system could forget where it

is in the sequence and stop to reconsider. Second, it could

skip steps (sequential rules) to get to the action faster. This

also seems architectural in nature and could be implemented

by unreliable attributes and values in the goal buffer

changing between production firings or by implementing a

series of rule compilations before they have matured

through the normal ACT-R rule complication process for

combining a sequence of steps. This could explain a model

getting to an action involving the real world faster.

Integrated Theory Development

While these proposals might seem plausible, our goal is to

promote discussion of the rightful place of emotion in

cognitive architectures. We will discuss potential

implementations and experiments at the conference.

References

Anderson, J. R., and Lebiere, C. J. (1998) The atomic

components of thought. Psychology Press.

Belavkin, R. V. (2001). The Role of Emotion in Problem

Solving. In Proceedings of the AISB’01 Symposium on

Emotion, Cognition and Affective Computing (pp. 49–

57). Heslington, York, England.

Belavkin, R. V., Ritter, F. E., & Elliman, D. G. (1999).

Towards including simple emotions in a cognitive

architecture in order to fit children’s behaviour better. In

Proceedings of the 1999 Conference of the Cognitive

Science Society. Mahwah, NJ: Erlbaum.

Chong, R. (1999). Towards a model of fear in Soar.

In Proceedings of Soar Workshop (Vol. 19, pp. 6-9).

Cochran, R. E., Lee, F. J., & Chown, E. (2006). Modeling

emotion: Arousal’s impact on memory In proceedings of

the 28th Annual Conference of the Cognitive Science

Society (pp. 1133-1138). Vancouver, British Columbia,

Canada.

Damasio, A. R. (1994). Descartes' error: Emotion, Reason,

and the Human Brain. Random House.

Dancy, C. L. (2013). "ACT-RΦ: A cognitive architecture

with physiology and affect." Biologically Inspired

Cognitive Architectures 6: 40–45.

Epstein, J. M. (2014). Agent_Zero: Toward Neurocognitive
Foundations for Generative Social Science: Toward

Neurocognitive Foundations for Generative Social

Science. Princeton University Press.

ICCM 2017 (2017, July 23) ICCM2017: 15th International

Conference on Cognitive Modeling. Retrieved from

http://iccm-conference.org/2017/

Gratch, J., & Marsella, S. (2004). A domain-independent

framework for modeling emotion. Cognitive Systems

Research, 5(4), 269-306.

Laird, J. E. (2012). The Soar cognitive architecture. MIT

press.

Laird, J. E., Coulter, K. J., Jones, O. M., Kenny, P. G.,

Koss, F., & Nielsen, P. E. (1998). Integrating intelligent

computer generated forces in distributed simulation:

TacAir-Soar. In in STOW-97.” Proceedings of the 1998

Simulation Interoperability Workshop.

ICCM2018

41

Laird, J. E., Lebiere, C., & Rosenbloom, P. S. (2017). A

Standard Model of the Mind: Toward a Common

Computational Framework Across Artificial Intelligence,

Cognitive Science, Neuroscience, and Robotics. AI

Magazine, 38(4).

Ritter, F. E., Belavkin, R. V., & Elliman, D. G. (1999).

Affective Computing: The role of emotion in human-

computer interaction. In A. Monk, A. Sasse, & A.Crerar

(Eds.) Proceedings of the British HCI Group one-day

meeting in conjunction with University College London.

Ritter, F. E., Schoelles, M., Klein, L. C., & Kase, S. E.

(2007). Modeling the range of performance on the serial
subtraction task. In Proceedings of the 8th International

Conference on Cognitive Modeling. Lewis, R. L., Polk, T.

A., Laird, J. L., (eds.). 299-304. Oxford, UK: Taylor &

Francis/Psychology Press.

Schmidt, B. (2002) Modeling of Human Behaviour: The

PECS Reference Model. Proceedings 14th European

Simulation Symposium. A. Verbraeck, W. Krug, eds.

Yerkes, R. M. & Dodson, J. D. (1908), ‘The relation of

strength of stimulus to rapidity of habit formation’,

Journal of Comparative and Neurology and Psychology

18, 459–482.

ICCM2018

42

Visual Search without Selective Attention: A Cognitive Architecture Account

David E. Kieras (kieras@umich.edu)
Electrical Engineering & Computer Science Department, University of Michigan

2260 Hayward Street, Ann Arbor MI 48109-2121, USA

Abstract

A key phenomenon in visual search experiments is the linear
relation of RT to the number of objects to be searched. The
dominant theory of visual search claims that this is a result of
covert selective attention operating sequentially to "bind"
visual features into objects. However, a cognitive architectural
model shows that this result can be easily obtained from basic
visual mechanisms, eye movements, and a simple task
strategy. No selective attention mechanism is needed.

Keywords: cognitive architecture, visual search; cognitive
modeling; eye movements

Introduction
A myriad of visual search experiments using an especially

simple visual search task have been published since the
seminal work of Triesman & Gelade (1980) was advanced
by Wolfe and his coworkers, starting with Wolfe, Cave, &
Franzel (1989). In this task, subjects view a display
containing several objects, and decide whether a specified
target object is present or not, and make a corresponding
keystroke response. The main independent variable is the
number of objects on the display (set size), and the main
dependent variable is the reaction time (RT), the time to
make the response. Normally the target is present half the
time (positive trials), and absent the other half (negative
trials). Additional independent variables are the visual
properties specified for the target, and the logical form of
the specification.

The data typically produced by this task show a roughly
linear increase in RT with set size, with negative trials
producing a slope about twice as steep as positive trials.
Different visual properties and target specifications produce
positive trial slopes ranging from essentially zero (e.g. the
target is a single red bar among green bars) to roughly 50
ms/item or more (e.g. a specific detailed shape among
similar detailed shapes). The fact that the negative trial
slope is about twice that of the positive trial slope suggests
that a serial self-terminating search process is involved.

Covert Attention Theory of Visual Search
An obvious idea is that subjects move the eyes to each

item sequentially to perform the search. However, the
typical slopes observed are much faster than eye movements
would allow. This discrepancy underlies the basic
theoretical claim originally made, and still dominant in this
literature, that the sequential search is done not by overtly
moving the eyes, but instead by covertly moving selective
attention from one object representation to another. This
covert selective attention theory of visual search appears to
have its roots in Neisser’s (1967) assertion, based on

extremely early computer vision concepts, that "focal
attention" is necessary to bind together primitive features
into a visual object; this attention-based "binding" operation
was advanced in Triesman & Gelade (1980), and has been
tremendously influential since then.

However, the dominance of the covert attention binding
hypothesis has led to a remarkable dismissal of the role of
retinal nonhomogeneity (i.e. the high resolution of the fovea
compared to peripheral vision) and the eye movements that
are required as a result (see Findlay & Gilchrist, 2003, for
discussion). In fact there is little or no mention of such
issues in Neisser, nor in the mainstream of visual search
research descended from Treisman and Wolfe, even though
many studies have demonstrated their relevance (e.g.
Carrasco & Frieder, 1996; Wertheim, et al., 2006; Zelinsky
& Sheinberg, 1995). It has even been claimed that the RT
effects are the same regardless of whether or not eye
movements are made. However, a full survey of the relevant
literature, too lengthy to include here, shows that this claim
is contradicted not only by empirical results, but also
logical, methodological, and substantive problems. Simply
put, eye movements should not be disregarded in visual
search.

Thus the dominant theory in visual search attributes the
key effects to a hypothetical covert attention mechanism and
ignores or discounts known visual mechanisms associated
with eye movements.

Active Vision Alternative
Findlay & Gilchrist (2003) criticize the dominant theory

and propose instead an active vision approach in which
peripheral vision is used to guide eye movements that bring
the high resolution portion of the retina to bear on relevant
parts of the scene. The claim that the RT ms/item slopes are
too fast for eye movements fails if it is possible for more
than one object to be perceived, at least in peripheral vision,
in a single fixation; this is consistent with the long-standing
concept of the area of conspicuity (Engel, 1977) or
functional viewing field (FVF, see review in Hulleman &
Olivers, 2017). If the FVF is large enough, the search
process can easily accommodate a fast ms/item rate even if
the eyes are being moved. Accordingly, Hulleman & Olivers
(2017) proposed that the ms/item characterization of visual
search was a fundamental mistake, because the number of
fixations, not the number of display items, accounts for
visual search in these tasks. They presented a simple process
model that accounted for some of the effects.

Overview
This paper starts with a reanalysis of a very high-quality

dataset made available by Wolfe et al. (2010) of

ICCM2018

43

mailto:kieras@umich.edu

performance in three classic visual search tasks, and
presents an active vision model of these results based on a
cognitive architecture, EPIC (Kieras, 2016; Meyer &
Kieras, 1997). EPIC has components in which the visual
perceptual, ocular motor, and strategy aspects of the model
can be explicitly represented. The visual perceptual
component captures the concept of the FVF. The
oculomotor component represents the mechanisms that
generate saccades with realistic timing and variability. The
strategy component consists of production rules applied by
the cognitive processor that decide where to move the eyes
and when to respond target-present or target-absent. A
manual motor component represents the time for the manual
response.

While the concept of attention is clearly associated with
overt behaviors such as eye movements, the concept of
covert attention is generally associated with some kind of
top-down direct internal control of perception by cognition.
EPIC has no such mechanism. Rather, based on the
available perceptual information, the strategy decides when
a response can be made, or what object needs to be fixated
to collect more information. If one insists on using the
language of attention, then EPIC has a very late selection
concept of attention, in contrast to the early selection
posited for covert attention.

The data will first be presented, followed by a summary
of the architecture and the model, and its fit to the data.

The Visual Search Experiment
The data used for this modeling was collected by Wolfe,

Palmer, and Horowitz (2010) and made available for
download at ht tp: / /search.bwh.harvard.edu/new/
data_set_files.html. Wolfe et al. focussed on the RT
distributions, but this dataset is exceptional because of the
well-specified stimuli and relatively large number of very
well-practiced subjects. For completeness, the experimental
method is re-stated here in the context of how the
experiment was simulated in the model.

Method

Tasks There were three different present/absent search
tasks; Figure 1 shows a sample target-present display
produced by the model for each task condition, labeled in
this paper as Color Single Feature (CSF), Color-Orientation
Conjunction (COC), and Shape (SHP). The CSF target was
a red vertical bar among green vertical distractors. The COC
target was a red vertical bar among distractors that were red
horizontal bars or green vertical bars. The SHP target was a
"digital 2" shape among "digital 5" shapes.

Stimuli Wolfe et al. (2010) provide a good level of detail
about the stimulus properties, but unfortunately, the
download data set does not contain information about the
actual display configuration used in each trial, so for
purposes of modeling the display had to be generated for
each simulated trial.

The search display was an area 22.5° × 22.5°, treated as
containing 25 invisible cells of 5° × 5°; Wolfe et al. (2010)
state that each object appeared in a random location within
one of the cells, but did not state how overlapping objects
were prevented. For the model, the random location within a
cell was constrained to keep the horizontal or vertical edge
of an object at least 0.25° away from the cell boundary,
ensuring a minimum separation of 0.5° between adjacent
objects. Set sizes were 3, 6, 12, and 18. In the model, a
display was generated for each trial as follows: the set size
number of distractors were first placed in randomly chosen
display cells; if the trial was positive (target present), a
randomly chosen distractor was replaced with a target
object.

In the CSF task, the objects were 1° × 3.5° vertical bars;
the target bar was red, distractor bars were green. In the SHP
task, the objects were 1.5° × 2.7° character-like shapes; the
target was a 2 and the distractors were 5s. In the COC task,
the objects were 1° × 3.5° bars, red or green, oriented either
horizontally or vertically. The target was a red vertical bar,
and distractors were red horizontal and green vertical bars.
Wolfe et al. (2010) do not state exactly how COC distractors
were chosen; in the model, half of the distractors were
chosen to be of each type, with set size 3 special-cased so
that at least one distractor of each type was present. Since a

Figure 1. Sample search displays produced by the model for the color single feature (CSF), color-orientation conjunction
(COC), and shape (SHP) tasks of the Wolfe et al. (2010) experiment. The concentric gray circles show the simulated eye
position at the initial fixation location; for scale, the inner circle has a diameter of 1°; the outer circle is 10°.

ICCM2018

44

positive trial display was produced by replacing a random
distractor with a target, over trials, each type of distractor
would appear equally often.

Design There were 10 subjects in the COC task condition
and 9 in the other two. One subject was in both COC and
SHP, but the data set does not identify this subject, so the
task condition was treated as a purely between-subject
manipulation in this paper.

Procedure Each trial began with a centered fixation cross.
Subjects were instructed to “keep their eyes focussed on this
cross” but because eye movements were not monitored,
subjects could have moved their eyes, and based on other
studies, it is likely that they did so. The search display was
presented and remained visible until the subject pressed a
key for target present or target absent. Subjects were
instructed to respond as "quickly and accurately as
possible." Correct/incorrect feedback was presented for 500
ms after each trial. Unlike many experiments, the subjects
were very well practiced, with about 500 trials per subject
for each combination of set size and positive/negative trial
polarity.

Results
The downloaded data consisted of the RT and correct/

incorrect status for each subject in each trial at each set size
and trial polarity. Following common practice in RT
experiments, the data were reduced as follows: For each
task condition, for each subject, the mean RT for correct

trials and the proportion of errors for that subject was
calculated for positive and negative trials at each set size,
giving a total of 8 data points for each subject for their RT
and error rate. These subject means were then averaged to
produce the data points plotted in Figure 2 and Figure 3.
The 95% confidence intervals around each data point were
calculated by determining the standard error of that mean
using the 9 or 10 individual subject means contributing to
that point, thus reflecting between-subject variability, but
not within-subject variability.

Wolfe et al. (2010) did not report any overall statistical
tests of their results. Therefore, unequal-N ANOVAs were
performed using the R ez package on the reduced data. For
RT, the main effects of Task Condition, Trial Polarity, Set
Size, and all two- and three-way interactions were
significant (p < .05). For proportion of errors, whose overall
average was 2.4%, the Task Condition main effect was not
significant (p > .1) but the Trial Polarity and Set Size main
effects, and all two- and three-way interactions were
significant (p < .05). Examination of specific within-subject
effects was done with Fisher Least Significant Difference
values, which to avoid clutter are not shown on the graphs.
But a simple summary of these comparisons is that the
apparently different within-subject effects in the graphs are
reliably different, even if the between-subject confidence
intervals overlap.

Discussion
The RT results follow the classic pattern obtained in most

visual search experiments. The RT functions are essentially
flat in the CSF task (positive trial slope is about 1 ms/item),
this prominent effect with the color property in a single-

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20

Pr
op

or
tio

n
of

 E
rr

or
s

Set Size

Figure 3. Observed proportion of errors in each task
condition. CSF: circles, COC: triangles, SHP: squares.
Positive trials: red, negative trials: black. The 95%
confidence intervals are based on the standard error of the
mean of the subjects' proportions underlying each data
point and thus reflect between-subject variability.

Figure 2. Observed (solid points and lines) and predicted
(open points and dotted lines) for correct trial RT in each
task condition. CSF: circles, COC: triangles, SHP: squares.
Positive trials: red, negative trials: black. The 95%
confidence intervals are based on the standard error of the
mean of the subjects' mean values underlying each data
point and thus reflect between-subject variability.

0

500

1000

1500

2000

2500

0 5 10 15 20

R
T

(s
ec

s)

Set Size

ICCM2018

45

feature search task is frequently described as "pop out".
Otherwise, positive and negative trial RTs have a substantial
slope, with the negative trial slope about twice that of the
positive trials. The color-orientation conjunction task COC
has a positive trial slope of about 9 ms/item and the SHP
positive trial task slopes are greater at 43 ms/item. As Wolfe
et al. (1989) first observed, conjunction searches can be
relatively efficient, contrary to Triesman & Gelade (1980).

The error rate overall is only 2.4%, justifying the
conventional approach of focussing only on the correct trial
RT, but note that negative trials have a fairly constant low
error rate between 1 and 2%, while positive trials produce
more errors as set size increases, especially for the more
difficult tasks. Overall, this rules out a speed-accuracy
tradeoff effect in the RT data, but because these effects are
statistically reliable in spite of large individual differences,
they need to be explained in a future model. The present
model applies to only the correct RT data.

Summary of the EPIC Cognitive Architecture
The EPIC architecture for human cognition and

performance directly provides a general framework for
simulating a human interacting with an environment to
accomplish a task. The introduction of this paper provided a
brief overview; see Meyer & Kieras (1997) or Kieras
(2016), for a more complete description. The following
summarizes the relevant components of the architecture.

In the EPIC architecture, object and their properties are
formed early in vision (see Scholl, 2001). The eye processor
component contains acuity functions that specify whether
each visual property of each object is currently available as
a function of the size of the object and its eccentricity from
the current eye position. The currently available visual
properties for each object are represented in the sensory
store; the perceptual processor then encodes the properties
of each object, possibly in relation to other objects, and
passes the encoded representation on to the perceptual store
where they are available to the cognitive processor to match
the conditions of production rules. The perceptual store
contains the current representation of the visual world that
cognition can reason and make decisions about, including
decisions about where to move the eyes next by
commanding the ocular motor processor.

When the eyes move away from an object, the properties
of the object persist for a short time (e.g. 200 ms) in the
sensory store, and a long time (e.g. 4s) in the perceptual
store. But if the object disappears completely, it and all of its
properties will be removed from the perceptual store fairly
quickly. Thus the representation persists for a considerable
time as long as the scene is present; this is supported by
studies summarized by Henderson & Castelhano (2005);
memory for previously fixated objects was assessed in
natural visual scenes, and retention times of at least several
seconds were observed. The task strategy uses this retained
information to avoid re-fixating an already examined object
(see Kieras, 2011).

Model for Search Task RT
EPIC models for other visual search tasks are presented in

Kieras (2011, 2016), Kieras & Hornof (2014), and Kieras &
Marshall (2006). Constructing the model for a specific
search task requires a choice of (1) visual acuity functions
and parameters, (2) a parameter for the persistence time of
visual properties in the perceptual store that are no longer
sensorily supported, (3) a model of the "noise" in the eye
movements, and (4) a set of production rules that implement
the visual search strategy. Each of these will be described in
the following.

Acuity Functions and Perceptual Store Retention
Despite the many decades of research on vision, the

literature does not contain a comprehensive set of
parametric data on perceptibility of different visual
properties as a function of their eccentricity and size, so they
must be estimated to fit the data. Some constraints are
present in the available literature, but space limitations do
not allow a review of the available data (see Findlay &
Gilchrist, 2003 for an overview).

The availability of a perceptual property depends on the
eccentricity (the distance in degrees of visual angle from the
center of gaze) of the object, and on the size of the object
(also measured in degrees of visual angle), and on the
specific property involved. A separate acuity function was
specified for each property of color, orientation, and shape
as a Gaussian detection function that gives the probability
that the property will be detected (be available) for an object
with size s at eccentricity e:

P(detection) = P(s > N(µ, σ))
µ = a + be, σ = a constant

The value µ can be interpreted as the 50% threshold for
object size. The value of σ governs the steepness of the
ogival detection function.

In the present model strategy, the color property is used in
both the CSF and COC tasks and was constrained to have
the same parameter values in these tasks; orientation was
used only in COC, and shape only in SHP. The acuity
parameters were determined by informal iterative fitting.
The a term was held at 0.0, b was estimated as 0.1 for color,
0.25 for orientation, and 0.4 for shape. σ was held at 0.5.
This corresponds to many empirical results that color is
widely available, orientation less so, and detailed shape least
of all. The total time for a property to appear in the
perceptual store was set at 50 ms.

The availability of each property is independently
resampled for all objects whenever the eyes are moved. As
the eyes move around, the available properties of the same
object can fluctuate, and so will not be reliably available
from one fixation to the next. However, as described above,
the information once acquired will remain for some time in
the perceptual store, forming a stable visual representation.
The retention time parameter was set at 4s, the value used in
Kieras (2011) which involved a search task requiring
individual object fixations.

Saccade Timing and Accuracy
The time in ms to execute a saccade of length e in degrees

is provided by Carpenter's (1988) estimate as:
saccade duration = 21 + 2.2e

ICCM2018

46

A variety of studies (e.g. Abrams, Meyer, & Kornblum,
1989) have shown that saccades tend to fall short of the
actual fixation target, and the standard deviation of the
saccade distance tends to be proportional to the distance. In
the architecture, the oculomotor processor samples the
length of a saccade to an object at eccentricity e from a
Gaussian distribution:

saccade length = N(µ, σ))
µ = g·e, σ = s·µ

Typical empirical values for g (gain) range from
0.85-0.95, and s (spread) is typically around 10%. In the
current model, the parameters were held constant at the
values suggested by Harris (1995) as optimal, namely
g=0.95, s=10%. In addition, the angular direction of the
saccade is also noisy, but due to the very few available
studies (e.g. van Opstal & van Gisbergen, 1989) a rough
estimate was used: the angle of the saccade is perturbed by a
sample from N(0, σ A), where σA = 1°. Thus large eye
movements often miss the object to be fixated, reducing the
chances that its properties will be detected.

Task Strategy
EPIC's cognitive processor applies production rules in

parallel in a 50 ms cycle. The production rules in the model
are a search-and-confirm variation of a basic strategy used
in previous EPIC visual search models. Once the display
objects appear on the screen, the strategy production rules
alternate between a nomination phase, in which rules
nominate objects (possibly in peripheral vision) that are
possible targets because a relevant property matches or is
unknown, and a choice phase in which rules choose one of
the nominated objects to move the eyes to. If multiple
nominated objects match a choice rule, the closest object to
the current point of fixation is chosen when the rule fires.
Once the eye movement is complete, the nomination phase
starts again.

Thus, over time, information about the objects
accumulates until one of two choice-phase rules choose the
response: If there is a nominated object which matches all of
the target properties, then an eye movement is initiated to it;
when complete, a second rule confirms the target properties
and makes a target-present response via a manual motor
processor keystroke command. If there are no nominations,
this means that all objects appear to be distractors; to
confirm this, if no fixation has been made yet, the strategy
moves the eye to the most distant object, confirms that it is
not a target, and then makes the target-absent response;
unlike many models (cf. Hulleman & Olivers, 2017), there
is no time-out or similar process; the lack of a possible
target nomination suffices for a target-absent response.

The nomination and choice rules are very simple for the
CSF and SHP tasks because only a single object property is
involved. For example in the CSF condition, an object is
nominated as the target if it has a red color, or as an object
to be fixated if it has an unknown color. In contrast, for
COC, there are three possible fixation nominations, and the
strategy chooses one to fixate in the following descending
priority order: Red color & unknown orientation, unknown
color & vertical orientation, unknown color & unknown
orientation.

RT Model Results
Using the parameter values and task strategy described

above, the model was run for a total of 5000 trials in each
task × polarity × set size condition; Figure 2 shows the
predicted RT values. The fit is very good, with r2=0.99,
average absolute error of 32 ms, and absolute relative error
of 4%. Almost all of the predicted values are within the
confidence intervals; the exceptions appear in the fastest
conditions, such as CSF. Examination of the model's
behavior shows that the average number of eye movements
(including the confirmation fixations) increases with set size
and with task difficulty as indicated by RT. For example, for
negative trials at set size 3, there are less than 1.1 fixations/
trial for CSF and COC, and 2.4 for SHP; for set size 18,
there are fewer than 1.1 fixations per trial for CSF, 2.99 for
COC, and 9.09 for SHP. So even in the easiest condition,
there may be an eye movement in a trial, but the most
difficult condition requires many eye movements. The
flatness of CSF-like RT is commonly used to justify a
special "pop out" mechanism; however, it is not needed in
this model because the color property is available over a
very wide area, and so a search eye movement is rarely
required regardless of set size.

Accounting for Accuracy Effects
The accuracy effects, rarely addressed in the literature,

need to be explained. That more errors appear in more
difficult tasks only in target-present trials (miss errors) and
not in target-absent trials (false alarm errors) makes sense,
given that the model strategy includes a confirmation step
for a target-present response. But what produces the miss
errors?

An adequate model might be based on crowding effects in
which the perception of closely spaced objects is disrupted
while the primitive features might still be detected (Pelli &
Tillman, 2008; Rosenholtz, 2016). The critical spacing for
crowding effects is about 0.5·eccentricity, though the
magnitude of the disruption varies with the specific features
involved. Apparently, crowding disrupts the association of
features with their locations, and so disrupts the early-vision
mechanism that integrates separate features into distinct
objects. Note that in typical visual search experiments, the
objects are randomly distributed in a fixed area, so set size
is confounded with average object spacing. In fact, when
spacing is manipulated independently, the set size effect
appears to be mostly due to crowding (e.g. Wertheim et al.
2006). Rosenholtz (2016) argues that crowding effects limit
peripheral vision much more than simple loss of resolution.
Thus the acuity functions in the present model are
apparently describing a sum of two effects of eccentricity: a
strong average crowding effect and a weaker basic
resolution effect.

A possible simple extension of EPIC's visual system to
incorporate perceptual crowding effects would be to
scramble the primitive features between objects within the
critical spacing, which would tend to include more objects
at larger set sizes. Such scrambling may disrupt targets and
also produce illusory targets. If the strategy nominates an
illusory target, the confirmation step in the present strategy

ICCM2018

47

will correct the illusion, preventing a false alarm error.
However, if crowding disrupts an actual target, the present
strategy might conclude that it is not present and make a
miss error. The effect of the scrambling would be minimal
when only a single feature defines the target, as in CSF,
while it would be stronger when two features must be
conjoined in the same object as in COC, and even stronger
when multiple primitive line-segment features have to be
correctly integrated as in SHP.

Conclusion
The model built in the EPIC computational cognitive

architecture provides a very accurate account of the RT data
using a surprisingly simple combination of architectural
components and task strategy, which together implement a
basic active vision approach to visual search. Notably, there
is no need for an attention mechanism of the sort proposed
in the dominant theory to successfully account for the RT
effects; simple perceptual mechanisms, eye movements, and
a strategy that meets the task demands are all that is
required. An extension of the perceptual components to
include crowding effects would improve its value as a
theoretical and practical tool for modeling human
performance.

Acknowledgements
This work was supported by the Office of Naval

Research, Cognitive Science Program under grant
N00014-16-1-2560. Thanks are due to David Meyer, Greg
Wakefield, and Anthony Hornof for useful discussions and
comments.

References
Abrams, R.A., Meyer, D.E. & Kornblum, S. (1989). Speed

and accuracy of saccadic eye movements: Characteristics
of impulse variability in the oculomotor systems. Journal
of Experimental Psychology: Human Perception and
Performance, 15(3), 529-543.

Carpenter, R.H.S. (1988). Movements of the eyes (2nd ed).
London: Pion.

Carrasco, M., & Frieder, K.S. (1996). Cortical magnification
neutralizes the eccentricity effect in visual search. Vision
Research, 37, 63-82.

Engel, F. L. (1977) Visual conspicuity, visual search and
fixation tendencies of the eye. Vision Research 17:95–
108. doi: 10.1016/0042-6989(77)90207-3.

Findlay, J.M., & Gilchrist, I.D. (2003). Active Vision.
Oxford: Oxford University Press.

Harris, C.M. (1995). Does saccadic undershoot minimize
saccadic flight-time? A Monte-Carlo study. Vision
Research, 35, 691-701.

Henderson, J.M. & Castelhano, M.S. (2005). Eye
movements and visual memory for scenes. In G.
Underwood (Ed.), Cognitive processes in eye guidance.
New York: Oxford University Press. 213-235.

Hulleman, J. & Olivers, C.N.L. (2017). The impending
demise of the item in visual search. Behavioral & Brain

Sciences, 40(1), 1-20. doi:10.1017/S0140525X16000121,
e142

Kieras, D. (2011). The persistent visual store as the locus of
fixation memory in visual search tasks. Cognitive Systems
Research, 12, 102-112.

Kieras, D.E. (2016). A summary of the EPIC Cognitive
Architecture. In S. Chipman (Ed.), The Oxford Handbook
of Cognitive Science, Volume 1. Oxford University Press.
2 4 p a g e s . D O I : 1 0 . 1 0 9 3 / o x f o r d h b /
9780199842193.013.003

Kieras, D.E & Hornof, A.J. (2014). Towards accurate and
practical predictive models for active-vision-based visual
search. In Proceedings of CHI 2014: Human Factors in
Computing Systems. New York: ACM, Inc.

Kieras, D.E, & Marshall, S.P. (2006). Visual Availability
and Fixation Memory in Modeling Visual Search using
the EPIC Architecture. Proceedings of the 28th Annual
Conference of the Cognitive Science Society, 423-428.

Meyer, D. E., & Kieras, D. E. (1997). A computational
theory of executive cognitive processes and multiple-task
performance: Part 1. Basic mechanisms. Psychological
Review, 104, 3-65.

Neisser, U. (1967). Cognitive Psychology. New York:
Appleton-Century-Crofts.

van Opstal, A.J, & van Gisbergen, J.A.M. (1989). Scatter in
the metrics of saccades and properties of the collicular
motor map. Vision Research, 29(9), 1183-1196.

Pelli, D.G., & Tillman, K.A. (2008). The uncrowded
window of object recognition. Nature Neuroscience,
11(10), 1129-1135. doi:10.1038/nn.2187.

Rosenholtz, R. (2016). Capabilities and limitations of
peripheral vision. Annual Review of Vision Science, 2,
437–57. doi: 10.1146/annurev-vision-082114-035733

Scholl, B.J. (2001). Objects and attention: the state of the
art. Cognition, 80, 1-46.

Treisman, A.M, & Gelade, G. (1980). A feature-integration
theory of attention. Cognitive Psychology, 12, 97-136.

Wertheim, A. H., Hooge, I. T. C., Krikke, K., Johnson, A.
(2006). How important is lateral masking in visual
search? Experimental Brain Research, 170, 387-402. DOI
10.1007/s00221-005-0221-9.

Wolfe, J. M. (2014). Approaches to Visual Search: Feature
Integration Theory and Guided Search. In A.C. Nobre &
S. Kastner (Eds), The Oxford Handbook of Attention.
R e t r i e v e d f r o m D O I : 1 0 . 1 0 9 3 / o x f o r d h b /
9780199675111.013.002.

Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided
Search: An alternative to the feature integration model for
visual search. Journal of Experimental Psychology:
Human Perception and Performance, 15, 419–433.

Wolfe, J.M., Palmer, E.M, & Horowitz, T.S. (2010).
Reaction time distributions constrain models of visual
search. Vision Research, 50, 1304-1311.

Zelinsky, G., & Sheinberg, D. (1995). Why some search
tasks take longer than others: Using eye movements to
redefine reaction times. In J.M. Findlay, R. Walker, &
R.W. Kentridge (Eds.), Eye movement research:
Mechanisms, processes and applications. North-Holland:
Elsevier Science Publishers., 325-336.

ICCM2018

48

Core High-Level Cognitive Abilities Derived from Hunter-Gatherer Shelter Building

Jerald D. Kralik (jerald.kralik@gmail.com)
Department of Bio and Brain Engineering

Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea

Abstract
Determining the fundamental cognitive abilities underlying
human high-level cognition remains elusive. An examination
of the main activities of our first Homo sapiens ancestors offers
a normative approach. Because shelter building was critical for
a nomadic hunter-gatherer and required comprehension and
manipulation of the knowledge for predicting, controlling and
creating, I examined shelter building. I first conducted a
theoretical analysis of the necessary steps to imagine and then
construct a temporary shelter in the African savanna, including
the underlying cognitive abilities to do so. I then compared the
results to a case study of grass-hut building by a modern-day
San tribe community in Botswana, Africa. The analysis
provides a set of core cognitive abilities required for shelter
building, which may represent the core cognition underlying
our physical intelligence. Future examination of the other
primary activities of our first ancestors should help produce a
complete list of our fundamental high-level cognitive abilities.

Keywords: High-level cognition; cognitive modeling;
evolutionary psychology and neuroscience; anthropology.

Introduction
There have been significant advances in the study of high-
level cognition — such as in attention, decision-making,
reasoning, and creativity (e.g., Gazzinga, Ivry, & Mangum,
2013; Glimcher & Fehr, 2014; Helie & Sun, 2010; Holyoak
& Morrison, 2012; Kralik, 2017; Kralik, Mao, Zhao, Nguyen,
& Ray, 2016; Laird, Lebiere, & Rosenbloom, 2017; Russell
& Norvig, 2010; Silver, Schrittwieser, Simonyan,
Antonoglou, Huang, et al., 2017; Tenenbaum, Kemp, &
Griffiths, 2011) — yet much remains unknown. This is
especially borne out when considering current computational
approaches to human cognition, with many appearing to
assume that high-level cognition will arise from, for example,
deep hierarchical neural networks based on associative
processes. Indeed, there remains no consensus on how to
model higher-level cognition, with current AI systems falling
far short of human-level abilities.

What then is the best approach to identify and delineate the
actual core cognitive processes underlying human high-level
cognition? Researchers attempt to focus on tasks that require
the highest levels of our abilities, with recent examples
including video games, the game “Go”, and autonomous
driving (Silver, Schrittwieser, Simonyan, et al., 2017). Such
approaches are valuable, but still run the risk of missing
critical high-level capabilities. For example, most work
concentrates on the derivation of complex action policies
with a well-defined problem representation, and yet the
generation of the appropriate problem representation itself is
one of the most challenging problems animals (including
humans) face in a potentially intractably complex real world

(Kralik et al., 2016; Kralik, Shi, El-Shroa, & Ray, 2016;
Sampson, Kahn, Nisenbaum, & Kralik, 2018).

Ideally, we would take a more normative approach to
determine the task paradigms that best capture the
fundamental nature of human high-level cognition, but to do
so, it would require isolating our fundamental abilities from
learning and cultural influences. For example, high-level
mathematical prowess consists of both basic cognitive ability
as well as substantial knowledge and skills developed from
teaching and practice: i.e., from learning. How then might we
isolate basic abilities from subsequent learning and cultural
effects? Two possible approaches are developmental and
evolutionary ones. Notwithstanding important work studying
the developmental process (e.g., Tenenbaum, Kemp, &
Griffiths, 2011), the approach faces limitations in that the
brain is normally not fully developed, and thus
developmental and learning effects accumulate. An
evolutionary approach points us to biological anthropology
and the evolution of Homo sapiens. That is, substantial
evidence strongly suggests that the human brain largely
finished evolving in Africa during the Pleistocene epoch
(roughly 100,000 years ago), when humans were hunter-
gatherers (Buss, 2015; Dunbar, 2003; Nowell & Davidson,
2010; Relethford, 2013). Thus, in principle, if we could
examine the cognitive abilities underlying their main
activities, we could potentially identify the core set.

To conduct such an analysis in the modern day is indeed a
challenge, yet is possible via a triangulation of multiple lines
of evidence: e.g., analysis of the actual Pleistocene
archaeological evidence (e.g., the surviving toolkit) (Buss,
2015; Kralik, 2017; Nowell & Davidson, 2010; Relethford,
2013), logical analysis of the problem being solved, such as
building a shelter using only natural elements in the local
environment (e.g., Kalahari desert), and testing these
analyses against modern-day examples of ‘authentic’
traditions passed down to current times (e.g., how to build a
traditional grass hut). Regarding the latter — testing modern-
day cases — given the potential diversity of solutions
throughout the world, the tribes targeted for analysis can be a
critical factor. Although all are valuable in helping to uncover
universal abilities all humans inherited, the cleanest attempt
would be to examine those most closely related to our earliest
ancestors; and recent genetic evidence identifies the
San/Khoisan tribes as the oldest (Schuster, Miller, Ratan,
Tomsho, Giardine, et al., 2010). Of course, studying the
modern San to uncover the abilities of ancestral Homo
sapiens carries the assumption that their traditional activities
reflect the original ancestral solutions (due to facing the same
problem and solving it directly, logically and efficiently), but
this assumption could be false. However, the assumption can

ICCM2018

49

also be tested if we first conduct a theoretical analysis of how
a core activity would be carried out, and then compare the
conclusions to a modern-day case study.

In the current paper I take this approach by examining a
core activity of the San, with the goal of identifying the basis
set of the highest abilities of the human mind (prior to the
accumulating effects achieved via learning processes,
teaching, and culture). In the following sections, I first
identify shelter building as a fundamental task to be
examined. I then provide a theoretical analysis of shelter
building, and then present the core cognitive abilities
underlying human physical intelligence identified by this
analysis. I then compare the results of this analysis to a case
study of grass-hut building by a San tribe in Botswana, Africa
(Pratchett, 2017). Future work that examines the other key
activities of the San (such as medicinal knowledge and
practices, cooking, social interactions, and fire, tool,
houseware and jewelry making) will be needed to provide
greater assurance that the list is complete for human higher-
level cognition (Buss, 2015; Kralik, 2017; Relethford, 2013).

Why Shelter Building?
With the ultimate research aim to analyze all of the presumed
major activities of ancestral humans, I nonetheless chose
shelter building first for multiple reasons. Firstly, it is
important to examine a task that appears most complex, and
thus most taxing of our cognitive abilities. For example, it
should require more than just to seek or forage and extract,
with evidence suggesting these are not sufficiently complex
to explain higher cognitive abilities (Dunbar, 2003). In
addition, the activity ideally would be carried out by both
men and women since our interest is with core universal
human abilities, not more specialized cases. In fact, shelter
building is intriguing not only for the apparent complexity
involved, but that both sexes engage in it (and if anything,
mostly by the women) (Pratchett, 2017). Finally, the activity
should reflect not only understanding for prediction,
approach, attainment or avoidance, but also significant
manipulation for our own ends: i.e., controlling and creating.

These considerations nonetheless point to multiple
activities, such as basic social interactions, which we have
also begun examining (Lee, Kralik, & Jeong, 2018).
However, an additional reason for selecting shelter building
is the obvious need of our first ancestors to avoid the elements
and danger as a large ape previously adapted to arboreal life
in an environment turned from rainforest to woodland to
savanna, with relatively little protective weaponry or
terrestrial escape mechanisms: indeed, as a proverbial fish out
of water. Being so exposed (with respect to heat, cold,
weather, danger), natural shelters obviously had to be used,
including some trees and rock formations (like caves); yet as
the woodland turned to savanna these options become
limited, especially if one must remain nomadic to follow food
and water patterns and protect larger families. Thus, it is
apparent that there was great pressure for creative solutions.

Shelter Building Analysis
To visualize a simple shelter, Figure 1 is a general illustration
from the theoretical analysis, with the main elements shown.

Figure 1: Shelter elements from the theoretical analysis.

The initial problem then is this: when facing elements and
threats to be avoided — e.g., rain, heat, cold, predators —
how would the first ancestors come to the realization that a
shelter could be built? The first step is likely initial
observation when in a natural shelter, like a cave or under
trees (e.g., in downpour, such as during the rainy season),
with the realization that it will have to be abandoned to move
on to regions that may not contain such shelter (as nomadic
hunter-gatherers in the African savanna). Under such a
scenario, they then at some point must wonder, “couldn’t we
just recreate one ourselves?”

And this would require, cognitively, to construct a new
problem representation with a creative, novel solution. For
example, the initial action set called to mind in a downpour
would be various means to seek shelter: e.g., locate a cave or
sufficient tree canopy, perhaps check for safety, then move
inside or under. How then could this state set (e.g., caves, tree
canopies) and action set (e.g., find, enter) be expanded,
ultimately to the point of creating a shelter themselves?

To focus on a specific scenario, consider seeking shelter
under trees in a downpour (with results the same for other
specific cases, such as with a cave). The process of coming
to shelter building, then, would appear to begin with the
question, “what is stopping the rain?” The answer would
require an examination of the interaction between the rain and
what is blocking it, i.e., the tree leaves. More specifically, it
would require an examination of the contact site of collision
and determining what is happening, i.e., the reason for the
leaves’ effectiveness, and thus the mechanism of interaction.
Without the luxury of trial-and-error learning, and
effectiveness at a premium, simple associative processes are
not sufficient (Passingham & Wise, 2012). In other words, to
be successful and efficient, our ancestors would need to
identify the actual causal relationship — the specific
mechanism of interaction — and do so in an efficient manner
(reasonable amount of time, minimal errors). It thus requires
Homo sapiens the scientist, with two critical characteristics:
(1) manipulation of ‘trials’ as experimental tests of
hypotheses to isolate the causal factors from confounds; and
(2) an ability to identify the actual causal agents and their
effects. Then consider each of these in turn. First, an
experimental approach to problem solving would require a
meta-view of the problem, i.e., manipulating the overall

Leaves or Grass exterior

Cross branches for beam reinforcements

Larger branches (boughs) as foundation beams

Smaller branches

Inserted in ground holes

Twine to tie down structural elements

Ground cleared of brush & debris

Entrance

ICCM2018

50

problem representation and analysis of it: e.g., considering
independent and dependent variables, organizing ‘trials’ to
test their relationship, and recognizing such relationships
(e.g., linear, nonlinear). Thus, metacognition is required.
Moreover, such designing of experiments would also require
mental simulation and planning.

 For the second characteristic, a proper experimental
analysis would nonetheless lead to nothing visible — i.e., no
perceptual features could be identified that cause the
successful blocking of the rain (e.g., green color, shape). In
short, it leads to a determination that there are unseen causal
agents & forces (Kralik, 2017). More specifically, rain
blocked by a leaf, even intuitively, would be represented as a
collision of two counter forces driven by two underlying
causal forces animating the rain (i.e., giving it strength and
movement force) and fortifying the leaves (i.e., producing the
strength and repellent properties): i.e., if R1 = causal relation
(as collision), and Fi = force produced by causal agent, then
R1(F1(assumed causal agent1, leaf), F2(causal agent2, rain)),
simplified as R1(leaf, rain) or R1. Of course, the underlying
electromagnetic forces could not be truly understood (they
aren’t even so now), but a proxy can be used and labeled, e.g.,
as a “spirit” or “essence.” Indeed, all objects would now be
considered as entities consisting of underlying causal agents
that animate them, producing the forces that lead to their
interactions, i.e., their dynamics. Thus, a kind of animism is
anticipated not just as a religious point-of-view but as a
universal cognitive construct derived from causal reasoning.
Indeed, it is interesting to note that animism is thought to be
universally shared by all indigenous tribes around the world
(Relethford, 2013).

This theoretical understanding, then, requires the ability to
imagine hidden causal agents and their resulting forces that
lead to changes in objects that can be observed (Kralik,
2017). In addition, to isolate and identify these hidden causal
agents, reductionism and inductive reasoning are also
required. Moreover, an understanding of the relationships of
causal agents from observations of specific cases (i.e., trials)
requires abstraction to view (a) the specific cases from
observations as an ‘ordered set’, and (b) the relationship
between two ordered sets (e.g., a linear relationship between
the independent and dependent variables).

The second major step toward shelter building is
comprehending the ‘roof’: i.e., how the leaves are held
overhead. The answer is that each leaf is held by a stem:
R2(stem, leaf); then stem held by branch: R3(branch, stem);
and, thus, branch with leaf as R3(R2(R1)). R2(R1), then, is a
first nested causal relation: i.e., relation of relation (and
note a tool control structure).

Third, a branch with multiple stems and leaves is
comprehended as R4(R3(branch, R2(R1) * X)), with R3
representing adherence and R4 a configuration of multiple
(i.e., X) nested relations. Importantly, a key mechanism by
which the mind manages these embedded relations is via
chunking: e.g., “R4(etc.)” is considered a ‘branch with
leaves’, multiple branches with leaves across adjacent trees a
‘canopy’, and its ability to block the rain a natural ‘roof’. It is

a powerful type of naming that reflects symbol use and a
capacity for extensive cross-referencing (Kralik, 2017).

Fourth, one must understand how trees are held upright:
R7à1, where R5 = larger branch (or bough), R6 = tree trunk
(and roots), R7 = ground (i.e., roots into ground). This
extended hierarchical tree data structure reflects not only
nested relations, but more clearly recursion (i.e., nested
subtrees).

Fifth, now these separate tree structures (both figuratively
and literally) need to be configured together to form a canopy
(i.e., a more complete roof): R8(R7à1, R7à1) => R8(‘R7à1,’ *
X), where R8 = circular configuration in ground of multiple
(i.e., X) bough-branch-leaves structures (i.e., beams) to
construct the 3D structure. R8 is a relation of more clearly
separate hierarchical relations, i.e., of each tree structure or
beam — a forest in graph-theoretic terms.

Sixth, an entrance would be needed: i.e., opening in the
natural shelter under the trees to reach it (and eventually
made in the hut), which is a comprehension of a new
configuration of the larger one (i.e., of the larger 3D structure
of the shelter) — and thus ‘forests’ can also be included or
embedded in other relationships.

At this point the general structure of the natural shelter is
understood. Thus, to actually build a shelter, this
understanding is first necessary (Homo sapiens as scientist).
But then to build it, other cognitive abilities are required —
i.e., Homo sapiens must now become the engineer. The
seventh consideration, then, is a particularly critical one. To
convert the knowledge into actual construction, in brief, the
key mechanism appears to be substitution of causal agents,
i.e., a matching of forces and actions across different objects
(i.e., via their underlying causal forces, and thus their actions
or forces), and the ability to then swap causal agents (and thus
various interacting objects, including self) among the roles.
Indeed, the first component, matching, is essentially the
comprehension of analogies, i.e., matching the relations of
different agents across content domains: like wind blowing
branches as if carrying them. In fact, normal generalization
abilities are important here but appear too limited to provide
sufficient matching of actions between different causal
agents (including oneself), especially across all biological
and nonbiological objects of interest. Thus, abstraction is
again needed to reach a level sufficient to enable matches
across different objects (i.e., via their underlying causal
forces, and thus their observed actions). Abstraction is
reflected in concepts like hit, push, throw, drop and collide.

In addition, note that this substitution mechanism also uses
explicit knowledge about self — e.g., labeling self as agent
and modeling our own actions and relations — thus revealing
self-reflection and self-representation capability (with both
a type of metacognition). Moreover, when considering action
in more detail, action selection is not merely choosing one
action element from a set given the current state; rather, we
need to mold actions according to affordances of a target,
producing an embedded problem of ‘how do I generate the
necessary action (configuration)?’ (Kralik, Muldrew,
Gunasekaran, & Lange, 2017). In other words, we have

ICCM2018

51

A1(Self, Body), where Body = action configuration, such as
that for reaching and grasping, with A1 = actual action
performed. If we substitute “Mind” for “Self”, and convert
A1 to the actual underlying force it generates, F1, the
manipulation of an external object would actually be:
R1(F1(Self=Mind, Body), F2(causal agent2, Target)), where
R1 = manipulation of the external object to create the desired
dynamic change (producing the collision of forces between
the two ‘objects’).

The second component of the substitution mechanism —
substitution per se, and in particular when self is substituted
in — is the key contact point, or pivot, between cognition and
action. Indeed, it is related to the well-known mirror system
discovered initially in rhesus monkeys (see Gazzinga, Ivry,
& Mangum, 2013). However, in the current case it is
significantly more sophisticated: for example, relating to
hidden causal agents and forces, abstraction, self, and
flexibility (i.e., much less “mirror”-like as a process).

In fact, the substitution mechanism appears to be a key
means by which humans are able to manipulate the problem
representation and problem-solving process, especially
regarding adding elements to the representation (e.g., new
states, stimuli, and actions). This would be expected to occur
particularly during the ‘scientist-experimental’ periods, in
which the individual is discovering new causal relationships
and the causal agents underlying them (and then mapping the
findings to one’s one actions, often with the help of
abstraction). (Another critical means to manipulate the
problem-solving process is with the use of levels of cognitive
systems, with each level having particular problem elements;
Kowaguchi, Patel, Bunnell, & Kralik, 2016; Kralik, 2017;
Kralik, Shi, et al., 2016; Sampson et al., 2018) Indeed, not
only does the substitution mechanism provide a means by
which observation of external behavior can be converted into
novel actions and creative solutions, it is another example of
how perception and action appear more closely aligned than
typically appreciated.

Substitution and causal understanding of the underlying
imagined causal agents and forces, then, enable inserting
oneself (or other agents) in various places in the nested causal
relations when necessary, enabling shelter construction. For
example, cutting and collecting branches could occur after
observing the effects of wind, and replacing it with self; or
even matching one’s own behavior from different
circumstances, such as moving smaller branches, and then
replacing the smaller with larger ones for shelter beams. This
would continue at each step, e.g., configuring the beams in a
circle, inserting into ground, etc. In short, the entire
construction process can result once there is a proper causal
understanding of each component, followed by a matching
then replacement of causal agents by self or other agents.

Eighth, with a basic shelter structure in place, branches
must also then be further incorporated, interleaved for
reinforcement (and walls), and then more leaves are needed
for covering the entire structure, including the walls. This
step requires a consideration of stability and strength of the
structure as a whole, and using relations to produce a

heightened combined force, Fx, to properly counter opposing
forces (e.g., wind or gravity). Thus, R2([R1(F1(assumed
causal agent1, cross branch), F2(causal agent2, beam))],
F3(causal agent3, wind)).

Ninth, further reinforcement by tying down is needed,
driving the desire to obtain a type of rope or twine, which
would provide critical stability for the overall structure. In
fact, this step is a clear example of additional subproblems,
especially for refinements of the overall structure. For
example, the twine must first be prepared, such as from
animal intestine, vines, or tree bark. These subproblems, then,
reflect insertion of nested relationships, comparable to
means-end analysis (Russell & Norvig, 2010). Indeed, there
are multiple subproblems (refinements), including
determining the type of tree; type of external covering, i.e.,
leaves vs. grass (and species type); tools (such as axe,
cutters), including their manufacture (Kralik, 2017; Nowell
& Davidson, 2010; Relethford, 2013); and help from others,
i.e., coordination of activities (Shi, Sauter, & Kralik, 2009;
Shi, Sauter, Sun, Ray, & Kralik, 2010; Sun, Mao, Ray, Shi,
& Kralik, 2011).

Tenth, in fact, all materials must be acquired first and the
structure built in opposite order: e.g., holes being made in the
ground, beams inserted into them, reinforcements made (i.e.,
walls), and then covering added. Thus, beginning with a need
for a covering or roof as the original problem, construction
yet proceeds in the opposite order, with the roof (and overall
covering) produced as a final step. This again reflects mental
simulation and planning, as well as — especially with respect
to obtaining the needed materials — search, select, sort and
‘data’ organization processing abilities.

Finally, ‘understanding’ can provide an accurate
description of what is observed (e.g., causal mechanisms of
rain and tree dynamics), but to manipulate this understanding
for one’s own needs and capabilities (e.g., having action, size,
and strength constraints of the human body), flexible
manipulation and modifications of this knowledge is
necessary. For example, it would not be feasible to use larger
tree trunks as shelter beams, and instead, larger branches
(boughs) must be acquired and inserted into the ground. Thus,
further cognitive manipulation abilities are needed. Focusing
on having a series of nested relations (e.g., R8à1), these
include the ability to produce deletions, insertions,
replacements (substitutions), inversions, sections moved and
rearranged, duplications, and perhaps most notably
chaining, which provides the transitivity necessary for
another critical capacity: deductive reasoning.

Core High-Level Cognitive Abilities
From the theoretical analysis of shelter building, we obtain
the list of 18 core abilities shown in Table 1.

Shelter Building Case Study: San Grass Huts
Based on logic and efficiency, one might expect minimal
shelters to be produced in a highly circumscribed way, as
just enumerated. Nonetheless, it is important to attempt to
obtain empirical evidence to test these conclusions. To do

ICCM2018

52

so, I examined one case study of grass-hut building by a San
tribe (i.e., the ǂX'ao-||'aen in Botswana, Africa), in which
one village member described the process as they build one
in a video produced by an anthropologist who studies their
lifeways in the field (Pratchett, 2017). Although it is
possible that the shelter building of this modern San tribe
community may be significantly different from that of our
first Homo Sapiens ancestors, the extent to which their
process matches my theoretical analysis should help to
validate a basic process that would be expected to have been
utilized by the original ancestors (based on the fundamental
constraints of the problem, combined with a simple, logical
and efficient solution). Table 2 lists the construction steps.

Table 1. The high-level cognitive abilities for shelter building.

1. Problem solving and Decision making
2. Metacognition (for meta-problem-solving, i.e.,

manipulating the problem representation)
3. Mental models, Simulation, & Planning
4. Hidden causal agents & forces, with interaction as collision:

Animism as intuitive physics
5. Reductionism & Inductive reasoning

6. Abstraction

7. Analogies (from matching at higher levels of abstraction)

8. Self-representation and Self-reflection

9. Substitution (of causal agents, including self, into relations)

10. Nested causal relations: i.e., relations of relations

11. Chunking, Symbolic processing, Cross-referencing

12. Recursion
13. Configurations of multiple nested relations (i.e., a ‘forest’):

Relation of more clearly separate hierarchical relations
14. Using relations to produce heightened combined force

15. Subproblems: i.e., insertion of nested relationships

16. Search, Select, Sort and ‘Data’ organization processing
17. Flexible manipulation and modifications of knowledge: e.g.,

deletions, insertions, replacements (substitutions),
inversions, sections moved and rearranged, duplications

18. Deductive reasoning

Theoretical and Case Study Comparison
Overall, the theoretical analysis of shelter building closely matches
the case study, including material preparation, branches inserted into
ground holes as beams, cross branches as reinforcements and walls,
a roof, entrance, a fully covered structure (via leaves or grass) to
protect from the elements, and a rope or twine to hold everything
more firmly in place. In fact, further details from the case study
provide even more interesting information regarding the
‘refinements’ or subproblems mastered, such as attention to the
functional properties of specific tree and grass species, replacing the
leaves with grass, the process of adding the grass, and a process used
to produce twine. Nonetheless, all such additional details are readily
explainable by the core cognitive abilities derived, such as replacing
the leaves (observed overhead) with grass (from the ground).

The one core cognitive ability that may be less apparent in the
case study is (5), i.e., actual appreciation and use of hidden causal
agents and their generated force interactions among the objects
(versus a simpler use of the functional properties of objects).

However, multiple lines of evidence appear to reflect the deeper
intuitive physics understanding. The most critical evidence found in
the case study is that for reductionism, in which, e.g., objects are
seen as a combination of parts (and the unseen ‘glue’ holding them
together), enabling the preparation of parts as needed, including
cutting branches; and then even further, the parts being seen as a
combination of materials (enabling the most flexible consideration
and manipulation of them). A similar assessment was derived from
a detailed analysis of tool manufacturing and use from
archaeological and anthropological evidence (Kralik, 2017). Put
differently, we see the effects of unseen causes daily, such as the
effects of gravity, and the causal mind requires a reason for them. A
satisfactory explanation requires the supposition, the assumption
that the causal agent must be unseen, invisible to the naked eye,
which we label with an arbitrary symbol such as “spirit” or
“essence” (or “force” or “gravity”). And as stated, this
understanding relates to animism as a way of thinking, which is
thought to be universally shared by all indigenous tribes, and is so
by the San (Relethford, 2013).

Table 2. Actual San grass-hut construction.

1. Collection and preparation
 - Gather particular species of grass as clumps (i.e., with roots), and branches of
 a certain tree (Za’o, Terminalia sericea) for strength and insect resistance,
 cutting them from trees
 - Clearing for shelter entirely of sand

 - Make twine (for tying into place)
 -- From the fibers of the Za’o tree
 -- Or from a succulent plant (!hui).
 --- To prepare: soaked in water to soften, then beaten with pestel to expose a stringy
 inside, which is then twined to form the rope (for multiple purposes)
 (Lee Pratchett, personal communication).

2. Holes in ground, circular configuration, with digging stick, hands

3. Branches inserted in holes
 - From pile of branches, inspecting for long and “bendy” ones,
 taking apart further if needed
 - Place in holes according to size and height as “pillars”
 - Fill holes to hold branches firmly
 - Checking overall structure throughout

4. Roof
 - Holding the branches together, bending them, and tying tightly with rope
 - Further thatching with twigs and branches: i.e., adding smaller twigs and
 branches at the top

5. Entrance
 - Wrapping smaller branches, bending and tying them (with rope) for opening
 - Adding grass to “door”

6. Reinforcement, walls
 - Adding more branches throughout to make the sides and top stronger (“tough
 and firm”), entwining them among the others (some perpendicular to beams
 but all directions), larger ones lower

7. Grass exterior
 - First digging trench around outside to support grass at bottom, then covering
 with sand after inserting bottoms (i.e., the root clumps)
 - Then cover the “house” by turning the grass clumps upside down,
 interleaving the top of the grass with the layer below
 - Using stick to reach the top, “to make grass on top firm and stop the rain
 coming through”
 - Then using larger twine to wrap around outside and tie down structure, “to
 avoid the wind blowing the grass away”

8. Checking and cleanup

 - Checking for holes, sharp edges, sweeping debris on ground

In sum, the high theoretical and case study similarity suggests that

simple shelter building yields a solution with universal principles:
like a configured foundation, cross-beam reinforcements, roof,

ICCM2018

53

entrance, and outer covering to protect against the elements. These
basic components in turn reflect fundamental cognitive abilities
required to comprehend, imagine and produce them.

Discussion
Eighteen core cognitive abilities, therefore, appear to be necessary
to produce the types of shelters made by our original Homo sapiens
ancestors, and thus constitute at least a partial list of what our minds
were designed by evolution to do: in this case, to avoid a broad array
of potential threats, from climate (e.g., temperature control and
inclement weather) to other organisms (e.g., predators), especially
at night — in the dark, and during sleep. How likely is this list
complete? If we accept that an analysis of the key activities of the
ancestral Homo sapiens should produce the core cognitive abilities,
then the current findings would minimally be a necessary initial step
in identifying the fundamental abilities in a way that perhaps best
isolates them from possible effects of learning and culture. Of
course, learning also took place among the ancestral humans. This
is in fact why it is also important to attempt theoretical analyses of
the problems they solved. At the same time, it is nonetheless
important to assess the theoretical results with empirical ones when
possible. In fact, current genetic evidence identifies San tribes as
those most closely genetically related to our original ancestors
(Schuster et al., 2010), and the activities from their hunter-gather
lifestyle (either currently or more typically as passed down
knowledge from hunter-gather times) likely reflect solutions in the
Pleistocene. And yet many modern anthropologists and indigenous
tribes and their advocates adamantly emphasize that their customs
also reflect vast cultural evolution over time. This caveat is
important and again shows why it is also critical to attempt a
theoretical analysis prior to an empirical one based on any modern
tribes. The fact that I obtained such a close match between the
theoretical analysis and empirical description suggests that the
problem itself likely produces comparable solutions (assuming a
logical and efficient one).

To determine whether Table 1 is complete, other San activities
that reflect ancient hunter-gather ones also need to be examined.
These include fire making, cooking, houseware (e.g., pots) and tool
making/manufacture, jewelry making, medicinal knowledge, and
social interactions. There is indeed valuable information on most of
these, but a detailed examination of the necessary underlying
cognitive abilities is needed. An additional critical question that
such future findings should shed light on is the extent the mind/brain
is organized around general versus specialized content domains. A
direct comparison of the generated lists of necessary cognitive
abilities should provide some clarity.

In considering the novelty of the current findings, it is of course
true that all items in Table 1 are well known and actively studied
(e.g., Gazzinga, Ivry, & Mangum, 2013; Glimcher & Fehr, 2014;
Helie & Sun, 2010; Holyoak & Morrison, 2012; Kowaguchi et al.,
2016; Kralik, 2017; Kralik, Shi, et al., 2016; Kralik, Mao, Zhao,
Nguyen, & Ray, 2016; Laird, Lebiere, & Rosenbloom, 2017;
Russell & Norvig, 2010; Sampson et al., 2018; Silver, Schrittwieser,
Simonyan, Antonoglou, Huang, et al., 2017; Tenenbaum, Kemp, &
Griffiths, 2011). However, to my knowledge, no current AI system
is explicitly based on these 18 core abilities. For example, most
systems build knowledge structures around objects, more than
around the underlying causal agents animating the objects (although
see Battaglia, Hamrick, & Tenenbaum, 2013). Of course, the
functional properties of objects are utilized, but the argument here
is that they have to this point perhaps been too subordinated to basic
object knowledge. Exactly what this means in terms of applicability
will require a computational implementation of such a system (i.e.,

based on Table 1), which I am currently undertaking. Indeed, a
computational implementation will also help determine whether
such core cognitive abilities are actually sufficient to then simulate,
together with learning and cultural knowledge, more of our higher
abilities and achievements (such as an understanding of higher math,
and from building shelters to spaceships).

Finally, a major thrust of this research program is an attempt to
better understand how problem representations themselves are
generated and modified (Kralik, Mao, et al., 2016; Kralik, Shi, et al.,
2016; Sampson et al., 2018). This critical problem appears to be
understudied, and yet one that appears to have been enduringly
confronted by our ancestors: ‘how do I solve a problem that I never
faced before, being a fish-out-of-water as a large and relatively
defenseless ape adapted for arboreal life?’ In any event, it is believed
that the approach advocated here should complement others with the
aim to uncover and eventually simulate the highest abilities of the
human mind and brain.

References
Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of

physical scene understanding. PNAS, 110(45), 18327–18332.
Buss, D. (2015). Evolutionary Psychology. New York: Routledge.
Dunbar, R. I. M. (2003). The Social Brain: Mind, Language, and Society in Evolutionary

Perspective. Ann. Review of Anthropology, 32(1), 163-181.
Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2013). Cognitive neuroscience: the biology

of the mind. WW Norton & Company.
Glimcher, P. W., & Fehr, E. (2014). Neuroeconomics: Decision making and the brain. Oxford:

Academic Press.
Hélie, S. & Sun, R. (2010). Incubation, Insight, and Creative Problem Solving: A Unified

Theory and a Connectionist Model. Psychological Review, 117, 994-1024.
Holyoak, K. J., & Morrison, R. G. (Eds.). (2012). The Oxford Handbook of Thinking and

Reasoning. Oxford University Press.
Kowaguchi, M., Patel, N. P., Bunnell, M. E., and Kralik, J. D. (2016). Competitive control of

cognition in rhesus monkeys. Cognition, 157: 146-155.
Kralik, J. D. (2017). Architectural design of mind & brain from an evolutionary perspective.

Proc. AAAI 2017 Fall Symposium: A Standard Model of the Mind.
Kralik, J. D., Mao, T., Zhao, C., Nguyen, H. T., and Ray, L. E. (2016). Modeling incubation

and restructuring for creative problem solving in robots. Robotics and Autonomous
Systems, Special Issue on Robotics and Creativity, 86: 162-173.

Kralik, J. D., Muldrew, D. B. C., Gunasekaran, D., and Lange, R. D. (2017). Cognitive control
for goal-directed reaching in a humanoid robot. Proceedings of the IEEE International
Conference on Robotics and Biomimetics (ROBIO).

Kralik, J. D., Shi, D., El-Shroa, O. A., and Ray, L. E. (2016). From low to high cognition: A
multi-level model of behavioral control in the primate brain. Proceedings of the Annual
Meeting of the Cog. Sci. Society.

Laird, J. E., Lebiere, C., & Rosenbloom, P. S. (2017). A Standard Model of the Mind: Toward
a Common Computational Framework Across Artificial Intelligence, Cognitive Science,
Neuroscience, and Robotics. AI Magazine, 38(4), 13–26.

Lee, J., Kralik, J. D.*, and Jeong, J.* (2018). A Sociocognitive-Neuroeconomic Model of
Social Information Communication: To Speak Directly or To Gossip. Proceedings of the
Annual Meeting of the Cog. Sci. Society. *Co-corresponding authors.

Nowell, A., & Davidson, I. (2010). Stone Tools and the Evolution of Human Cognition.
Boulder: University Press of Colorado.

Passingham, D., & Wise, S. P. (2012). The Neurobiology of the Prefrontal Cortex. Oxford:
Oxford University Press.

Pratchett, Lee J. (2017). Community-based digital documentation of Ju|'hoan and ǂX'ao-||'aen:
audio, video and text archives of language and culture diversity. ID: M!a gu tju - letʼs build
a house. London: SOAS, Endangered Languages Archive, ELAR. URL:
https://elar.soas.ac.uk/Collection/MPI854174 (accessed Feb. 16, 2018).

Relethford, J. H. (2013). The Human Species. NYC: McGraw-Hill.
Russell, S., & Norvig, P. (2010). Artificial Intelligence. Upper Saddle River, NJ: Prentice Hall.
Sampson, W. W., Khan, S. A., Nisenbaum, E. J., and Kralik, J. D. (2018). Abstraction

promotes creative problem-solving in rhesus monkeys. Cognition, 176: 53–64.
Schuster, S. C., Miller, W., Ratan, A., Tomsho, L. P., Giardine, B., Kasson, L. R., et al. (2010).

Complete Khoisan and Bantu genomes from southern Africa. Nature, 463(7283), 943–947.
Shi, D., Sauter, M. Z., and Kralik, J. D. (2009). Distributed, Heterogeneous, Multi-Agent

Social Coordination via Reinforcement Learning. Proc. of the IEEE Int. Conference on
Robotics and Biomimetics (ROBIO).

Shi, D., Sauter, M. Z., Sun, X., Ray, L. E., and Kralik, J. D. (2010). An extension of Bayesian
game approximation to partially observable stochastic games with competition and
cooperation. Proceedings of the International Conference on Artificial Intelligence (ICAI).

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., et al. (2017). Mastering
the game of Go without human knowledge. Nature, 550(7676), 354–359.

Sun, X., Mao, T., Ray, L. E., Shi, D., and Kralik, J. D. (2011). Hierarchical state-abstracted
and socially-augmented Q-learning for reducing complexity in agent-based learning.
Journal of Control Theory and Applications, 9: 440-450.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind:
Statistics, Structure, and Abstraction. Science, 331, 1279-1285.

ICCM2018

54

A cognitive model of switching between reflective and reactive decision making in
the Wason task

Othalia Larue (othalia.larue@wright.edu), Alexander Hough (hough.15@wright.edu), Ion
Juvina (ion.juvina@wright.edu)

Department of Psychology, Wright State University, ASTECCA laboratory
Dayton, OH 45402 USA

Abstract

Using the Wason card selection task, we model how humans
decide to engage in further deliberation after generating an
intuitive response. Central to our model is the Feeling of
Rightness which is the fluency with which one makes a
decision, and how good one feels about it. The model is
implemented in a cognitive architecture, ACT-R. A core affect
mechanism and the Feeling of Rightness component are used
to drive the decision. A training procedure was used to simulate
individual differences in heuristic and analytical behavior.
Different degrees of reinforcement were then used to allow the
model to learn logical skills, and acquire differences in FOR,
which determined the degree of further deliberation. By relying
on ACT-R’s different memory components and the core affect
mechanism we were able to reproduce the variation between
analytical and reactive behavior.

Keywords: cognitive decoupling, cognitive architecture,
Wason task, deliberation, Feeling of Rightness, heuristic.

Introduction
The abstract Wason card selection task (Wason, 1968) is a

reasoning task that involves two types of answers, which
reflect different types of processing. In this context, fast
(heuristic) processing results in an incorrect answer, while
slower and more analytical processing is more likely to result
in a correct answer.

In previous work (Larue et al, 2013), we explored this
phenomenon by implementing a specific theory (the tripartite
framework, Stanovich, 2009) in a computational model.
Stanovich’s tripartite framework provides an explanation of
how reflective and reactive human behavior emerges from
the interaction of three distinct cognitive levels (or minds):
autonomous, algorithmic, and reflective. We showed how the
three levels contribute to the different types of answers in the
Wason card selection task. However, we did not explain what
triggered each of the three levels to become involved in the
decision process. Here, we will do so using the same task.

We will briefly review the extant literature about human
performance on the Wason card selection task, what
functions are involved, and how they are triggered to improve
decision-making. For the latter we will specifically go over
the notion of Feeling of Rightness (FOR; Thompson, Evans,
& Campbell, 2013), which describes how good we feel about
the answer we produced and helps us decide if we want to
engage in further deliberation. Then, we will present a
computational cognitive model that attempts to explain how
humans decide to engage in deliberation in the Wason task
by integrating both Stanovich’s tripartite framework

(Stanovich, 2009) and a complementary notion, the FOR
(Thompson, Evans, & Campbell, 2013) into the ACT-R
cognitive architecture (Anderson, 2007). Finally, we will
present qualitative results of our computational model on the
Wason task.

Related work
In the abstract Wason card selection task (Wason, 1968),

four cards with a letter on one side and a number on the other
side are presented. The visible sides are “A”, “D”, “3” and
“7”. The following rule is also presented: “If there is an A on
one side of the card, then there is a 3 on the other side of the
card”. Then, the participants are asked: “Which card(s)
should you turn over in order to test the truth of the rule ?”

The rules of inference that should be used for deliberation
are: modus ponens (if P then Q, P: therefore, Q) and modus
tollens (If P then Q. Not Q: therefore, not P). However, these
rules do not seem to be systematically applied by participants
as evidenced by the variety of answers: (“A” and “3”), (“A”),
(“A” and “7”). The most frequent answers are “A” and (“A”
and “3”).

Different theories have attempted to explain these results,
such as the mental model theory (Johnson-Laird, 1980) and
the heuristic analytic theory (Evans, 2006), but have not
provided a complete explanation for the variety of observed
behaviors. Stanovich’s tripartite framework (Stanovich,
2009) is a dual process theory (i.e., a theory distinguishing
two processing styles: type 1, that is fast and automatic, and
type 2 that is slow and deliberative) that fills this gap. It
provides an explanation of how both reflective (i.e., type 2
processing characterized by sequential processing) and
adaptive (i.e., type 1 processing characterized by reactivity)
behaviors emerge from the interaction of three distinct levels:
(1) an autonomous mind responsible for fast context-
sensitive behaviors (type 1), (2) an algorithmic mind
responsible for control (type 2), and (3) a reflective mind
responsible for deliberative processing (type 2). Engaging in
deliberation involves a process called cognitive decoupling.
It is launched by the reflective level and carried out at the
algorithmic level. Cognitive decoupling is an off-line
simulation: modules fitting its description can be found in the
psychology research (Leslie, 1987) and in cognitive
architectures (Larue, Poirier, & Nkambou, 2013; Sun, 2015).

The tripartite theory explains three different behaviors
observed in the Wason task: (1) a complete reliance on the
autonomous mind leads to the frequently observed error (i.e.,
selecting two cards (“A” and “3”), one with the correct

ICCM2018

55

answer (“A”) and one with the incorrect answer that are
found in the wording of the task), (2) a partial deliberation
leads to selecting only one of the correct answers (modus
ponens), the one containing the antecedent, and (3) a
complete deliberation allows for the activation of the counter-
information rule (modus tollens) which leads to a response
that is less frequently observed (“A” and “7”).

The initial heuristic judgment (“A” and “3”) is cued and
automatic (matching to the wording). Why is this judgment
accepted without more analysis? According to Thompson et
al. (2013), we are tempted to accept this initial response as
our final one because it is compelling; it has the feeling of
rightness (FOR). It is a metacognitive experience that
determines if one proceeds to further analysis; it is essentially
the perceived confidence that an initial answer is correct.

In previous work (Juvina, Larue, & Hough, 2017), we
showed that an affective modulation of memory helps to
make better decisions in complex tasks that exceed human
limited memory capacities. In this paper, we will use the
same mechanism to explain people’s judgment of their initial
answer based on its fluency. We hypothesized that the
fluency of the initial answer creates the gut feeling that leads
to being confident in this first answer. In our model, we
assume that FOR is the component deciding if one has more
of an analytical profile or a reactive profile. It reflects how
fast it was to produce a first non-analytical “gut” answer and
influences the extent of subsequent processing.

Model
The model1 is implemented in ACT-R (Adaptive Control

of Thought – Rational; Anderson, 2007), a unified theory of
human cognition used to develop computational models of
various cognitive tasks. ACT-R is composed of various
modules: goal, imaginal, visual, aural, manual, vocal, and
two memory modules: declarative memory (facts) and
procedural memory (know-how). It is a hybrid cognitive
architecture. Symbolic components are combined with
subsymbolic components: the retrieval of a fact from
declarative memory depends on subsymbolic retrieval
equations (pondering the context and history of retrieval of
the fact), and, the selection of a rule depends on a
subsymbolic quantity called utility, which computes costs
and benefits associated with the rule. Learning processes act
at both subsymbolic and symbolic levels. Additionally, we
use the core affect mechanism (Juvina, Larue & Hough,
2017): the memory elements (chunks) are reinforced through
reward patterns that occur within the environment.

Model elements
Memory representation of the “mental models” Chunks
are elements of the declarative memory in ACT-R. As shown
in Figure 1, the representation of a mental model includes two
rule structure chunks and four card chunks. The first line of
Figure 1 means that the chunk with the name rule1 is a chunk
of the type rule with a slot “if” that has the value “p”, a slot

1 Model code available: thttp://psych-scholar.wright.edu/astecca/

“then” with the value “q”, the slot “notif” with the value 0 (no
negation), the slot “notthen” with a value 0 (no negation).
This chunk represents the logical structure of modus ponens
and will be used by the procedure modus ponens. The third
line of Figure 1 means that the chunk with the name card1 is
a chunk of the type card with a slot “letter” that has the value
“A”, a slot “meaning” with an empty value (“”), the slot “not”
with a value 0 (no negation), no number (nil), and the slot
“deco” with a value 0 (to signify that it is not part of the
decoupling inner simulation). As the model processes
information, the card1, card2, card3, card4 chunks will be
modified.

Figure 1: Memory representations in ACT-R.

When the decoupling starts, the model’s inner simulation
is populated by the card elements that could be retrieved at
that time (‘card1’, ‘card2’, ‘card3’, ‘card4’ in Figure 1). To
mark the element in declarative memory as part of the
decoupling operation, its “deco” slot is switched to 1. Modus
ponens and modus tollens rules are only applied on an
element with a “deco” slot of 1. When decoupling ends, the
“deco” slot is switched to 0.

When the modus ponens rule (which uses the modus
ponens structure chunk) is applied, it modifies the “meaning”
slot as “p” and ‘card2’ “meaning” slot as “q”. The modus
tollens rule will lead to the modification of card4 meaning
slot as “notQ”.

The resulting mental representation in declarative memory
is the mental model of the task at a given time. The merging
with declarative memory that occurs at the end of the
cognitive decoupling reinforces the chosen mental model in
memory.

How FOR is modeled? Cards are represented as chunks in
the declarative memory (see Figure 1). Rethinking times,
answer changes, and fluency are a function of the value of
FOR. FOR depends on the time required to achieve the
retrieval of “A” and “3” through an initial priming rule: the
higher the FOR, the less you engage in deliberation. The
FOR-inverse variable is a measure of how fast the model
retrieved those two first cards/answers, as measured by the
temporal module. FOR-inverse acts as a gateway for further
processing when it is above a threshold. Thus, the time
required to complete the initial retrievals is assigned to the
FOR-inverse variable; when the value of this variable is
below threshold, the model goes with the initial answer (i.e.,
type 1 processing); when FOR-inverse is above threshold,
cognitive decoupling is launched and the model engages in
further processing (i.e., type 2 processing). Every reward sent
in the system is a function of FOR. including the reward sent

ICCM2018

56

at the end of decoupling (see analytical thinking column of
Figure 2): it will determine the extent to which a decoupling
result (i.e., wrong, partial, and complete) is taken into account
during answer selection in our model.
Answer selection The model produces an answer when the
valuation of a representation is above a certain threshold. The
valuation and arousal values, which help to define the core
affect, are sub-symbolic quantities added to the current sub-
symbolic equations of ACT-R. It allows for a specification of
how emotion meshes with other cognitive processes. A
detailed explanation of the core affect model is out of the
scope of this paper and can be found in Juvina et al. (2017).

Core affect augments ACT-R’s general equation.
The augmented core-affect activation equation is:
Ai = Bi + Si + Pi + Vi + Ari + εi (1)
As part of the general activation equation, Ai is the

activation of the chunk i, Bi the base-level term reflecting its
recency and frequency, Si is the spreading term (context
effect) and Pi is the partial matching term. This general
equation is augmented with the valuation which is learned
from rewards. Vi is the valuation term and reflects the
rewards received by the model after referencing chunk i. Ari
is the arousal term which reflects the importance of chunk i
and is computed as the absolute magnitude of the valuation
term.
Vi(n) = Vi(n-1) + αv[Ri(n) – Vi(n-1)] (2)
Vi(n) is the valuation of chunk i after its nth update. Vi(n-

1) is the valuation of chunk i prior to its nth update. αv is the
learning rate for valuations. Ri(n) is the effective reward
value received by chunk i before its nth valuation update.

When a reward is triggered, valuations are updated. All
chunks that have been referenced within a time window are
updated. The time window is controlled by the parameter
:vtw (valuation time window).

Rewards are a function of the initial FOR (negative factor
in the case of negative reward). It will affect the answer
selection (“yes” or “no” answers will be produced according
to how the model “feels” about the answer). A reward is sent
after the initial priming so that the priming of the first answer
is salient. When the model engages in cognitive decoupling,
a negative reward attenuates the priming of that first answer
(but does not erase it). Rewards also reinforce the chunks of
the cards retrieved from memory during modus ponens and
modus tollens.

Rules involved in cognitive decoupling
These rules will be used if the FOR-inverse is above a

certain threshold (Parameters of the model can be seen in
Table 1). Successive retrievals of chunks of the type “card”
populate the representations used by cognitive decoupling.
Their “deco” slot is modified from 0 to 1. Rules are applied
on chunks from the declarative memory which “deco” slot
has been marked as 1.

Modus ponens Before modus ponens is applied, a procedure
inhibits the previous answer (from priming) by triggering a
reward, which will decrease its valuation. This procedure is

applied during the cognitive decoupling. Through an
exploratory procedure, “A” is identified as P (the meaning
slot of the chunk with the letter slot with value “A” is filled
with “p”). Modus ponens only retrieves the “A”, which will
be reinforced by the retrieval and the positive reward sent
after the end of the decoupling, leading the model’s instance
to answer “A”. If the modus ponens rule structure can’t be
retrieved, modus ponens can’t be applied, resulting in a
cognitive decoupling with a wrong answer (“A” and “3”).
The chunks with the “A” and “3” slot values are inhibited at
the beginning of decoupling; however, the positive reward
sent at the end of the cognitive decoupling will still reinforce
the “A” and “3” who were the last element retrieved before
decoupling (as they are still in the valuation window).

Modus tollens This rule is applied during the cognitive
decoupling after the modus ponens rule. Before this rule can
be applied, an exploratory rule is applied; “7” is identified as
notQ (the meaning slot of the chunk with the number slot with
value “7” is filled with “notQ”). If declarative memory
retrieval requests fail during the exploratory rule, modus
tollens can’t be applied. As the chunk with letter slot “A” and
number slot “7” are retrieved by the exploratory rule, they are
reinforced by the retrieval and the positive reward sent after
the end of the decoupling, leading to answer “A” and “7”.

Temporal module ACT-R has a temporal cognition module
(Taatgen, Rijn, & Anderson, 2007), allowing it to account for
how one estimates time that passed. If the model has access
to the temporal module, it can estimate how much time has
passed. In the “fast” condition, this value is factored in when
the model evaluates its current FOR. As more time passes,
the FOR-inverse variable increases and FOR decreases. In the
fast condition, to account for time pressure, a factored value
of this time is added to the FOR-inverse-threshold that will
lead to a deeper analysis of the problem to be done. This is
what leads instances to stop “thinking” more often in this
condition.

Table 1. Training and model parameters
Parameter Value
Baseline heuristic behavior
training iterations

3

Additional training iterations 1
Proportion of formal logic in
additional training

20%

Proportion of heuristic in
additional training

80%

:rt -2.4
For-inverse-threshold 15
:vw 0.8

Training procedure
A training procedure allowed us to create individual

differences in our simulation: differences in personal logic
and impersonal logic.

ICCM2018

57

Personal logic: creation of the “if” heuristic First, as a
baseline the heuristic behavior (also referred to as personal
logic) in each individual instance of the model is reinforced.
Consistent with Evans (1998) and Stanovich (2009), the “if”
heuristic directs the participant’s attention to the “if”
statement and leads to an initial bias in the building of a
mental representation of a task (where both elements are
identified as true). In order to represent this heuristic, we
placed a structural representation of the “if” statement in
declarative memory, which is retrieved for application in a
rule (matches-if-form) and applied by another rule
(matching).

To simulate the frequent use of the “if” heuristic we make
the model fire the “if-form” rule repeatedly leading to an
increased utility of this rule. Additionally, we used
production compilation (Taatgen and Lee, 2003); a
mechanism to model skill acquisition in ACT-R. Because the
two rules retrieving the two elements of the “if” statement
(“A” and “3”) fire in sequence and often, the production
compilation mechanism creates a new rule out of those two
rules.

 Furthermore, through the production compilation
mechanism, if one of the rules retrieved an element from
memory (here the “if” structural statement), that element is
directly integrated into the new rule. Therefore, according to
the degree to which our model is trained, it is more sensitive
(answers faster) to “if” statements. The formed new rule will
initially have a low utility but through training will increase
its utility and be selected more often (and differently in each
instance of the model) representing how much the rule is
expected to contribute to the model’s goal.

Impersonal logic: advanced logical aptitudes After initial
training, an additional training is administered, which
simulates individual differences. This training reflects the
lesser proportion of people who received a strong formal
logic training (impersonal logic). This is accomplished by
training 20% of the simulated population with formal logic,
while the other 80% received additional personal logic
training.

To represent that participants are naturally more exposed
and trained to apply the modus ponens (compared to the
modus tollens), the training procedure involved more
retrieval of the modus ponens representation in declarative
memory than for the modus tollens; leading to their
reinforcement in declarative memory. Differences in chunk
retrieval create varying activations between the chunks and
modulates if and how fast they are retrieved. Failure in the
retrieval of the modus tollens representation is more frequent,
leading to its less frequent application.

Additionally, the rules involved in the analytical
processing in the model were activated, which increased their
utility in procedural memory. Since the production
compilation was active for the whole training procedure, in
training where the modus tollens rule was correctly retrieved,
the ending rule of the modus ponens is combined with the
beginning of the application of the modus tollens

guaranteeing the application of modus tollens after modus
ponens. Without rule compilation, the transition between
modus ponens and modus tollens would not be automatic. In
those model instances, the application of modus tollens after
modus ponens was automatic since the production
compilation mechanism has eliminated one retrieval
operation. The frequent retrieval of the modus tollens
representation, followed eventually by its application and the
compilation of rules, is how some simulated participants
developed advanced logical skills.

Figure 2: Model dynamics

Model dynamics
We describe here the processing in a model instance where

the model starts out thinking heuristically and moves towards
analytical thinking, depending on the FOR. (this is further
explained in the following sections). In the declarative
memory of the model, the instruction “if ‘A’ then ‘3’” is
present. A first rule will retrieve the “if-form” from
declarative memory (shown in the heuristic thinking column
of Figure 2). Another rule will match the retrieved if-form to
the instruction. This leads to the retrieval of card “A” and “3”
representations. The retrieval of the two cards leads to their
reinforcement in declarative memory in ACT-R. At this
point, time pressure and the value of FOR-inverse variable
are calculated. In the fast condition, a factored value of this
time is added to the FOR-inverse-threshold to account for
time pressure. Depending on time pressure and the value of
FOR-inverse, two rules can then fire: decide-inhibit or
decide-stop. If the variable is under the FOR-inverse-
threshold (the answer was fluent) then the model’s instance
will stop and provide an answer (i.e., decide-stop).
Otherwise, the instance will engage in analytical thinking to
further analyze the problem before it answers (shown in the
right column, transition between the left column and the right
column is shown by the dashed blue line in Figure 2).
Cognitive decoupling starts with a negative reward inhibiting

ICCM2018

58

the previous answers activated at the heuristic phase
(retrieved cards “A” and “3”). Then a retrieval of ‘card’
chunk types (see Figure 1) provides the elements to populate
the inner-simulation of the problem. Note that, if the elements
in declarative memory are under a certain retrieval threshold
they won’t be included in the inner-simulation. This is the
focal bias of the model; if the elements that would lead to an
activation of modus tollens (here the “7” card) are not in the
inner simulation then this rule can’t be applied. When
elements (chunks) are retrieved for the inner simulation, their
deco (decoupling) slot is changed from 0 to 1.

The modus ponens rule is the first one that the instance will
try to apply by retrieving it from memory, if this retrieval
fails, the decoupling will end and the first answer will be left
unchanged (i.e., “A” and “3”). If the retrieval succeeds, it
leads to the incomplete answer of “A”, which receives a
positive reward. A rule then tries to match the structure of
modus ponens to the elements of the inner simulation. If the
rule does not match, it won’t fire and modus ponens won’t be
applied. The modus tollens rule is the second one to be
applied. The modus tollens structure is retrieved from
memory, but if this retrieval fails, the only answer produced
comes from the application of modus ponens (The incomplete
answer of “A”). If the retrieval succeeds, a rule will try to
match the structure of modus tollens to the elements of the
inner simulation. Again, if the rule does not match, it won’t
fire and modus ponens won’t be applied. At the end of
cognitive decoupling, the elements retrieved by the both the
modus ponens and modus tollens rules are placed sequentially
in the imaginal module and their deco (decoupling) slot is
changed back from 1 to 0, and reentered in declarative
memory (reentrance in declarative memory leads to
reinforcement). Additionally, a positive reward is produced,
reinforcing the most recently retrieved elements. The final
answer of the system is produced based on the valuation of
each card: each card is retrieved and if it is under a valuation
threshold the instance answers “no” for this card, otherwise
it answers “yes”. The operation is repeated for each card.

Results

Experimental procedure
The experimental procedure is similar to the one described

in Thompson et al. (2013). We qualitatively compared the
results of our computational models to the results obtained in
Thompson et al. (2013). The simulation consisted of 100
trials (100 model “participants” with 1 trial for each model
“participant”). For each trial, the model was run twice: once
in the fast condition and once in the complete condition
(without time pressure). At the beginning of each trial, the
training procedure was implemented to create individual
differences between subjects. Each subject received a strong
training in what we called “personal logic” (making
deduction from the wording of the task according to linguistic
cues). Subjects received varying training (2/10 ratio) in
impersonal logic (logic rules modus ponens and modus
tollens). The model was reset between each trial, after

completion of both the fast and complete conditions, to keep
the same individual profile of that model in both conditions
and transfer resulting activations from the previous fast
condition into the complete condition.

Response times and answer changes
The FOR shown on the graph was computed by inversing
FOR-inverse and dividing its value between the maximum
FOR-inverse and the minimum FOR-inverse by 8 (assigning
FOR from 1 to 8 depending on which interval the FOR-
inverse belonged to). Human participants in the study of
Thompson et al. (2013) provided a Likert scale evaluation of
their FOR. In our model, we use the internal value of the
model’s FOR (computed with the time it takes the model to
finish applying the first “matching” heuristic).

Figure 3: (a) Answer changes (AC) as a function of FOR.

(b) Response Times (RT) as a function of FOR
Figure 3 presents the Response Times and answer changes

according to the FOR grouped in seven intervals. Note that,
while Thompson’s study is similar to ours, it included a
variety of wordings of the task we did not reproduce here. We
were able to produce results qualitatively similar to the
original study (see Figure 4 for original study’s results). The
second response times in the slow condition and the complete
condition correlate with the answer changes indicating that
answer changes result when further analytical processing
occurs. There also is less individual variability in the
response times as we reach the extreme values of the FOR
(higher and lower). There is a significant difference in
response times between the two conditions (t(137.54)=7.32,
p < 0.001). Response time for higher FOR in the complete
condition are also closer to values of the fast condition;
indicating that the model adequately reproduced participants
tendency to not engage in analytical processing when they
felt right about their first answer.

The standard error observed in Figure 3.b comes from the
variation between individuals we introduced to training.
There is no significant difference between the two conditions
when FOR is higher than six. The instances where the model
was trained more in personal logic are the ones with the
highest FOR as the retrieval of the “if-form” structure and the
application of the if-form rule (after production compilation)
goes faster. Even when offered a chance to reconsider their
answer (with a For-inverse-threshold that is not affected by

ICCM2018

59

the time pressure factor), the model’s instances keep their
first answer. Training in personal logic was provided to a
higher proportion of simulated participants (models) to
account for “real-life” experience. Therefore, there are more
instances with a higher FOR (e.g. more heuristic thinking).
Furthermore, fewer instances received a higher training in
personal logic and even if they received the training, they still
have more chances to not complete a cognitive decoupling
(inner simulation populated with an incomplete
representation of the problem, modus ponens structure not
retrieved, modus tollens structure not retrieved, modus
ponens or tollens can’t be applied because they don’t match
with any element from the incompletely populated inner
simulation). The difference between the two conditions is
significant from FOR values less than 6 (t (107.36)=-7.20, p
< 0.001).

Figure 4. RT1 (first response time), RT2 (second response

time), AC (Answer change) from Thompson et al. (2013)
We were able to reproduce the variation tendency of

response times. However, our response times were not at the
same time scale as Thompson’s study (see Figure 4): our
model did not parse the instructions like a human participant
would. The purpose of this paper was not to reproduce the
time participants spent reading the task material and
processing the visual aspects of task (looking at the card).
Here, we were mainly concerned with the processing that
occurred after the instructions were read and participants
processed the visual presentation of the cards.

Different types of reasoning
Figure 2 presents the different types of reasoning the

system engages in to produce the “A” and “3” (incorrect
answer), “A” (correct but incomplete answer – modus
ponens), “A” and “7” (complete correct answer – modus
ponens + modus tollens). Figure 2 shows the model can
reproduce those three types of reasoning that correspond to
different level of involvements of analytical processing. “A”
and “3” is produced when no cognitive decoupling happens.
Modus ponens and modus tollens answers happen with
cognitive decoupling. If only modus ponens is applied
however, it means that the cognitive decoupling was
incomplete. The modus ponens and modus tollens rule
structures are present in the declarative memory of the
system, depending on the activation noise set in the system.
An instance of the model might fail to retrieve a rule while
another instance of the model won’t. This results in

individual differences in reasoning for each instance of the
model.

Conclusion
In humans, the tendency to engage in analytical thinking

and cognitive decoupling varies individually, and in this
paper, we focused on reproducing the mechanism that
determines if one will or will not engage in further analytical
processing. In our model, we assume that FOR is the
component necessary to decide if one will have more of an
analytical profile or a reactive profile. The FOR is similar to
the fluency of the model, how fast it was able to produce a
first non-analytical “gut” answer, which influenced the extent
of subsequent processing.

While we were able to qualitatively reproduce the same
type of behavior as the human participants from Thompson
et al. (2013) in our model, we left elements out of the current
model that would have allowed fitting the data quantitatively
(i.e. instructions reading). We could also refine the model and
specifically the training procedure to simulate other versions
of the tasks (drinking-age problem, negated version, etc.).
Finally, the Wason task is limited; we would like to extend
this framework to more complex real-life tasks where both
automatic and reflective behaviors are required.

References
Anderson, J. R. (2007). How can the human mind occur in

the physical universe?. Oxford University Press.
Evans, J. S. B. (2006). The heuristic-analytic theory of

reasoning: Extension and evaluation. Psychonomic
Bulletin & Review, 13(3), 378-395.

Johnson-Laird, P. N. (1980). Mental models in cognitive
science. Cognitive science, 4(1), 71-115.

Juvina, I., Larue, O., & Hough, A. (2017). Modeling
valuation and core affect in a cognitive architecture: The
impact of valence and arousal on memory and decision-
making. Cognitive Systems Research.

Larue, O., Poirier, P., & Nkambou, R. (2013). Hypothetical-
thinking based on cognitive decoupling and thinking
dispositions in a dual cognitive agent. Biologically Inspired
Cognitive Architectures, 6, 67-75.

Leslie, A. M. (1987). Pretense and representation: The
origins of "theory of mind.". Psychological rev, 94(4), 412.

Sun, R. (2015). Interpreting psychological notions: A dual-
process computational theory. Journal of Applied Research
in Memory and Cognition, 4(3), 191-196.

Taatgen, N. A., & Lee, F. J. (2003). Production compilation:
A simple mechanism to model complex skill
acquisition. Human Factors, 45(1), 61-76.

Taatgen, N. A., Rijn, H. van, & Anderson, J. (2007). An
integrated theory of prospective time interval estimation.
Psychological Review, 114(3), 577–598.

Thompson, V. A., Evans, J. S. B., & Campbell, J. I. (2013).
Matching bias on the selection task: It's fast and feels
good. Thinking & Reasoning, 19(3-4), 431-452.

Wason, P. C. (1968). Reasoning about a rule. The Quarterly
journal of experimental psychology, 20(3), 273-281.

ICCM2018

60

ACT-R Workshop at MathPsych/ICCM 2018

Christian Lebiere1 (cl@cmu.edu), Dario D. Salvucci2 (dds26@drexel.edu), Michael D. Byrne3
(byrne@rice.edu), Niels A. Taatgen4 (n.a.taatgen@rug.nl), J. Gregory Trafton5 (greg.trafton@nrl.navy.mil)

1 Department of Psychology, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15208, USA
2 College of Computing & Informatics, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA

3 Department of Psychology, Rice University, 6100 Main St., Houston, TX 77005, USA
4 Department of Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG Groningen, Netherlands

5 U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 USA

ACT-R (Anderson, 2007) is a cognitive architecture that
provides a theory and simulation system for human cognitive,
perceptual, and motor processes. As a cognitive theory, ACT-
R aims to account for the detailed steps of thought and
behavior as observed through standard behavioral data as
well as brain-imaging data (see, e.g., Anderson et al., 2004).
As a simulation system, ACT-R can be placed in the role of
a virtual human user, performing a simulated (or even real
robotic) task and allowing for direct comparison between
human and model behavior. To date, ACT-R has been used
to produce integrated models for hundreds of tasks ranging
from basic experimental tasks to complex applied tasks; the
ACT-R web site [http://act-r.psy.cmu.edu] lists the many
models, publications, and researchers associated with the
cognitive architecture.
 This workshop serves to update both the ACT-R
community and the cognitive modeling community at large
about recent advances in the ACT-R architecture. For
researchers already using ACT-R, the workshop provides a
venue for presenting and hearing about recent changes and
novel applications of the architecture. For others working
with (non-ACT-R) computational cognitive models, the
workshop provides an overview of the variety of application
domains addressed by the architecture, and encourages
sharing of ideas that would benefit ACT-R and other
modeling frameworks alike.

Participation: Based on attendance numbers from similar
past workshops held at the ICCM and Cognitive Science
Conferences, we expect a registration of approximately 30 to
70 participants. Potential speakers include, in addition to the
organizers, other regular members of the ACT-R community
as well as more junior contributors. Reflecting a broadly
disseminated call for participation, currently registered
participants reflect a mix of experienced ACT-R modelers
and interested modelers not currently part of the ACT-R
community.

Format: The full-day workshop includes presentations on
recent ACT-R developments from the user community, an
update on current developments on the architecture itself, and
panel discussions on current popular research topics and
trends relevant to ACT-R. The schedule includes ample time
for discussion and sharing of ideas among the attendees.

Program: The prospective schedule for the 2018 ACT-R
Workshop consists of 3 sessions, each of which includes 3
20’ talks (including questions) and a panel discussion,
followed by a final session on recent and prospective
developments to the architecture:

Learning and Transfer in Complex Environments
John Anderson Transfer of Cognitive Skills
Frank Ritter Using a Model to Predict Learning and Retention in a

Large Study of a Complex Task
Christian Lebiere Decision Making in the Presence of Deceptive Signals

Neural and Perceptual Embodiments
John Lindstedt Simple Agglomerative Visual Grouping for ACT-R
Patrick Rice Using TMS to Test the Associations between ACT-R

Modules and Cortical Regions
Andrea Stocco ACT-R Parameters from Resting State Neuroimaging

Data

Human Machine Interaction
Greg Trafton Two Models of Social Influence
Sterling Somers CogXAI: Cognitively eXplainable Artificial Intelligence
Nele Russwinkel Developing a Concept of an Active Self through Natural

Interaction

Future of ACT-R
Dan Bothell Software Updates
Everyone Open-Ended Discussion

Publicity: We used the ACT-R mailing list and related lists
(e.g., the Cognitive Science mailing list) to publicize the
workshop as done in past years. We expect there to be
additional attendees due to the publicity that comes as part of
the MathPsych/ICCM meeting and hope to get attendees
from laboratories that do not normally come to our standalone
meetings. As we have for previous meetings, we will make
all presentation content available on the ACT-R website.

Requirements: The workshop uses standard audio-visual
projection for displaying computer talks and demos.

References
Anderson, J. R. (2007). How Can the Human Mind Occur in

the Physical Universe? New York: Oxford University
Press.

Anderson, J. R., Bothell, D., Byrne, M.D., Douglass, S.,
Lebiere, C., Qin, Y. (2004) An integrated theory of mind.
Psychological Review, 111, 1036-1060.

ICCM2018

61

Comparing Models of Visual Search in Heterogeneous Search Fields

Stefan Lindner (stefan.lindner@campus.tu-berlin.de), Lennart Arlt (lennart.arlt@campus.tu-berlin.de),

Nele Russwinkel (nele.russwinkel@tu-berlin.de)
Department of Cognitive Modeling in dynamic Human-Machine Systems, TU Berlin, Marchstr. 23

10587 Berlin, Germany

Abstract

The paper investigates visual search in heterogeneous search
fields with the aim of capturing search times with cognitive
models. An icon search experiment was conducted in which
target-distractor similarity (low vs. high) and distractor-
distractor similarity (low vs. high) of icons, target presence
(present vs. absent) and the set size (6x4, 8x4 or 8x6 icons)
were varied. At the same time a total of 6 ACT-R models - each
implementing a different search strategy hypothesis - were
created (4 cluster search models, 1 row model and 1 basic
model) and their fit with the experimental reaction times
assessed. All cluster models were able to fit the general pattern
of reaction times fairly well, but varied in fit among different
conditions. A cluster model assuming search along 2-by-2-icon
clusters achieved the best overall fit.

Keywords: visual search; similarity; ACT-R; cognitive
modeling.

Introduction

Whether we are looking for our car on a parking lot, our

favorite socks in midst of our clothes or for a specific app on

our phone - search in heterogeneous visual fields is a

common task.

If the object we are looking for has salient features we are

in luck, because our visual system allows for a parallel search

in that case. This means that we can scan a large number of

items and locations in our search field at once, making the

target item “pop out” between other items. If that is not the

case, however, we often have to switch to sequential search –

looking at one item after the other. At the least we have to

sequentially check some candidate items that stand out or

share properties (Wolfe, Friedman-Hill, Stewart, &

O'Connell, 1992). The most interesting case is heterogeneous

search, in which only some items share characteristics with

the target item.

Since visual search in such cases is a critical time

component for applied research and evaluation of usability, it

would be helpful to identify what strategies users follow to

be able to predict search time in such cases. User models

rarely focus on visual search, even though it would be

beneficial to have a simple to apply modelling approach that

is able to predict valid search times but is not too complex to

apply.

Therefore, our goal is to capture visual search times in such

tasks with models that make as few assumptions as possible.

To this end, we conducted an experiment that had subjects

look for a target item on a tablet screen. In a previous work

we already presented an ACT-R model that attempted to fit

reaction times in such a task (Lindner, Russwinkel, Arlt,

Neufeld, & Schattenhofer, 2017). The original model

assumed a search along rows and achieved fairly good fit.

However, since this model is unlikely to scale properly with

screen size, we created 4 new models that visually fixate

clusters of items. These models aim to more closely depict

fixations in the area of near-central foveal vision (Provis,

Dubis, Maddess, & Carroll 2013). We compared the model

predictions of 6 models in total: a “naïve” model, the row

model and 4 cluster models. In the following we will first

introduce the experimental setup and its results. Afterwards

we will discuss the models and then compare their predictions

with the experimental results.

Experiment

The paper presents new results from a recent experiment that

was conducted as a follow-up to the study by Trapp &

Wienrich (2018). The experiment thus uses a very similar

setup. It was conducted to provide novel data that model

predictions could be tested against.

In order to put the models to a strong test, the experiment

mainly varies the heterogeneity of the search field. It presents

item arrays that differ in the number of items that have the

same color as the target item and in the number of distractor

items that share the same color amongst themselves.

It also looks at different item set sizes. Larger set sizes

(compared to the previous experiments) were specifically

meant to test how well models scale with the increase in

search field size. In particular, we chose to present the item

sets on a horizontal screen orientation to test longer rows. The

participants performed a visual search task on a 20x15 cm

mobile touch device, in which they had to find a specific

target icon within a set of distracting icons.

Each trial was performed in the following manner: After

the target icon was shown for two seconds, a fixation cross

was presented in the center of the screen to ensure a

standardized gaze point for all participants. After the fixation

cross disappeared, a set of icons was shown. When the target

icon was present in the set, the participants had to find and

select the target icon (by touch) as fast as possible. Whenever

there was no target, they had to select a specific button at the

lower screen to indicate the absence of the target icon.

Subsequently, they received feedback on whether their

answer was correct or incorrect. The reaction time was

recorded for each trial and served as a performance

measurement.

ICCM2018

62

mailto:stefan.lindner@campus.tu-berlin.de
mailto:nele.russwinkel@tu-berlin.de

Figure 1: Experimental similarity conditions according to

color (for demonstration; not original icons used)

The two main independent factors in the experiment were

target-distractor similarity (TDS; low vs. high) and

distractor-distractor similarity (low vs. high) (see Figure 1).

The other main factor was the display size: 6x4, 4x8 and 6x8

item setups were tested.

Additionally, as in the original study, target presence was

varied independently. Overall the experiment thus followed a

2x2x2x3 within subject design. Overall, 23 participants (12

female; mean(age)=29; sd(age)=4) were tested. Each

participant completed 12 trials in each condition for an

overall 288 trials.

The tablet was placed at a gaze distance of approximately

50 cm from the subject. The items were 1,5x1,5 cm in size

and 0,5 cm apart from each other.

Figure 2: Experimental setup. The subjects interacted only with the

tablet. Eye movement data was recorded via tracking glasses.

Experimental Results

We will discuss the experimental results only briefly, since

the main focus of the paper lies in the modeling approach.

Absolute reaction times are shown and discussed in the

“Results and Model Fit” section.

Factor significance results largely replicated the findings

from Trapp & Wienrich (2017). Graphs of the reaction times

in all conditions is shown in the section “Results and Model

Fit”.

Figure 3: Experimental results (ANOVA). Dependent variable:

Completion time.

Reaction times were significantly lower if target and

distractors were of different colors (TDS high). They

increased in the absence of the target item. We also found an

interaction between target-distractor similarity and target

presence: the absence of the target item lead to a larger

increase in reaction times if at least some distractors matched

the target color.

Modeling

Where & What System

ACT-R (Anderson et. al., 2004; Andserson, 2007) visual

search makes use of two main buffers, the visual-location

buffer and the visual buffer. These two buffers mirror the two

subsystems of vision, the where system and what system

(Byrne, 2001). The where system simulates preattentive

processes and relies on well accepted theoretical concepts

(Wolfe, 1994; Treisman & Gelade, 1980). Each visual item

has features such as type (text, or oval for a button or others),

color or width. On a preattentive process stage it is possible

to search for visual locations that contain items with a

specific feature. After the visual location is identified

attention can be located in this position to identify the item

and all its features. The first process needs no time, the

second process does need time. A shift of visual attention

takes 135ms - 50ms for the production to fire that elicits the

request of the shift and 85ms for the shift itself.

Modeling Principles

To keep models simple and to avoid overfitting, each

model assumes, in principle, the same strategy for all

experimental conditions and screen sizes.

All models also assume that items that share the same color

as the target item can be globally located (e.g. if the target is

yellow the model can find yellow items on the entire screen

without previously encoding any part of the screen). They

then make different assumptions about the size of the area in

which all visual features of the candidate items within can be

extracted with one fixation.

ICCM2018

63

Single Model

This model separately encodes every single visual object

that has the target color. It thus implements the simplest

plausible mechanism and serves as a baseline.

Row Model

This model was already reported in Lindner et al. (2017).

It uses a hybrid mechanism of visual search. It completely

encodes each row that contains at least one item of the target

color with one fixation. Despite achieving a good fit on

display sizes with rows of length 4, it is unlikely to scale well

with increasing screen size length since its predicted times

are invariant to row length.

Cluster Models

These models are the main novelty of the paper. They

attempt to improve in the row model by assuming the ability

to search rectangular item clusters with a single fixation. This

is psychologically more plausible as it mirrors foveal vision:

It also is better fit to recreate growing reaction times with

growing screen sizes. The models assume a cluster size of

2x2 (4-item cluster models) and 1x2 (2-item cluster models).

Specifically (and very similarly to the row model), these

models fixate a candidate item (an item that has the same

color as the target item) at random and scans all items within

the cluster that contains this item with the same fixation. If

the target item is not contained in the cluster, the next

candidate item and its cluster are fixated. Once a cluster has

been fixated, the model does not return to that cluster. If all

clusters that contain candidate items have been searched, the

model decides that the target is not present.

Figure 4: Exemplary search path of the 2x2-cluster model. Digits

denote fixations, solid arrows denote saccades, dotted arrows denote

peripheral scanning of additional candidate items in a cluster. Only

one item is fixated per cluster (except for the cluster that contains

the target item - if it is not the item that is targeted first in that cluster)

Extended Cluster Models

The extended cluster models work slightly differently from

the cluster models. They assume a steadier scan path from the

upper left line-wise to the bottom. They also “scan” every

cluster, requiring the time of one ACT-R production if no

candidate item is contained in a cluster. If a candidate item is

contained in a cluster, the models work in the same way as

the cluster models: they require one fixation to scan the entire

cluster. The ideas behind the extended cluster models was to

account for possible non-attentional scanning of noncritical

screen areas. It is also an approach that somewhat scales with

set size independently of the number of candidate items.

Model Specifications

It should be noted that the 4-item cluster model and the

extended 4-item cluster model (as well as the single and the

row model) were created and used to predict reaction times

prior to the experiment. Since the previous row model had

suggested that an encoding of 4 items per fixation seemed

reasonable, we expected the 4-item cluster models to make

the best predictions.

The two 2-item cluster models were created after the

experiment to test out the parameter space somewhat. The

models were not otherwise fit.

In the models no ACT-R parameter values were changed.

The declarative memory consists of a goal chunk and a chunk

that stores color, text and width of the current target item. All

presented models and the GUI are published online at

https://depositonce.tu-berlin.de/handle/11303/7441. To

obtain the simulation results, each model was run 1000 times

in each condition.

All models are written and commented in a way that should

make it easy to adapt them to new situations. In the cluster

models the size of the clusters can be given in terms of nxm

items and the absolute size of the cluster will be adjusted

automatically.

Results and Model Fit

In the following graphs, all reaction times and model

predictions are presented for each set size separately. In order

to put the models to the strongest possible test, we also report

the reaction times of the 4x6 screen size from the Trapp &

Wienrich (2018) experiment. Underneath each graph we also

report the correlation of each model with experimental data

as a measure of relative fit and RMSE and RMSSD absolute

fit measures (Schunn & Wallach, 2005).

ICCM2018

64

ICCM2018

65

Relative Fit (Correlations):

All models show a high relative fit. This is rather

unsurprising since the general workings of all models are

rather constrained. In all models the number of fixations

grows proportionally to the number of candidate items. They

therefore mainly differ by how large that proportional growth

is. It is therefore of more interest to look at absolute times.

Absolute Fit (RMSSD and RMSE:

The “naïve” single model shows a large overall deviation

in all conditions, demonstrating the need for more

sophisticated models. As was already established in Lindner

et al. (2017) the row model provides a very good fit for the

vertical 24-item set size. However, as expected it fails to

properly scale with larger row sizes, both in the horizontal

24-item screen and the 32- and 48-item screens.

The 4-item cluster model, while scaling better with size

still falls short in two main ways. It scales a little too slowly

with set size, falling consistently below experimental reaction

times, especially in set size 48. This suggests that maybe on

average a little fewer than 4 items can be encoded at once. It

also fails to capture the slightly increasing reaction times in

condition 1 and 2 and the slightly longer reaction times when

the target is absent in these conditions.

The 2-item model seems to scale somewhat better with

size, but has the same shortcomings as the 4-item model in

conditions 1 and 2. All models discussed so far make the

assumption of an immediate pop out independent of set size

in conditions 1 and 2, an assumption that is not fully backed

up by the data.

The extended cluster models do better in this regard, as

they assume a growing number of decisions (productions)

with growing set size – independently of the number of

candidate items. The extended 2-item cluster model shows

this scaling, but unfortunately now overpredicts reaction

times in condition 1 and 2. Just like the 2-item cluster model

it shows a very good scaling with growing set size and a high

number of candidate items (conditions 3&4). This suggests

that participants where roughly able to scan 2 items with one

fixation once they looked at a spot with at least one candidate

item.

Judging by RMSSD, however, the extended 4-cluster

model performs best overall. It matches the other 4-item

models in the vertical 24-item condition but fits the data

significantly better than all other models in the other

conditions. It does especially well in conditions 1 and 2

across all conditions. This suggests that participants still

somewhat scan the screen without “committing” visual

fixations even when the target item stands out. On the large

screens, however, the model underpredicts the growth in

reaction times.

Discussion

Inherent to our modeling approaches was the idea that

search behavior in all conditions is created by the same

mechanisms. In reality, that might not be the case, however.

For example, with growing screen size, participants might

lose track of the already covered search areas more often.

This in turn might lead them to double check more often or

to scan more carefully. This could lead to different search

strategies that depend on screen size and frequency of

candidate items. Judging from the model fits, it seems that

participants scan about 4 items with one fixations when few

target items are present. On larger screens the models suggest

the capture of about 2 items per fixation. Adaptively choosing

models in this way should provide an adequate fit for

practical purposes, especially in models that have a visual

search component that is not the main focus of the task. The

next steps could be the creation and testing of such an

adaptive model and the analysis of the eye tracking data in

regards to fixation paths.

Acknowledgments

We would like to thank Lisa-Madeleine Dörr for creating

multiple ACT-R GUIs for our models.

References

Anderson, J. R. (2007). How Can Human Mind Occur in the

Physical Universe? New York: Oxford University

Press.

Anderson, J. R., Bothell, D., Byrne, M. D.,Douglass, S.,

Lebiere, C., & Quin, Y. (2004). An integrated theory of

mind. Psychological Review, 4, 1036–1060.

Byrne, M. D. (2001). ACT-R/PM and menu selection:

Applying a cognitive architecture to HCI. International

Journal of Human-Computer Studies, 55(1), 41-84.

Lindner, S., Russwinkel, N., Arlt, L., Neufeld, M. and

Schattenhofer, L. (2017). Modeling of Visual Search

and Influence of Item Similarity. In M. van Vugt, A.

Banks & W. Kennedy (Eds.), Proceedings of the 15th

International Conference on Cognitive Modeling.

Coventry, United Kingdom.

Provis JM, Dubis AM, Maddess T, Carroll J. Adaptation of

the Central Retina for High Acuity Vision: Cones, the

Fovea and the Avascular Zone. Progress in retinal and

eye research. 2013;35:63-81.

doi:10.1016/j.preteyeres.2013.01.005.

Schunn, C. D., & Wallach, D. (2005). Evaluating goodness-

of-fit in comparison of models to data. Psychologie der

Kognition: Reden und Vorträge anlässlich der

Emeritierung von Werner Tack, 115-154.

Trapp, A. K., & Wienrich, C. (2018). App icon similarity and

its impact on visual search efficiency on mobile touch

devices. Manuscript submitted for publication.

Treisman, A. M., & Gelade, G. (1980). A feature-integration

theory of attention. Cognitive Psychology, 12, 97–136.

Wolfe, J. M., Friedman-Hill, S. R., Stewart, M. I., &

O'Connell, K. M. (1992). The role of categorization in

visual search for orientation. Journal of Experimental

Psychology: Human Perception and Performance,

18(1), 34-49. http://dx.doi.org/10.1037/0096-

1523.18.1.34

ICCM2018

66

Wolfe, J. M. (1994). Guided Search 2.0: A revised model of

visual search. Psychonomic Bulletin & Review, 1(2),

202–238.

ICCM2018

67

Simple agglomerative visual grouping for ACT-R
John K. Lindstedt (j.k.l@rice.edu)

Department of Psychology, 6100 Main Street
Houston, TX 77005 USA

Michael D. Byrne (byrne@rice.edu)
Departments of Psychology and Computer Science, 6100 Main Street Houston, TX 77005 USA

Abstract

The human visual system tends to group related objects in the
environment, allowing for more efficient use of attention, but
sometimes leading to critical errors in executing a task. ACT-
R’s vision module currently has no concept of visual group-
ing, per se. We present both theoretical and practical motiva-
tions for imbuing ACT-R with visual grouping processes, and
then walk through our implementation of a simple, minimally
disruptive, generally applicable, and extensible system for as-
signing visual objects groups based on proximity, accounting
for both spatial and temporal extension. Code is available and
implications are discussed for employing the visual grouping
system in ACT-R models. Finally, we discuss the system’s
limitations, extensibility, and its future development.
Keywords: cognitive modeling; visual grouping; UI; voting;
human factors; model generalizability

Introduction
The human visual system employs visual grouping to more
efficiently interact with the environment. Related elements
are considered together, enabling our cognitive systems to
shift attention to or away from groups of visual elements that
are related in some meaningful way. But, as with any human
system, there are kinks in how the visual grouping system
works that cause us to make occasional, sometimes critical,
errors in how we parse the world around us.

An example of how visual groups appear to impact task
performance lies in the literature on voting ballots, wherein
some research has been done demonstrating humans’ sen-
sitivity to the layout of the screen information over time.
A Brennan Center for Justice report titled “Better Ballots”
(Norden, Kimball, Quesenbery, & Chen, 2008) highlights a
variety of voting ballot designs that produced voting errors,
such as omitting a vote or voting twice. Figure 1 shows one
such “bad” ballot, wherein so many voters in one precinct
skipped a specific race on the second screen that it changed
the outcome of the congressional election. Initially, one
might suspect this error could be due to distraction by ex-
treme salience, such as the bold, colored header drawing the
attention down to the second race on the page. But according
to Greene (2010), the effect appeared to be due the number
or arrangement of races (and instructional elements) on the
previous screen:

While the highlighting of race headers did not reliably
predict initial omissions of the critical race, the number
of races presented on the first voting screen did: when
voters saw two races on the first screen, they were less
likely to omit the critical race on the following screen

than were voters who saw only a single race on the first
screen.

Indeed, it appears that the culprit in this particular bal-
lot was the difference in layouts between the two screens,
in which visual grouping processes presumably play a large
role.

As the ACT-R cognitive architecture (Anderson, 2007) is
often used in human factors applications for the purposes of
evaluating interfaces and predicting performance, we believe
this is precisely the sort of error ACT-R should have the ca-
pacity to predict. However, at present the ACT-R’s “visicon”
system, for all of its features, lacks any concept of visual
grouping– it simply lists all of the available visual objects in
isolation. Our intention with the present work is to implement
a simple, consistent, and transparent method of grouping vi-
sual elements in ACT-R that works for any task and does so
in a minimally invasive manner.

Motivations
Implementing a visual grouping algorithm for ACT-R has
both theoretical and practical value. On the side of theory,
these are well-documented processes that occur in human vi-
sion and if implemented correctly, can improve the validity
and plausibility of models written in ACT-R. In terms of prac-
tical value, making visual groups available to modelers would
offer more generalizable models, as well as a handful of con-
veniences for interacting with the visicon.

There is already much work on the human processes in-
volved in segmenting a visual scene into separate visual
groups. Rosenholtz et al. (2009) present a model that syn-
thesizes a variety of visual features to simulate human vi-
sual grouping. Those features include proximity, similarity of
color or luminance, continuity, and orientation, among others
(and offers a nice review of relevant research on each). Their
model:

“... translate[s] a complicated two-dimensional im-
age, in which segmentation is difficult, into a higher-
dimensional representation where straightforward meth-
ods yield good results. Our particular technique uses a
high-dimensional blur operation, which is simple to im-
plement and understand.”

Our work borrows– if not their specific techniques– their phi-
losophy by taking a handful of the features available in the
visicon and using them to perform a simple and clear process
to segment them into visual groups.

ICCM2018

68

t:TINGR"ES-S-I-OAAL:

UNITED STATES SENATOR

(Uote for One)

NPA

NPA

NPA

DEM

REP D
D
D
D_._--- - ----

NPA D
D-- --------------

D

Xatherine Harris

Bill Nelson

Belinda Noah

Write-In

Brian Moore

- - --

Roy Tanner

Floyd Ray Frazier

I Page 1 of" 21 ~-Public Count: 0 . Page

U.S. REPRESEHTATIUE IN CONGRESS

13TH CONGRESSIONAL DISTRICT

(Uote for One)

Uern Buchanan

Christine Jennings

g-"'-AT"E'--- -- -'
GOUERNOR AND LIEUTENANT GOUERNOR

(Uote for One)

REP

DEM

D
D

Charlie Crist

__ Jeff ~~!tkaroL , _

Jiro Dauis

Daryl L. Jone~

Max Linn

Toro Mack Iin

Richard Paul Derobinsky

Dr. Joe Sroith

John Wayne Sroith

Jaroes J. ~earney

~arl C.C. Behro

Carol Castagnero

Write-In

P-re u-iO•...lS
Paue

Page 2 of'"21
Publ ic Count: 0

REP D
DEM

D
REF

D
NPA

D
NPA

D
NPA

D
D-Aext

Paoe

Figure 1: Two screen captures from the 2006 Sarasota County electronic voting system (first screen on the left, second screen
on the right). So many voters failed to notice the race for U.S. Representative (top of right) that it changed the result of the
election for that race. This error is thought to be due to the layout not accounting for human error due to visual grouping.

The introduction of a visual grouping system also fixes
some problems and enhances some functionality in ACT-R
modeling. Models often need to search the visual environ-
ment for particular elements in order to proceed with their
tasks. Current modeling solutions for visual search tend to
involve either (a) searching for the nearest unattended visual
object, or (b) using specific SCREEN-X and SCREEN-Y co-
ordinates to restrict that search. These solutions tend to suf-
fice, but are problematic. In the first case, depending on the
scan-path already taken, the model may find a visual loca-
tion that is nowhere near the relevant section of the screen
simply because it has already examined other nearby ele-
ments. In the second case, we are hard-coding knowledge
of the screen layout, somewhat decreasing the model’s cog-
nitive plausibility and preventing it from generalizing across
screen layouts without continuously spoon-feeding it special
task knowledge. By introducing visual grouping, modelers
can both restrict visual search to a particular region of the
screen, and also build their models in such a way that the
model should be able to locate the task-relevant regions of the
screen regardless of their particular configuration and layout.

Visual grouping algorithm
In developing the visual grouping algorithm, we wanted a
method that would require the fewest parameters from the
modeler. An obvious, and potentially parameter-free, option
would be the well-established k-means clustering method. Im
et al. (2016) find success in developing a model of visual
grouping using k-means. However, early in development we
decided to go a different direction because: first, k-means and
other density-based clustering methods are best suited for dis-
plays featuring masses of simple points, whereas most tasks
modeled in ACT-R tend to involve more sparse, highly struc-
tured visual objects that possess width and height. Second,
these clustering algorithms also tend to involve an element

of randomness (e.g., bootstrapping) which can be quite frus-
trating for the purposes of writing and even understanding our
own models. Though it is possible there are some instabilities
in the way humans actually group visual objects, it is unclear
whether the kind of uncertainty produced by these clustering
algorithms would bear any resemblance to the uncertainty in
the human visual system.

Instead, we decided to start with a method that is more con-
sistent (for our modelers’ sake) and transparent (for our devel-
opers’ sake). In the same vein as Rozenholtz et al. (2009), we
seek to apply relatively simple, general methods to the task of
segmenting a visual scene into meaningful groups, provided
with the representation of the visual objects already present in
the ACT-R visicon. In the first version of our system, we ac-
count only for a visual object’s positional features, SCREEN-
X and SCREEN-Y, and its features of spatial extent, WIDTH
and HEIGHT. We then further propose a system for how these
visual groups propagate through time.

Interested readers can access our visual grouping code at
the following github repository:

https://github.com/john-k-lindstedt/visual-grouping-actr

Installation is as simple as dropping the visual-grouping.lisp
file into the user-loads folder within the ACT-R file tree. From
there, the modeler needs only to specify the grouping radius
and collision type desired, and the groups will be automati-
cally generated and seamlessly added to objects in the visi-
con.

Integration with ACT-R
Our implementation of the visual grouping algorithm func-
tions by intercepting the list of visual features for all of the el-
ements of the scene used by ACT-R before the visicon is con-
structed, determining the visual groups for those elements,

ICCM2018

69

Figure 2: Flow of information from the visual scene to the
visicon by default (left), and through our visual grouping sys-
tem (right). The process is purely additive, giving each visi-
con entry a GROUP slot, and not disturbing any of the others.

and then returning that list intact but with the new group in-
formation attached. ACT-R then constructs the visicon as nor-
mal, but each visual location now has a GROUP slot that can
be used in visual location requests like any other. Figure 2
illustrates this process.

Visual grouping by simple agglomeration
To determine which visual objects belong to which visual
groups, we use a method called “simple agglomeration.”
Each group begins with a single visual element and recur-
sively adds other nearby elements by checking for “colli-
sions”; i.e., whether any nearby elements are within a “group-
ing radius” (a parameter presently left to the modeler to ad-
just). Two methods of collision detection are available: point-
collision and box-collision. Ultimately, each object on the
screen is assigned a unique and arbitrary symbol correspond-
ing to its visual group.

Point collision method: Simple and fast grouping The
point-collision method is minimalist: simply check whether
the screen coordinates of two visual objects is within the
grouping radius:

point-collision(obj1, obj2, radius):
1. if distance(obj1,obj2) < radius,

obj1 and obj2 have collided,
return true

This method is simple to calculate, but does not account for
an object’s size on the screen. As such, it is best used when
objects are of similar sizes and shapes (i.e., singular char-
acters or symbols), or when the screen is very dynamic and
needs to update often. Figure 3 (top left) depicts this collision
method.

Box-collision method: Accounting for extension in space
Many objects in user interface displays have meaningful ex-
tension in space (text, buttons, images, etc), so we also imple-
mented a box-collision method that accounts for an object’s
width and height by determining if the nearest point on one
object’s bounding box is within the grouping radius of the
edges of another object’s bounding box:

box-collision(obj1, obj2, radius):
1. target = the nearest location to obj1

on the perimeter of obj2’s bounding box
2. check point-collision(corner, target) for

each corner of obj1’s bounding box
3. check if target is within radius of the

top, bottom, left, or right of obj1’s
bounding box

4. check whether target is overlapping with
obj1’s bounding box (just in case!)

5. if any of the above is true, obj2 and
obj2 have collided, return true

The box-collision method requires more computation, but
accounts for width and height in a more realistic way than the
point-collision method. In practice, both the point-collision
and box-collision methods are quite fast, and many tasks
modeled in ACT-R (especially user interface tasks) involve
static displays with relatively few elements. As such, we rec-
ommend the box-collision method over the point-collision for
most applications. Figure 3 (top right) depicts this collision
method.

Growing visual groups via simple agglomeration The
simple agglomeration method begins with a visual group con-
taining a single visual object and then “grows” that group by
iteratively adding nearby points until none remain within the
grouping radius. Then a new, unexamined visual object is
selected, and the process is repeated until every object is as-
signed a group:

grouping(scene):
1. find an unexamined point, a, in the scene
2. find another unexamined point, b, in the

scene

ICCM2018

70

Figure 3: The two methods of collision detection available. Point-collision (top-left) is relatively fast and simple in that it
involves a single comparison, examining whether the distance between two points is within the grouping radius. Box-collision
(top-right) is more complex, as it involves several more comparisons and detecting the nearest point on a neighboring visual
object’s bounding box, but it allows for all objects’ spatial extent to be considered when determining visual groups. The bottom
half of the figure illustrates the steps of the simple agglomeration grouping method.

3. if collide(a,b,r): add b to the group
4. grow the group by repeating steps 2 and 3

for each new point added until there are
no more nearby points

5. assign all members of the group a
new group-id

6. repeat steps 1-5 until all points in the
scene have been examined, and all points
now have an associated group-id

Figure 3 (bottom) depicts this process visually. Figure 4
shows a sample output of the visual grouping algorithm as
applied to a screen of our VoteBox system. It is notable that
the order in which points are added to groups is irrelevant– all
point collisions are mutual and group growth is both strictly
additive and exhaustive, so there is no “competition” to speak
of between groups.

Inheritance: visual grouping extended in time
We also want to allow visual groups to extend in time, lest
the model be forced to study a new set of visual groups every
time the display is processed. To achieve this, we employ the
same collision-detection method used in the simple agglom-
eration method to detect whether visual groups in a new scene
overlap with any known groups from the previous scene. We
achieve this with the following steps:

inheritance(current-scene, previous-scene):
1. count the number of unique group-wise

overlaps between each pair of groups in
current-scene and previous-scene

2. a current group inherits a previous
group’s group-id only if both the current

group and a previous group exclusively
overlap with one another

3. assign a new group-id if:
3a. the current group is new, i.e. it

does not overlap with any previous groups
3b. the current group is the result

of a merge, i.e. it overlaps with more than
1 previous group

3c. the current group is the result
of a split, i.e. it overlaps with a previous
group that also overlaps with at least one
other current group

4. if a previous group overlaps with no current
groups, that group is dead and its group-id
will not propagate forward in time.

Note that, at present, we assume that the only way a group
can directly inherit a previous group’s identity is for both the
previous and current group to have mutually exclusive over-
lap. All other cases are considered to be “confusing,” and
generate new group IDs (likely triggering the model to need
to re-study the screen layout before proceeding). The tempo-
ral duration and propagation of these visual groups is an open
research question, which we discuss in the next section.

Figure 5 demonstrates how the visual groups would propa-
gate in an example bearing some resemblance to the Sarasota
ballots mentioned above. The ability for visual group identi-
ties to be inherited over subsequent scenes enables models to
make the same kinds of errors as voters did in the Sarasota
congressional election– when a task-critical section of the
screen (i.e., a congressional race) directly inherits its group
identity from a segment containing only task-adjacent infor-
mation (headers or instructions), the model can mistakenly

ICCM2018

71

● ● ●

● ● ●

● ● ●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●●●
● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●●

●●●●

● ● ● ●● ● ● ●

● ●

● ● ●

● ●

● ● ●

● ● ● ●

● ●

● ● ●

● ●

● ●

●
0

200

400

600

800
0 250 500 750 1000

screen.x

sc
re

en
.y

group

●

●

●

●

●

●

●

●

●

●

●

#:G80589

#:G80590

#:G80591

#:G80592

#:G80593

#:G80594

#:G80595

#:G80596

#:G80597

#:G80598

#:G80599

Figure 4: An example outcome of the visual grouping algorithm. The VoteBox task environment (left) is a relatively simple
display with visual elements distributed somewhat sparsely across the screen. The right depicts the VoteBox task environment
(dimmed) with the visual groups (colors) produced by the simple agglomeration method (grouping radius = 25 pixels) layered
over top. For each visual location, the points represent the position, the shaded boxes represent the width and height, and the
curved lines indicate the radius within which a box-collision occurs.

consider the task-critical segment as irrelevant and skip it en-
tirely.

Implications for modeling
One of our goals in developing a visual grouping algorithm
for the visicon was to provide functionality with as little dis-
ruption as possible to the way the ACT-R visicon works. As
such, our implementation is designed to work exclusively
with the information the visicon would already use, requir-
ing no custom-built devices whatsoever. We also wanted to
be sure the system was, by design, minimally disruptive to
existing models. Because the algorithm does not remove or
alter any information from the default visicon, modelers will
not need to rewrite any of their models in order to install and
start using the visual-grouping system.

Concerns for ease of use aside, modelers still must intro-
duce new routines to their models to make use of the vi-
sual groups provided. It is important to note that the group
IDs generated by the visual grouping system are intentionally
generic and anonymous, meaning they strictly cannot impart
any task-relevant information. Instead, models will need to
use knowledge of the task at hand (such as labels of relevant
buttons and information about the stimuli expected) to study
the scene and commit to memory (i.e., the imaginal buffer)
the relevant visual groups in the scene. Models will also need
to return to this state to re-study the scene should the interface
undergo any radical changes between parts of the task.

In exchange for the effort of having to study the screen,
models will no longer need to be imparted with special
knowledge about relevant screen locations, thereby becoming
inherently more robust to changes in the layout of the screen–
so long as the same buttons are used and the same kinds of in-
formation are presented, a model that studies the screen first
will always know how to do its task.

Figure 5: Sample scenario demonstrating how visual group-
ing would play out over multiple scenes in sequence. The first
scene consists of an instructional portion and a task portion,
assigned groups #G1 and #G2 respectively. In the second
scene, task 2 inherits #G1 (the same group as the instruc-
tions, likely causing the model to skip task 2 entirely), and
task 3 inherits #G2, despite being slightly offset from task 1.
In scene 3, task 4 is considered the result of a merge between
tasks 2 and 3, and is assigned the new group #G3, while task
5 is in a position that does not overlap with anything from the
previous scene, so it receives the new group #G4. Finally, in
scene 4, both tasks 6 and 7 are considered the result of a split
from task 4 and receive the new groups #G5 and #G6, while
group #G4 expires due to overlapping with no other groups.

ICCM2018

72

Future directions
This visual grouping algorithm is meant to be a “first draft,”
initially aimed at addressing a handful of specific human error
phenomena in the relatively simple domain of voting system
usability. There is much work yet to be done, and many di-
rections available for further development.

Currently, the appropriate grouping radius is left up to the
modeler to determine, likely through trial and error (clearly
not ideal). To provide a better default value for this radius–
or an equation for finding one– questions such as “are group-
ings sensitive to scale?” and “what is the role of the retina?”
will need answers either from a deeper delve into the visual
grouping literature or by performing a battery of simple em-
pirical studies.

Similarly, many questions remain about how exactly group
inheritance functions. Currently, we assume that phenom-
ena like splitting or merging two groups results in a sort of
“confusion” for the model, so a new group label is applied.
Instead it may be the case that there ought to be a “winner”
in such an event: perhaps the largest group inherits? Or the
group with the most overlap? Other questions about inheri-
tance include: do group identities have any sort of “memory,”
recovering after a period of not being present? Are groups
always constructed the same way, or is there an element of
uncertainty we need to capture? Under what circumstances
do we perceive visual groups as having “moved,” rather than
as two distinct groups? Do these processes function the same
way when the screen is updating in real time as opposed to
static, self-paced scenes? Simple empirical studies can illu-
minate how visual groups propagate forward in time, and eye
tracking studies will help to illuminate what triggers humans
to begin re-studying the screen.

We would also like to expand the scope of the visual fea-
tures available for determining groupings beyond simple po-
sition and spatial extent. We believe our efforts are compati-
ble with Rosenholtz et al.’s (2009) model, and as such we can
tap into the existing literature on visual grouping, and their
model in particular, to achieve even more robust visual group-
ings using a wider array of visual features, such as: contrast,
color, luminance, orientation, continuity, etc. Representing
these features, as well as SCREEN-X and SCREEN-Y, as a
vector of numerical values would allow us to use a nearly
identical measure of euclidean distance to detect “collisions”
and classify groups in more interesting ways than simple spa-
tial proximity.

We will also need to investigate to what extent humans
employ hierarchical grouping. Dividing lines and contain-
ing boxes are commonly used by interface designers to par-
tition the screen (like those shown separating the sections in
Figure 1), but there are clearly smaller sub-groupings of in-
formation within those regions. Currently, our system can
achieve something to the effect of identifying super- and sub-
groupings by using more than one visual grouping radius,
though the method for determining those radii will require
thorough exploration.

Conclusion
Visual grouping processes help humans make sense of their
visual environment. ACT-R, by default, lacks any sense of vi-
sual grouping. We attempted to remedy this because both (a)
visual grouping is a well-documented phenomenon that ex-
plains certain elements of human behavior, and (b) the use of
visual grouping offers modelers some practical conveniences
and improvements to the generalizability of their models.

The visual grouping system we have implemented is a first
pass at the problem, but still succeeds in many ways: the sys-
tem is straightforward (we believe), it is minimally disrup-
tive to existing models, it is stable in that it always produces
the same visual groupings given a particular display, and it is
extensible. In particular, we see the ability for models em-
ploying visual grouping to generalize across different screen
configurations as a contribution to the overall plausibility of
cognitive models in ACT-R.

Future empirical work and reviews of the literature will
address: the extent to which the model can reproduce hu-
man errors on voting ballots, investigating the mathematical
nature of visual grouping, and expanding the capabilities of
the system to fit the needs of the modeling community. To
that end, we extend an open invitation to interested model-
ers to propose– or implement– any desired additional features
or alternative methods as we continue to develop this visual
grouping system.

Acknowledgments
This research was supported by grant #CNS-12550936 from
the National Science Foundation. The views and conclusions
contained herein are those of the authors and should not be in-
terpreted as representing the official policies or endorsements,
either expressed or implied, of NSF, the U.S. Government, or
any other organization.

References
Anderson, J. R. (2007). How can the human mind occur

in the physical universe? New York: Oxford University
Press.

Greene, K. K. (2010). Effects of multiple races and header
highlighting on undervotes in the 2006 sarasota general
election: A usability study and cognitive modeling assess-
ment. Doctoral dissertation, Department of Psychology,
Rice University, Houston.

Im, H. Y., hua Zhong, S., & Halberda, J. (2016). Grouping by
proximity and the visual impression of approximate num-
ber in random dot arrays. Vision Research, 126, 291–307.

Norden, L., Kimball, D. C., Quesenbery, W., & Chen, M. C.
(2008). Better ballots. New York, NY.

Rosenholtz, R., Twarog, N. R., Schinkel-Bielefeld, N., &
Wattenberg, M. (2009). An intuitive model of perceptual
grouping for HCI design. In Proceedings of the 27th in-
ternational conference on human factors in computing sys-
tems - CHI 09 (p. 1331). New York: ACM.

ICCM2018

73

Modeling Perceptual Judgement in Believable Agents:

A Signal Detection Approach

Spencer K. Lynn (slynn@cra.com)
Human Effectiveness Division, Charles River Analytics, Inc.

625 Mt. Auburn St., Cambridge, MA 02138

Taylor Curley (taylor.curley@gatech.edu)
School of Psychology, Georgia Institute of Technology

J.S. Coon Bldg., 654 Cherry Street, Atlanta, Georgia 30332

Peter Weyhrauch (pweyhrauch@cra.com)
Human Effectiveness Division, Charles River Analytics, Inc.

625 Mt. Auburn St., Cambridge, MA 02138

Abstract
Computer modeling of Warfighter performance is an increasingly
important element for the Department of Defense in developing and
evaluating tactics, techniques, and procedures (TTPs) as well as
military acquisition strategies. To do this modeling, human
performance researchers are working to integrate models of complex
cognitive and physical systems, as well as the processes that
moderate them, in a unified framework. To better model visual
detection and identification processes in realistic performance
situations, we have constructed an agent-based model of visual
perception based on signal detection theory that can be moderated by
exigent processes, such as stress and fatigue.

Keywords: Perceptual Judgement, Signal Detection, Believable
Agents, Solder Simulation.

Introduction
A Warfighter in a combat environment is expected to

continuously search his or her visual field to maintain

situational awareness. Misidentification of relevant stimuli,

such as failure to detect an enemy combatant or incorrect

identification of a friend as an enemy, has costly results for

the Warfighter and associated team members. Furthermore,

Warfighters are often trained to sustain their attention over

long periods of time, but by-products of situational

demands, such as operational stress and fatigue, can

significantly impact performance related to visual attention

processes (Staal, 2004; Janelle & Hatfield, 2008). Thus, it is

of paramount importance to understand perceptual judgment

processes in individual Warfighters when confronted with

moderators of operational performance.

Methods
The DREEMS Project

To better understand the dynamics of Warfighter

performance, Charles River Analytics has introduced the

Dynamic Representation for Evaluating the Effect of

Moderators and Stress on Performance (DREEMS) project.

Using a modeling language called Hap (Loyall et al., 1991),

DREEMS models individual Warfighter performance

through the use of situational awareness modeling

(SAMPLE; Zacharias et al., 1996). The architecture models

agent behavior as the cumulative result of an information

processing module feeding into a situation assessor, which

then guides an agent’s decision-making via behavior trees.

Moderating variables can exert influence over these

modules at any point in the architecture.

Signal Detection Approach
Using a signal detection theory (SDT) approach to

cognition provides a robust method of exploring a wide

variety of behaviors, particularly for those in which

individuals encounter perceptual uncertainty and behavioral

risk (Lynn & Barrett, 2014). Importantly, the parameters of

SDT mechanisms have been shown to be sensitive to

moderating variables, such as emotion on field of view

(Schmitz et al., 2009). Here, we follow previous research

illustrating how perceptual decision parameters in a

perceptual SDT model are moderated by differences in

individual state (e.g., Lynn et al., 2012) and extend this

approach to modeling visual threat detection in a battlefield

environment.

Model Specifications
We model perception as a set of underlying receptors that

correspond to different regions in the Field of Regard

(FOR), or visual field, a span of 135°. These receptors

respond to signals from the visual environment. When a

signal is presented in the visual field, the ability of the agent

to discern the signal from background noise is a function of

the location of the signal in the FOR: Perceptual sensitivity

to discriminate signal from noise decreases toward the

periphery of the FOR (Fig. 1).

Figure 1. An agent’s FOR (Field of Regard). Past the FOV

(Field of Vision; 75°-105°), receptor sensitivity declines

ICCM2018

74

with increasing distance from the fovea.

After a signal is detected in the visual field, the agent

makes a decision about the identity of the signal, such as if

it is a threat or not. The criterion defining the perceptual

judgement between noise and objects-of-interest in the

environment (e.g. threat vs. non-threat) is given by SDT’s

utility function: u(x) = αhP[CD] + αmP[MD] + (1-α)aP[FA]
+ (1-α) jP[CR], where P[…] is the probability of each of the

four possible outcomes, correct detection (CD), missed

detection (MD), false alarm (FA), or correct rejection (CR);

α is the base rate probability of encountering a signal; 1−α

is the probability of encountering noise; and h, m, a, and j

represent the payoffs (benefits or costs) for hits, misses,

false alarms, and correct rejections, respectively. Thus, the

expected utility of adopting a decision threshold at a

particular signal value, x, is defined by the probabilities of

four outcomes, the base rate, and the payoffs. The optimal

decision threshold is found at the point of the highest utility

(Fig. 2).

Figure 2. A signals-approach to threat detection. Blue and

green Gaussians represent probability densities defining

what threats and non-threats look like, respectively, with

notional mean appearance of each category depicted by the

combatant and journalist. When perceptual uncertainty

exists (depicted as overlap of the Gaussians), mistakes

cannot be eliminated, but exposure to them can be

optimized. The maximum of a utility function (black curve)

locates this optimum: the decision criterion that will

maximize net benefits over a series of decisions.

Integrating Moderating Variables
Under our model, how effective an agent is at perceptual

decision making is dependent on the agent’s situation

awareness, defined as the accuracy of its signal transduction

at the receptors and its estimates of the CD, FA, etc.

probabilities; the base rate; and the payoffs. In order to

simulate the influence of operational variables on perceptual

decision making in Warfighters, we applied a function that

affects the accuracy of these parameters as function of

moderating variables, such as fatigue.

For example, distortion of the receptor transduction (or

another parameter, such as the base rate) can be modeled as

a simple sum of the incoming signal value, x, plus the

influence of behavioral moderators: x* = x+Mu(ba), where

Mu(ba) is the square of either a single or a collection of

behavioral moderators. The combined influence of several

moderators can be determined by a number different

methods, including only using the value of the moderator

with the most influence. For this project, we have employed

a logarithmic combination method (e.g. Moors, 2009): ba =
0.1∗ log2 (∑sgn(bi)∗ 210*|bi), where bi is an individual

moderator in a set of behavioral moderators acting upon an

agent. Any moderator variable or collection of variables,

then, can affect the perceived value of a signal or effect how

that signal is judged by influencing the agent’s estimate of

the optimal threshold location – a pattern consistent with

cognitive affective research (Lynn et al., 2012).

Acknowledgments
This material is based upon work supported by the US

Army Command Center, Aberdeen Proving Ground, Natick

Contracting Division ACC-APG-NCD under Contract No.

W911QY-17-C-0009. Any opinions, findings and

conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of the US Army Command Center, Aberdeen Proving

Ground, Natick Contracting Division ACC-APG-NCD.

References
Bates, J., et al. (1994). The role of emotion in believable

agents. Communications of the ACM, 37, 122–125.

Janelle, C. M., & Hatfield, B. D. (2008). Visual attention

and brain processes that underlie expert performance:

Implications for sport and military psychology. Military

Psychology, 20, S39.

Loyall, A. B., & Bates, J. (1991). Hap: A reactive, adaptive

architecture for agents. Carnegie Mellon University

Department of Computer Science Technical Report

CMU-CS-91-147.

Lynn, S. K., & Barrett, L. F. (2014). “Utilizing” signal

detection theory. Psychological Science, 25, 1663–1673.

Lynn, S. K., Zhang, X., & Barrett, L. F. (2012). Affective

state influences perception by affecting decision

parameters underlying bias and sensitivity. Emotion, 12,

726.

Moors, A. (2009). Theories of emotion causation: A review.

Cognition and Emotion, 23, 625–662.

Schmitz, T. W., De Rosa, E., & Anderson, A. K. (2009).

Opposing influences of affective state valence on visual

cortical encoding. Journal of Neuroscience, 29, 7199-

7207.

Staal, M. A. (2004). Stress, cognition, and human

performance: A literature review and conceptual

framework. NASA Technical Report NASA/TM-2004-

212824.

Zacharias, G. L., Miao, A. X., Illgen, C., Yara, J. M., &

Siouris, G. M. (1996). SAMPLE: Situation awareness

model for pilot in-the-loop evaluation. In Proceedings of

the 1st annual conference on situation awareness in the

tactical air environment.

ICCM2018

75

Similarity-based and Rule-based Reasoning in Raven’s Matrices

Can Serif Mekik (mekikc@rpi.edu)
Ron Sun (rsun@rpi.edu)

Department of Cognitive Science
Rensselaer Polytechnic Institute, Troy, NY 12180

David Yun Dai (ydai@albany.edu)

Department of Educational and Counseling Psychology
State University of New York at Albany, Albany, NY 12222

Abstract
Raven’s Matrices are a well-known family of intelligence tests.
Based on an analysis of a recently proposed similarity-based
approach, we present a new analysis of performance in the task.
This analysis represents an alternative to the dominant rule
induction approach. In particular, it suggests that similarity-
based and rule-based reasoning may synergistically enable
performance. We discuss possible complementary roles of the
two types of reasoning, suggest possible explanations of
observed empirical phenomena, and compare and contrast our
model with other prominent models of the task.

Keywords: Raven’s Matrices; Similarity-based Reasoning;
Rule-based Reasoning

Introduction
The g-factor is a psychometric construct that reflects general
intelligence (Nisbett, et al., 2012). Raven's Progressive
Matrices (RPM) are among the best single tests for measuring
the g-factor (Snow, Kylonnen, & Marshalek, 1984). The tests
are composed of items that require participants to select, from
a set of alternatives, the visual figure that best completes a
given array (Raven, Raven, & Court, 1998).

Cognitive modeling research has targeted cognitive
mechanisms underlying RPM performance as well as sources
of variability in performance (e.g., Carpenter, Just, & Shell,
1990; Lovett & Forbus, 2017). However, models still have
much to capture about the cognitive mechanisms humans use
to tackle RPM. In previous work (Mekik, Sun, & Dai, 2017),
we hypothesized that incorporating feature abstraction
processes in models of RPM may place important constraints
on processing. In that study, we developed a model tackling
a subset of RPM-style problems. Our model used a deep
convolutional neural network to model feature abstraction
and rule-based reasoning to model strategy selection and/or
use.

More recently, we developed a similarity-based reasoning
(SBR) approach to RPM-style problems that operates on
basic and/or relational visual features (Mekik, Sun, & Dai,
2018). In contrast with our previous work, this new model
makes relatively weak assumptions about the structure of
RPM items and processes subsymbolic visual
representations. We tested various aspects of the SBR
approach on 74 Sandia matrices (Matzen, et al., 2010), which
are computer generated matrix problems that have
psychometric characteristics similar to the Standard

Progressive Matrices edition of RPM. Performance of the
similarity-based model was about 85% correct. We believe
that the similarity-based approach may lead to a better
understanding of human cognitive processing in RPM.

RPM items are viewed in the cognitive modeling and
experimental psychology literatures as rule induction
problems. Thus, cognitive research on RPM focuses
primarily on rule-based reasoning (RBR). Yet, much of
common-sense reasoning may be captured by a combination
of SBR and RBR patterns (Sun, 2016; Sun, 1995). Although
relatively little attention has been devoted to the possible role
of SBR in human RPM performance, verbal overshadowing
work (DeShon, Chan, & Weissbein, 1995) suggests that
human subjects may use SBR, as well as RBR, when
attempting to solve RPM problems. Existing models of RPM
do not provide detailed accounts of the possible role of SBR
versus RBR in RPM performance. We think that this is an
area where our model can offer some useful insights.

Here, we argue for the possibility of a synergistic division
of labor (Sun, 2016; Sun, 1995) between SBR and RBR in
RPM performance based on an analysis of our SBR approach
to RPM and various considerations about computational
tractability and human cognitive limitations. We begin with
a non-technical presentation of the SBR approach to RPM
and then discuss complementary roles for RBR and SBR. We
argue that the combined model of SBR and RBR in RPM is
qualitatively consistent with several experimental findings
and notable cognitive models.

Similarity-Based Approach to RPM
RPM tests are composed of a series of matrix problems. Each
item presents subjects with a square array of figures (the
matrix), with the bottom right figure left blank. Subjects are
also presented with a second array of alternative figures, and
they are instructed to choose the alternative that best
completes the matrix. See Figure 1 for an example. RPM tests
include both 2 × 2 and 3 × 3 matrices, with the latter variety
generally being more difficult.

For our purposes, the relevant units of analysis are rows
and columns of matrix figures, which we collectively call
figure sequences. There are two types of figure sequences.
Matrix sequences are complete matrix rows and columns, and
alternative sequences are sequences produced when an
alternative is inserted into the blank. The sequence number is

ICCM2018

76

an index that disambiguates sequences of the same type along
the same axis. All indexes are assigned according to standard
English reading order (left to right, top to bottom).

RPM item structure is formally specified in Penrose and
Raven (1936). This specification implies that each matrix
exhibits characteristic row and column features (basic and/or
relational visual features). Subjects can find the correct
answer to a matrix problem if they can grasp the relevant row
and column features and find the figure that produces
alternative sequences exhibiting those features. These tasks
may be accomplished with basic and/or relational visual
features and SBR.

In our SBR approach, basic and/or relational features in
matrix and alternative sequences are identified using a neural
network. To discover characteristic row features, feature
representations of matrix rows are combined by taking the
elementwise geometric mean1 of row feature vectors.
Characteristic column features are identified in a similar
manner. The similarity of alternative sequences to
corresponding matrix sequences is then determined using
relative entropy2 as a similarity measure. A response is
selected according to a Boltzmann distribution3 on the
alternative set, with preference for alternatives that minimize
the entropy of alternative sequences relative to corresponding
matrix sequences. It is important to note that we assume, in
relative entropy calculations, that experimental features are
mutually independent. Violation of feature independence
leads to graceful degradation of performance. Thus, small
violations of the independence constraint are permissible.

The implementation discussed in Mekik, Sun and Dai
(2018) uses a set of thirteen binary features, though the SBR
approach can also accommodate non-binary and continuous
features. Basic and relational features used in our tests of the
SBR approach were derived from patterns that are used in the
computational literature on RPM (e.g., Carpenter, Just, &
Shell, 1990). For instance, increments features are
characteristic of sequences where an attribute is
progressively incremented (e.g., shapes get progressively
bigger along a row); distribution features are characteristic of
sequences where distinct values of the same attribute appear
in each sequence figure (e.g., same shape but different sizes
appear in a row in no particular order).

Walkthrough Example
The SBR approach may tackle Figure 1 as explained below.
For this example, only two features are needed: shape
distributions and shading distributions. These features are a
subset of those used in Mekik, Sun and Dai (2018).

Table 1 shows the output of a perceptual neural network on
each figure sequence associated with Figure 1. For instance,
the row labeled 𝑚𝑎𝑡	1 displays subjective probabilities for

1 The geometric mean of 𝑥*, 𝑥,,… , 𝑥. is given by ∏ 𝑥0

* .1.
02* .

2 The entropy of a discrete probability distribution 𝑞 relative to a
distribution 𝑝 is:

𝐷(𝑞||𝑝) =: 𝑞(𝑥) log
𝑞(𝑥)
𝑝(𝑥)>

shape distribution and shading distribution features in the
first matrix row (top) and column (left). In this particular
case, the model believes that the first matrix row likely does
not exhibit a shape distribution (11% probability that a shape
distribution is present) and that it exhibits a shading
distribution (99% probability that a shading distribution is
present). The network’s output on the first matrix column can
be interpreted in a similar way: this time, the model believes
that a shape distribution is present, but not a shading
distribution. When combined with observations from the
second matrix row and column using the geometric mean,
these observations lead to the conclusion that, overall, the
shading distribution feature is characteristic of matrix rows
and the shape distribution feature is characteristic of matrix
columns (see row 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑). The remaining rows are the
network’s observations about alternative sequences.

Relative entropy increases as the information shared by
two random variables decreases. Table 2 presents relative
entropy similarity indices for each feature in each alternative
sequence. For instance, the similarity score obtained by the
alternative row generated by alternative 1 (top left) for the
shape distribution feature is:

. 49 log,
. 49
. 02 +

(1 − .49) log,
(1 − .49)
(1 − .02) = 1.81

The sum of all similarity indices obtained from a particular
alternative, shown in the total column of Table 2, is an overall
measure of the similarity of the alternative in question to
corresponding matrix sequences, giving equal weight to rows
and columns. The alternative that generates the smallest sum
is thus the alternative that produces alternative sequences
most similar to corresponding matrix sequences (with respect
to a current feature set).

In this example, alternative 5 (bottom left) is correctly
identified as being the best alternative for completing the
matrix, with a total similarity index of .17. In general,
responses are selected stochastically, based on the summed
similarity indices, according to the Boltzmann distribution.
Selection probabilities (assuming a temperature of 𝜏 = 1) are
given in the Pr column of Table 2. When all alternatives are
considered, there is a 76% probability of success on this
particular example.

Comparison of Similarity-Based Approach with
Existing Rule-Based Models
Since its publication, Carpenter, Just and Shell (1990) has set
the agenda for cognitive modeling research on RPM. In this
model, matrix problems are analyzed as rule induction
problems. The model has a set of rules describing various
row-wise patterns and it attempts to match these patterns in
matrix rows by executing pairwise figure comparisons. Once

3 The Boltzmann distribution over 𝑛 elements is given by

Pr[𝑋 = 𝑖] =
exp	V𝑥0 𝜏1 W

∑ exp	 Y𝑥Z 𝜏1 [.
Z2*

for temperature 𝜏 and activations 𝑥*, 𝑥,,… , 𝑥..

ICCM2018

77

a matching rule set is found, the model selects the alternative
predicted by the rule set as its answer.

The Carpenter, Just and Shell (1990) study shed light on
the types of patterns human subjects tend to look for, the role
of incremental processing, and the sources of working
memory load in RPM. To address these issues, some
simplifications were made. The model did not attempt to
address necessary perceptual processing in detail, though
some important constraints were identified (in particular, the
problem of correspondence finding discussed below).
Furthermore, the model had hard-coded rules, and thus
focused more on rule recognition than on rule generation.
More recent models of RPM have attempted to extend
understanding of cognitive processing in RPM by addressing
these limitations. A representative example in this regard is
the Lovett and Forbus (2017) analogical model.

Lovett and Forbus (2017) present a model of RPM
following the structure-mapping approach to analogy. The
model extracts patterns of feature variation within matrix
rows and then generalizes these patterns in order to inform its
response. The extraction process involves restructuring
figure representations until a satisfactory pattern of variance
is found (i.e., perceptual reorganization). Then, a structure-
mapping process allows the model to identify patterns of
variance that are common between matrix rows, yielding
generalized patterns that can be used in response selection.

To determine whether a rule applies to a particular row,
subjects must make some commitments about which
individual visual attributes are subject to the rule; this is the
problem of correspondence finding (Carpenter, Just, & Shell,
1990). The Lovett and Forbus (2017) model’s perceptual
reorganization processes address the problem of
correspondence finding as well as the problem of rule
generation. The model suggests that correspondence finding
may be solved perceptually by structurally realigning figure
representations until a satisfactory pattern of variance is
found. Patterns of variance are essentially rule templates, thus
the same process also addresses rule generation in that rules
are not hardcoded but are rather systematically constructed
out of more basic visual attributes according to patterns of
variance.

Our SBR approach agrees with existing models on several
important architectural aspects. For instance, the feature set
used in our experiments is inspired by the Carpenter, Just and
Shell (1990) rule set as mentioned earlier, and it is also
comparable to patterns of variance identified by the Lovett
and Forbus (2017) model. Furthermore, our approach makes
use of row-wise comparisons, in keeping with the
aforementioned literature. Finally, our approach involves
finding generalized representations of row patterns by
combining information from the two matrix rows, just like
the models reviewed above. There are some relatively minor
differences between our approach and these models. For
example, although our use of both column-wise and row-wise
processing is somewhat novel, it is an extension of the logic
of existing models.

Unlike existing models, the SBR approach is not premised
on the notion that matrix problems are rule induction
problems. This is the fundamental point of difference
between our approach and existing models. As a
consequence, our approach offers a different perspective on

Figure 1: A matrix problem.

Table 1: Subjective probabilities for shape distribution
(𝐹*) and shading distribution (𝐹,) features on Figure 1

matrix and alternative sequences.

type seq. num. row col.
𝐹* 𝐹, 𝐹* 𝐹,

𝑚𝑎𝑡 1 .11 .99 .86 .00
𝑚𝑎𝑡 2 .00 .98 .84 .01

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑* .02 .99 .85 .00
𝑎𝑙𝑡 1 .49 .47 .55 .52
𝑎𝑙𝑡 2 .58 .97 .48 .02
𝑎𝑙𝑡 3 .69 .58 .65 .35
𝑎𝑙𝑡 4 .34 .91 .54 .03
𝑎𝑙𝑡 5 .02 .94 .88 .05
𝑎𝑙𝑡 6 .40 .60 .54 .36
𝑎𝑙𝑡 7 .02 .40 .89 .54
𝑎𝑙𝑡 8 .09 .42 .93 .47

*Geometric mean of subjective probabilities for
matrix sequences.

Table 2: Relative entropy similarity, total similarity, and

response selection probabilities for Figure 1.

alt. num. row col. total Pr 𝐹** 𝐹,** 𝐹** 𝐹,**
1 1.81 2.21 .37 3.20 7.59 .00
2 2.38 .01 .53 .03 2.95 .05
3 3.12 1.56 .17 1.90 6.75 .00
4 1.03 .14 .40 .04 1.60 .18
5 .00 .06 .01 .11 .17 .76
6 1.37 1.45 .38 1.94 5.15 .01
7 .00 2.70 .01 3.35 6.06 .00
8 .09 2.54 .04 2.77 5.45 .00

*Shape distribution feature
**Shading distribution feature

ICCM2018

78

cognitive and computational challenges presented by RPM
(see below). For example, the problems of correspondence
finding and rule generation, characteristic of the rule
induction approach, do not arise for the SBR approach since
the SBR approach relies on basic and/or relational visual
features instead of rules governing figure variation.

Role of Rule-Based Reasoning Within the
Similarity-Based Approach

The similarity-based approach presents a number of
cognitive challenges, some of which are comparable to
challenges affecting rule-based models. These challenges
may be addressed by a synergistic interaction between SBR
and RBR. It is worth mentioning that, even in its current
form, the SBR approach relies on some RBR processes, for
example, to apply the perceptual neural network to figure
sequences, to initiate similarity-judgments, and to set up
actual response selection (based on a Boltzmann
distribution). However, there needs to be other rule-based
mechanisms that orchestrate the similarity-based approach
due to the interactive nature and the physical limitations of
human cognition.

Consistent with our own previous work (Mekik, Sun, &
Dai, 2017) and the literature reviewed above, we believe that
RBR handles strategic aspects of RPM. More specifically, we
hypothesize that subjects rely primarily on some variant of
the similarity-based approach and that the role of RBR in
RPM is strategic executive and metacognitive control of
various aspects of relevant SBR processes. Below, we discuss
and develop some hypotheses about the possible role of RBR
in such processes. The combined SBR and RBR model is
consistent with the relatively recent Dual-Process Theory of
Intelligence, which combines aspects of dual-process
theories of cognition with theories of human intelligence
(e.g., Sobkow, Traczyk, Kaufman, & Nosal, 2018). The
theory distinguishes between implicit (e.g., intuitive) and
explicit (e.g., analytic) processes and posits that these
processes enable intelligent behavior independently and
possibly also through their interaction.

Working Memory Management
As evidenced in Carpenter, Just and Shell (1990), a
fundamental challenge in RPM arises from the fact that
human working memory capacity (WMC) is limited.
Working memory is the store for representing feature
probabilities and similarity judgments for the similarity-
based approach. Limited WMC implies that subjects can only
compare a limited number of features at a time. Our current
model simultaneously handles over 10 distinct features at
once, which may be stretching human capacity.

The impact of WMC limitations on performance can be
minimized through use of memory-efficient features and
summarization of intermediate results. Enforcing the use of
mutually independent features, as done in the similarity-
based model, is one way to decrease the working memory
load of the similarity-based approach. Feature independence
may be enforced by rules for checking feature dependencies

and handling dependent feature sets (see below). Independent
features minimize redundancies in the information
represented by the feature set and simplify computation of
similarities by eliminating the need to compute conditional
probabilities. Furthermore, relative entropy similarities
between figure sequences for two mutually independent
feature sets can simply be added to yield the similarity value
for the whole set, allowing for easy summarization of
intermediate results. Under the assumptions of our similarity-
based approach, subjects need only keep track of a running
sum of similarity values to incrementally evaluate figure
sequence similarities for an arbitrarily large set of mutually
independent features. These summarization processes may be
controlled by RBR.

Feature Management
A key question for the similarity-based approach, comparable
to the rule generation problem for rule induction approaches,
is how the feature set is determined. Human subjects likely
consider features based on prior general visual and geometric
knowledge and abilities, of which the patterns used by our
similarity-based approach are a part. But reliance on such a
wide base of knowledge, coupled with WMC limitations,
results in the need for feature selection and, consequently, the
need for feature management processes.

There are two notable aspects of the feature management
problem. To focus attention on the first, let us imagine that
human visual knowledge is always encoded in terms of basic,
mutually independent features. In this case, the feature
management problem reduces to a version of the frame
problem (Dennett, 1984): the subject must select, from an a
priori intractably large set of possibilities, a feature set that is
fit for purpose (i.e., one sufficient for accurately evaluating
response alternatives). Consequently, exhaustive and
systematic approaches seem impractical; feature selection
must be driven by heuristic search, which may involve RBR.

The proposition that human visual knowledge is always
encoded in terms of basic, mutually independent features is
demonstrably false. The same figure can be represented in
multiple ways, as shown in Figure 2. In order to enforce
feature independence, possible alternative representations of
a given figure or pattern must be processed by separate, likely
sequential, applications of the similarity-based approach. The
task of managing these incompatible representations

Figure 2: Four different ways to analyze an “X” shape.
The shape can be analyzed holistically (top left), as two

overlapping diagonal bars (top right), as two
overlapping wedges (bottom left), or as four

overlapping shorter bars (bottom right) among other
possibilities.

ICCM2018

79

constitutes a second notable aspect of the feature
management problem. This aspect of the feature management
problem is comparable to the correspondence finding
problem in rule-based approaches to RPM and may involve
perceptual reorganization processes similar to those
discussed in Lovett and Forbus (2017). Sequential feature set
evaluation and perceptual reorganization may be controlled
by RBR.

Strategic Management
The considerations above give rise to problems of a strategic
nature. The first problem arises as a direct result of the feature
independence assumption. As discussed above, subjects may
consider mutually dependent features in different feature sets.
In such cases, it is not possible for the similarity-based
approach to combine similarities through a simple
summation process. Therefore, either feature dependencies
must be taken into account, or the model must decide which
of several possible feature sets is most appropriate for a given
problem. Considerations in this regard may include rules
about minimizing the size of the feature set and
simultaneously maximizing the discriminative information
captured by the feature set.

The second problem arises from the open-ended nature of
the feature selection process. Since exhaustive search through
the feature space is intractable, additional criteria are
necessary for deciding when to stop feature search and
similarity assessment processes. Although we believe that
motivational variables play an important role here, due to
space limitations, we focus only on one possible cognitive
explanation. Subjects may evaluate how much variation
among matrix figures they have taken into account
(Carpenter, Just, & Shell, 1990). A threshold on the amount
of variation taken into account, enforced by a set of rules,
may serve as a cognitive criterion for evaluating whether
sufficient work has been done on a given item.

Further Remarks on the Role of RBR
Given the incremental and heuristic nature of suggested
processes and the crisp nature of associated constraints, RBR
patterns appear to be the best medium for handling the
challenges above. Although SBR may also play a small role,
for instance in determining whether two features have a
substantial degree of mutual dependence, or in guiding
heuristic feature selection. Note that many important RBR
processes discussed in this section are generic cognitive
processes. For instance, working memory management and
feature selection are processes that are likely to be applicable
to a wide range of tasks.

It is also worth mentioning that RBR processes may further
support RPM performance in other ways. For example,
subjects may explicitly abstract patterns that recur in RPM
tests and exploit these regularities for improved performance
using RBR (Verguts & De Boeck, 2002). Another possibility
is that RBR patterns may handle exceptional cases where
SBR processes are not readily applicable, for example, due to
unavailability of relevant features.

Capturing Empirical Phenomena with the
Combined SBR and RBR Model

The empirical literature identifies several cognitive variables
affecting human performance on Raven’s matrices. One
promising feature of the architecture outlined above is that it
may capture and explain many of the relevant cognitive
effects. Below, we review a few RPM related phenomena and
discuss how our model can explain these.

Verbal Overshadowing
DeShon, Chan and Weissbein (1995) divide RPM items into
two categories: visuospatial items and verbal-analytic items.
They present evidence that concurrent verbalization inhibits
performance in visuospatial items but not in verbal-analytic
items, suggesting that at least two processes are involved in
RPM performance.

Our model suggests a mechanism that may capture such
verbal overshadowing effects. According to our approach,
subjects are likely to sequentially consider several distinct
feature sets. It is probable that some characteristic features
are, on average, considered earlier rather than later, perhaps
because they have high visual salience. Likewise, we can
imagine the existence of items that can be solved by features
that are, on average, considered much later, possibly because
they involve uncommon or unfamiliar groupings of elements
(and may thus rely more on RBR).

The considerations above suggest the following
hypotheses: visuospatial items exhibit characteristic features
that are likely to be considered relatively early, whereas
verbal-analytic items exhibit characteristic features that are
likely to be considered relatively late and with the help of
RBR. In visuospatial items, most of the processing should be
SBR, and additional RBR processing requirements due to
concurrent verbalization may cause interference by diverting
cognitive resources. In contrast, concurrent verbalization
may not interfere with performance on verbal-analytic items
since feature selection in this case may heavily involve RBR.

Generation Speed
Verguts, De Boeck and Maris (2000) present evidence that
subjects’ rule generation speed is positively correlated with
RPM scores. Increased rule generation speed corresponds, in
our theory, to increased speed of feature selection and
detection processes. We would expect participants with faster
feature selection and detection processes to more frequently
find appropriate feature sets before they commit to a
response, since they would effectively be considering a larger
number of features.

Strategic Influence
Vigneau, Caissie, and Bors (2006) investigate individual
differences in RPM performance attributable to two
strategies. In constructive matching, subjects generate
possible answer figures and compare these to items in the
alternative set. In response elimination, subjects consider
only the alternatives and try to rule out the ones that do not

ICCM2018

80

fit based on feature comparisons with matrix figures. They
find that subjects who prefer constructive matching tend to
perform better on RPM tests than subjects who rely on
response elimination.

According to our theory, constructive matching may
encourage construction of feature sets that more or less
capture all variation within matrix sequences since figure
construction requires participants to commit to a coherent and
complete set of visual features. On the other hand, subjects
who employ response matching may not be aware that their
understanding of matrix patterns is incomplete or even
inconsistent, as they may not have a clear signal for assessing
the consistency and completeness of their reasoning.
Construction of more complete feature sets should, therefore,
generally lead to better performance.

Conclusion
In this paper, we reviewed a model of RPM in the context of
important theoretical and empirical considerations. We
argued that the similarity-based approach presents a novel
perspective on RPM performance as compared to the
dominant rule-based approach. In particular, we suggested
that both SBR and RBR may be used in RPM performance.
We developed qualitative explanations for several notable
empirical phenomena using our theory, and we compared and
contrasted our approach with two important models of RPM.
In future work, we plan to improve the performance of our
model and further develop details of SBR and RBR.

Acknowledgments
This work was supported in part by ARI grant W911NF-17-
1-0236. Can Mekik was supported by the RPI HASS
Graduate Fellowship. We thank Dr. Laura E. Matzen for
providing us with the Sandia Matrices and the Sandia Matrix
Generation Tool (Matzen, et al., 2010).

References
Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one

intelligence test measures: A theoretical account of the
processing in the Raven Progressive Matrices test.
Psychological Review, 97, 404-431.

Dennett, D. (1984). Cognitive wheels: The frame problem of
AI. In C. Hookway, Minds, machines, and evolution (pp.
129-150). Cambridge University Press.

DeShon, R. P., Chan, D., & Weissbein, D. A. (1995). Verbal
overshadowing effects on Raven's Advanced Progressive
Matrices: Evidence for multidimensional performance
determinants. Intelligence, 21, 135-155.

Lovett, A., & Forbus, K. (2017). Modeling visual problem
solving as analogical reasoning. Psychological Review,
124, 60-90.

Matzen, L. E., Benz, Z. O., Dixon, K. R., Posey, J., Kroger,
J. K., & Speed, A. E. (2010). Recreating Raven's: Software
for systematically generating large numbers of Raven-like
matrix problems with normed properties. Behavior
Research Methods, 42, 525-541. doi:10.3758/brm.42.2.
525

Mekik, C. S., Sun, R., & Dai, D. Y. (2017). Deep learning of
Raven's Matrices. Proceedings of the Fifth Annual
Conference on Advances in Cognitive Systems.

Mekik, C. S., Sun, R., & Dai, D. Y. (2018). Similarity-based
reasoning, Raven's Matrices, and general intelligence.
Proceedings of the 27th International Joint Conference on
Artificial Intelligence. Stockholm, Sweden.

Nisbett, R. E., Aronson, J., Blair, C., Dickens, W., Flynn, J.,
Halpern, D. F., & Turkheimer, E. (2012). Intelligence:
New findings and theoretical developments. American
Psychologist, 67, 130-159.

Penrose, L. S., & Raven, J. C. (1936). A new series of
perceptual tests: Preliminary communication. British
Journal of Medical Psychology, 16, 97-104.

Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for
Raven's Progressive Matrices and Vocabulary Scales:
Section 1, general overview (1998 ed.). Oxford
Psychologists Press.

Snow, R. E., Kylonnen, P. C., & Marshalek, B. (1984). The
topography of ability and learning correlations. In R. J.
Sternberg (Ed.), Advances in the psychology of human
intelligence (Vol. 2, pp. 47-103). Hillsdale, NJ: Lawrence
Erlbaum and Associates.

Sobkow, A., Traczyk, J., Kaufman, S. B., & Nosal, C. (2018).
The structure of intuitive abilities and their relationships
with intelligence and Openness to Experience. Intelligence,
67, 1-10.

Sun, R. (1995). Robust reasoning: Integrating rule-based and
similarity-based reasoning. Artificial Intelligence, 75, 241-
295.

Sun, R. (2016). Anatomy of the mind: Exploring
psychological mechanisms and processes with the Clarion
cognitive architecture. New York: Oxford University
Press.

Verguts, T., & De Boeck, P. (2002). The induction of solution
rules in Raven's Progressive Matrices test. European
Journal of Cognitive Psychology, 14(4), 521-547.

Verguts, T., De Boeck, P., & Maris, E. (2000). Generation
speed in Raven's Progressive Matrices test. Intelligence,
27(4), 329-345.

Vigneau, F., Caissie, A. F., & Bors, D. A. (2006). Eye-
movement analysis demonstrates strategic infulence on
intelligence. Intelligence, 34, 261-272.

ICCM2018

81

A Learning Support System for the Development of Phonological Awareness using
a Japanese Word Game

Junya Morita (j-morita@inf.shizuoka.ac.jp)1,
Junpei Nishikawa (bi16050@s.inf.shizuoka.ac.jp)1

1Faculty of Informatics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan

Abstract

Shiritori is a popular Japanese word game for young children.
The performance of this game is influenced by factors leading
language acquisition, such as phoneme segmentations, corre-
spondence between phonemes and symbols, and access to a
large-sized lexical knowledge base. We consider this game to
be especially useful for supporting atypical language acqui-
sition, like acquiring a second language, and training people
with aphasia and autism. In this research, we present a sup-
port system for lexicon acquisition utilizing shiritori, and con-
struct a computational model representing the above factors
with the ACT-R cognitive architecture. The model has vocab-
ulary knowledge, limited working memory capacity, and rules
extracting phonemes from words. As a result of simulation
with a prototype model, some cognitive processes influencing
the performance of shiritori became clear. In the future, by
improving the model, we can construct a system that monitors
the vocabulary acquisitions process for individual users by in-
teracting with the model.
Keywords: Phonological Awareness; ACT-R

Introduction
Language acquisition support is increasingly required in
modern society. One background is of internationalization
and informationization progress. Opportunities for collabo-
rating with people with a different first language and the need
to use a second language have increased. Another context is
attention to higher cerebral dysfunction that makes the use of
language difficult. Due to the progress in cognitive science re-
search, causes and countermeasures of acquired aphasia and
congenital disorders such as autism have become better un-
derstood.

Acquisition of a second language and acquisition of a lan-
guage by a person with a cerebral function disorder are dif-
ferent in many respects from a typical acquisition process
of a first language. Normally, a human infant learns a lan-
guage by observing and imitating the behavior of its care-
giver (Tomasello, 2008). In this acquisition process, infants
modulate enormous parameters such as patterns of sound
segmentation and correspondences between symbols and ob-
jects. This adjustment process is induced by innate cogni-
tive constraints such as joint attention and various cognitive
biases. However, it is usually difficult to effectively utilize
innate constraints in the acquisition of second language and
acquisition of cerebral dysfunction language (Baron-Cohen,
1997). For this reason, a person has to exert considerable ef-
fort to acquire the language skills equivalent to first language
speakers.

In order to support such difficult learning, a learner model
corresponding to the individual is necessary. Such mod-

els, based on cognitive science, are useful to distinguish the
cause behind several stumbling blocks for language learning.
Appropriate intervention can be realized by referring to the
model in which each cause is separated in the learning sup-
port system.

Therefore, this research proposes a method of modeling
the vocabulary of individuals who have difficulty in acquir-
ing languages. The features of the method proposed in this
research are (1) to use interactive games related to languages,
and (2) to estimate the knowledge and parameters of cogni-
tive architecture based on feedback receive from individuals.
As the interactive game, we use shiritori, which is a Japanese
word game, and for the cognitive architecture we use ACT-R
(Adaptive Control of Thought-Rational; Anderson, 2007).

Task
Shiritori is a common word game in Japan. Normally,
Japanese children start playing this game around the age of
four. In the game, players are required to say a word that be-
gins with the final letter of the previous word. For example,
after a player answers “りんご” (Roman character: ringo;
meaning: apple), the other player continues with “ごりら”
(Roman character: gorira; meaning gorilla). If a player re-
peats a word that has been already used in the game or a word
that has a specific end character, the player loses. This proce-
dure is often carried out by several players, but some vocabu-
lary learning materials for young children allow them to play
shiritori as a single-player game.

The game is connected to Japanese language characters.
Japanese has multiple letter systems, such as kanji and kana
characters. Among them, kana characters, including hiragana
and katakana, correspond to the Japanese phonological sys-
tem. Unlike English syllables, Japanese phonemes are uni-
tized by mora consisting of a combination of a vowel and
a consonant. Kana characters in Japanese are directly con-
nected with mora. In other words, shiritori is a relation of
letters and phonology at the same time.

In Japanese speech therapy, such as the treatment of apha-
sia and autism, shiritori is frequently used (Haradiyanti,
2014). Several Japanese papers show that the interaction
through shiritori is used for examining children with autism
during treatment. The conditions that enable shiritori are
clarified by a cross-sectional survey targeting children with
typical development (Takahashi, 1997). The research indi-
cated that phonological awareness, which divides sound into
phonemes and gives phonological index to mental lexicon, is

ICCM2018

82

necessary to make children understand the rules of shiritori.
Furthermore, it is shown that the acquisition of kana char-
acters is effective for indexing vocabulary by phoneme, and
helpful to execute a shiritori game.

In this research, we aim to model the above conditions that
enable shiritori on the cognitive architecture. By incorporat-
ing such models into the system, we aim to support acquisi-
tion of languages in difficult situations while monitoring the
state of learners.

Model and System
The cognitive architecture is the basis for modeling cognitive
processes that occur in individual tasks. By using a model
with a cognitive architecture, it is possible to construct a
model that separates various factors required for achieving
the task. Out of the various cognitive architectures, we will
focus on ACT-R in this research.

ACT-R has already been used in many research studies on
language acquisition. A model related to acquisition of ir-
regular verbs in English (Taatgen & Anderson, 2002) and a
model of reference learning by children (Van Rij, Van Rij,
& Hendriks, 2010) have been constructed. Studies on brain
dysfunction have also been developed, and some studies have
described errors caused by aphasia in sentence comprehen-
sion using the parameters of ACT-R (Matzig, Vasishth, En-
gelmann, & Caplan, 2017).

However, previous studies on cognitive architecture have
only dealt with English, and there is no research on vocab-
ulary acquisition with shiritori. As mentioned, shiritori is a
language task involving phonological awareness. Therefore,
this might be a useful subject to explore the correlation be-
tween spoken and written language. There is also a possi-
bility that the module structure by ACT-R effectively models
such interaction between modalities.

To support language learning through shiritori, the study
proposes a system that includes interaction between a hu-
man user and an ACT-R model (Figure 1). In this system,
a learner interacts with the ACT-R model via typing or voice.
The speech interface is generally difficult because it requires
precision of speech synthesis and speech recognition. How-
ever, in a learning setting to acquire phonological awareness,
a conscious effort for input might be effective. Also, by com-
bining speech interface and kana character input, there is a
possibility of providing support to learners who find it diffi-
cult to obtain phonological awareness.

In the ACT-R, with the visual and manual modules, the in-
teraction through the typing interface is realized. Similarly,
with the auditory and voice modules, interaction through the
voice interface is realized. The input and output in each
modality is integrated in the production module and interact
with modules inside the system (goal module, imaginal mod-
ule, and declarative module). Among the internal modules,
the goal module and the imaginal module hold the current sit-
uational problem of short-term memory. In contrast, declar-
ative modules hold vocabulary knowledge and the learner’s

Figure 1: Proposed System.

vocabulary models. The system estimates the latter knowl-
edge through interaction with the learner.

Summary and Future work
In this abstract, we present a system utilizing ACT-R to sup-
port atypical language acquisition. Our system focuses on
non-English language. We believe that our approach is help-
ful for fundamentally understanding human cognition and
language, especially with regard to spoken and written lan-
guage interactions.

We have so far developed a prototype model that involves
playing a game of shiritori, exploring cognitive factors in-
volved in this task through preliminary simulations. In future
studies, we will develop interfaces presented in Figure 1, and
conduct psychological experiments where participants can in-
teract with the system.

References
Anderson, J. R. (2007). How can the human mind occur

in the physical universe? New York: Oxford University
Press.

Baron-Cohen, S. (1997). Mindblindness: An Essay on Autism
and Theory of Mind. The MIT Press.

Haradiyanti, C. P. (2014). The study of Aphasia in Megumi’s
character in the third episode of “Mr.Brain Dorama”. Jour-
nal Ilmiaha Mahasiwa Fib, 2.

Matzig, P., Vasishth, S., Engelmann, F., & Caplan, D. (2017).
A computational investigation of sources of variability in
sentence comprehension difficulty in aphasia. In (p. 1-6).

Taatgen, N., & Anderson, J. (2002). Why do children learn
to say “broke”? A model of learning the past tense without
feedback. Cognition, 86, 123-155.

Takahashi, N. (1997). A Developmental Study of Wordplay
in Preschool Children. The Japanese Journal of Develop-
mental Psychology, 8, 42-52. (In Japanese)

Tomasello, M. (2008). Origins of human communication.
The MIT Press.

Van Rij, J., Van Rij, H., & Hendriks, P. (2010). Cognitive ar-
chitectures and language acquisition: A case study in pro-
noun comprehension. Journal of Child Language, 37, 731-
766.

ICCM2018

83

A Computational Model of Sensemaking in a Hurricane Prediction Task
Shane T. Mueller (shanem@mtu.edu)

Department of Cognitive and Learning Sciences
Michigan Technological University

Houghton, MI 49931 USA

Brittany Nelson (bnelson1@mtu.edu)
Department of Cognitive and Learning Sciences

Michigan Technological University
Houghton, MI 49931 USA

Abstract

Sensemaking is described as how people make sense out of
the world, and is an emergent process involving the interac-
tion of low-level cognitive functions that have often been stud-
ied in isolation. If individuals who perform well in one as-
pect of sensemaking also excel in other aspects, this suggests
it may be valuable to study sensemaking as an emergent co-
herent process. We discuss an experiment where participants
learned to estimate and detect errors based on weather reports.
Results showed that systematic individual variability in esti-
mation predicted error detection ability. We then describe a
computational model of sensemaking that assumes weights in
a predictive model are encoded as a fuzzy ensemble of values
that get updated independently via a delta learning rule, and
are used to make predictions and detect errors. Two simulation
models show that although either learning rate or estimated
priors produce reasonable accounts of the data, both are im-
portant.
Keywords: sensemaking; prediction; forecasting; learning;
error detection

Sensemaking has been described as the ability to make
sense of our experiences in the world (Klein, Moon, & Hoff-
man, 2006a). As such, is a macrocognitive process (Klein,
Moon, & Hoffman, 2006b) that involves interplay between a
number of lower-level processes in service of a ill-specified
goal, carried out to accomplish complex behavior, gain better
understanding, and performing intelligently in context.

In general, we can consider sensemaking to involve a num-
ber of abilities that have been studied in isolation:

• Learning (function learning, category learning)
• Estimation, prediction and judgment, and forecasting
• Forecasting
• Choice between options and decision making
• Detecting anomaly and error
• Causal reasoning
• Problem detection
• Problem solving

These different processes are typically studied in isolation,
without considering either the ways the different functions
interact, or how they use a common body of knowledge to
accomplish a more complex goals. We expect them to work
together on the same body of knowledge, which might gener-
ically be called a mental model, and has specifically has been
referred to as a frame in the Data/Frame theory of sensemak-
ing (Klein, Moon & Hoffman, 2006b).

Because of its complexity, the holistic process of sense-
making is rarely studied. One might wonder whether there
is value in it at all, as a scientific reductionist approach nat-
urally lends itself to studying the component functions in
isolation. One reason to attempt to understand the emer-
gent process is that naturalistic and complex environments
and situations, explanations of behavior based on sensemak-
ing are prevalent and in fact typical. This in fact has been
the focus of much of the naturalistic and macrocognitive re-
search on sensemaking in individuals, teams, and organiza-
tions (see Klein et al.,2006a). We might also consider the core
knowledge of sensemaking (i.e., the mental model), and test
whether, at minimum, a common body of knowledge is used
across related subtasks of sensemaking. Once this minimum
criteria is reached, it then may be fruitful to understand how
these functions work together, what the most likely sources
of knowledge and performance differences are, and how the
knowledge gained in one task can be applied to more complex
situations. This is the approach we will take in the present
work.

Sensemaking in a hurricane prediction task
In cue-learning and categorization literature, many similar
paradigms have been used to examine how people predict
outcomes based on probabilistic signals. One prominent
paradigm is the weather prediction task (WPT) which has
been used extensively by Gluck and colleagues (Gluck &
Bower, 1988; Knowlton et al., 1994; Gluck et al., 2002) to
study learning of probabilistic outcomes (sunny or cloudy)
based on a sets of otherwise meaningless cues. Results
in such tasks reveal learning trajectories, and also differ-
ent strategies used (such as considering just the best feature,
weighing all features, or considering only positive or nega-
tive features, see Gluck et al., 2002). The cognition involved
in true weather forecasting is much more complex (see Hoff-
man, 2017), but at its core weather prediction spans both lab-
oratory and naturalistic contexts, and so is a reasonable test-
ing ground for understanding sensemaking.

We have designed a testing system that is similar to the
WPT, with a few exceptions that make it more amenable to
studying sensemaking, implemented via the cross-platform
experiment-design system PEBL (Mueller & Piper, 2014).
Describing the general task, (see Figure 1), participants are

ICCM2018

84

first given a description of a set of eight features that serve
as predictors of the risk of a hurricane (bottom left panel).
One each trial, they are shown a sensor report describing the
state of between 0 and 8 weather variables (top panel), that
include status of wind, rain, sea level, and the like. They are
told that these indicators have strengths between very good
and none, and in truth they combine in a logistic model to
predict the probability of a hurricane with feature weights .8,
.8, .6, .5, .5, .2, .1, and .01. Next, participants are asked to es-
timate the probability of a hurricane occurring (bottom right
panel), and given feedback, awarding points if their estimate
was within 7.5% of the true probability. On some trials, cor-
rect feedback was given, but on the rest of the trials, erro-
neous feedback is given, inducing a true or simulated error.
When an error was induced or committed, the participant was
then asked whether they felt the system was to blame, or they
themselves were. This error detection is a simple way of de-
termining whether their knowledge, as they may be correct
even when they guess, but may not be able to determine if an
error was produced by the system. This mode of operation
also mimics many behaviors of humans operating intelligent
systems–they need to trust the system, and their ability to pre-
dict the system can help produce trust. Overall, we conceive
of the task as having the participant learn a forecasting model,
rather than learning the weather–they are told that a computer
model is creating the prediction that they are trying to match.
The underlying model is a logistic regression model, with dif-
ferent independent features having different weights.

This task involves several opportunities to examine com-
plementary aspects of sensemaking. These include:

• The ability to use instruction to start with a reasonable
frame for making a probability prediction

• The ability to use feedback to learn how to combine evi-
dence to make a prediction.

• the ability to identify the source of errors (themselves or a
computer model).

In subsequent and prior studies not discussed here, we have
also examined other aspects of sensemaking processes and
representations, making evacuation decisions, learning non-
independent features, diagnosing sensor errors, and correct-
ing the system to match a given output.

Our goal is to use this task to (1) test whether different
sensemaking functions rely on a common mental model or
knowledge base; and (2) identify possible sources for this
knowledge in a computational model that might explain in-
dividual differences in performance.

Method
All methods were approved by the MTU institutional review
board (IRB). We tested 27 participants who took part in the
study in exchange for course credit. Participants were first in-
structed in the task, given several practice trials, and then al-
lowed to move on to the testing phase. They completed a total
of 80 trials, which involved combinations of up to 8 features.
On each trial, they first made a probability estimate. Next,

Figure 1: Elements of hurricane prediction experiment. Top
panel shows typical message. Bottom left shows feature
description, and bottom right shows likelihood assessment
scale.

the system determined whether an error would be signaled.
Errors were signaled whenever the participant made a true er-
ror, and on half of all other trials. On system-correct trials,
the true probability of the model was shown; on system-error
trials a new probability was sampled that was outside a 7.5%
region around the true estimate. Participants were asked to
determine whether the error came because of themselves (“I
was to blame”) or if they thought the system made an error
(“the system was to blame”). All participants experienced the
same 80 trials, but in a randomized order, and the trials were
sampled to produce a range of probability estimates. Once
they completed the task, they were debriefed and given credit
for completing the study.

Results
We first would like to establish that performance differs
across individuals. Figure 2 shows scatterplots of the given-
to-estimated probability across all individuals. The correla-
tions ranged from -.08 to .86, with substantial variability. Our
main hypothesis in this study is that the ability to estimate
the probability will have related effects in other sensemak-
ing functions, and so we would expect this correlation to pre-
dict other behaviors. An ANOVA model incorporating par-
ticipant code and trial pattern on prediction error showed that
participant code was highly significant (F(26,1996) = 14.3,
p < .001), suggesting that substantial systematic variability
stems from individual differences.

As an alternate measure of individual accuracy, we com-
puted the proportion of trials on which a participant was
within 7.5 % of the true model value (which is the criterion
for being awarded points). These values are seen in Figure 3,
arranged by three error conditions, depending on whether the
system or the human was correct.

The horizontal axis of Figure 3 shows that the range of
abilities in estimation have an impact on blame assessment.
The leftmost panel shows that all participants–regardless of

ICCM2018

85

Figure 2: Performance across individuals ranged from close
to random (participant 109; R=-.08) to very precise (partici-
pant 202; R=.86).

●●
●

●

●●●

● ●
●

● ●

●●●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●
●

●

●

●
●

● ●
●

●

●
●

●

● ●
●

●

●

●

●

●

● ●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●●

●

●

●●
●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●●

●
● ●

●

●

●

●

●

●

●
●

●
●●

●●
●

●

●

●
● ●●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●●
●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

● ●

●

● ●●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●● ●●●

●

●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●
●●

●
●

●●

●

●

●●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
● ●●

●

● ●●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●
●

●●

●

●
●

●

●
●

●
●

●
●●●

●

●

●
●

●

●●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●●
● ●

●●
●

●●
●

●
●

●
●

●

●

● ●
●●

●

●

● ●

●

●

●●
● ●●

●

●

●

●
●

●

●

●
●

●

● ●
●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●●
●

●
●

●
● ●

●

● ●

●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●

●
●

●
●

●● ●

●

●●
●

●
●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●● ●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●● ●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●
●

●●

●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●

● ●
●

●● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●●●

●
●

●●●●●
●

●
● ●

●
●

●
●

●

●

● ●●
●

●
●

● ●●
●
●

●●
●

●●

●
●●

● ●
●

● ●
● ● ●● ●● ●●●● ●● ● ●
●

●

●

●● ●●
●

●

●
●●

● ●
●

●●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

● ●

●

●●●

●●
●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●●

●

●
●

●

●
● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

● ●●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●●●

●
●

●

●

●

●

●
● ●●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●●

●●

●

●

●

●

● ●
●

●

● ●
●

●

●

●
●●

●

●

●

●

●
● ●

●

●
●●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●●
●

●
●

●

●

●

●● ●

●● ●
●

●

●

●
●

●

●●

●

●
●

●

●●

●

●
●●

● ●
●

●●
●●●

●

●
●

●
●
●●

●

●
●●●

●
●●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●
● ●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

● ● ● ●●

● ●●
●● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●

●

● ●

●
●●

●
●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●
●● ●

●
●

●
●

●

●
●

●

● ●●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●
●

●
●

●● ●
●

●

●

●
●

●●

●
● ●

●
●

●

●

●
●

●

●
●

●

●
●●

●● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●● ●
●

●
●

● ●

●

●

●
●

●
●

●
● ●

●

●

● ●

●
●

●

●

●

●●

●

●●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●
●●●

●● ●●

● ●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

● ●

●

●●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●●● ●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●
● ●

●

●
●

●

●

●
●●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

● ●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●●
●●

●
●

●
●

●●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●
●●● ●●

●
●

●●

●
●

●

●● ●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●

●

● ●
●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●●

●
●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

● ●●
●

●

●
● ●●

●

●
●●

●●

●●

●

●
●

●

●
●

●

●●
●

●●
●

●

●

●

●
●● ●

●
●

●
●

● ●
●

● ●

● ● ●

●

●

●

●
●

●

●
●

●

●

●
●

● ●

●

●
●●

●●●

●

●

271 272 273

205 206 207 208 209 270

163 200 201 202 203 204

107 108 109 160 161 162

101 102 103 104 105 106

0.250.500.75 0.250.500.75 0.250.500.75

0.250.500.75 0.250.500.75 0.250.500.75

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50
0.75

1.00

0.00
0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

trueprob

cl
ic

kv
al

how well they estimate probability, tend to blame themselves
when the system was correct but an error was made. The
rightmost panel shows what happens when the person is ac-
tually correct but the system is incorrect. Here, those who do
worse also tend to blame themselves. In contrast, those who
do better tend to blame the system. In this case, blaming the
system is the “correct” response, and we see that those who
are better at estimating the probability are better at assessing
blame for errors. The center panel shows what happens when
both the human and computer are wrong, and the results do
not differ substantially from the rightmost panel. This result
demonstrates that ability to estimate the probability is use-
ful for detecting an error and appropriately assigning blame–
suggesting that an emergent process is involved.

A Computational Model of Sensemaking
We have designed the experiment so that the mental model of
performance is fairly simple, and maps onto a simple linear
model with a logistic transform. More complex mental mod-
els may require networks or hierarchies of such models, but at
its core the notion is akin to modeling estimation with an im-
proper linear model (Dawes, 1979). This is a generalization
of the framework was used by Mueller (2009) to implement
a core Recognition-primed decision process.

Probability Prediction
The first function to consider is how a probability estimate is
made when a set of features is shown. There are numerous
theories about how people make estimates in light of com-
plex probabilistic data. Gluck et al., (2002) argued that in

a similar context many participants considered only the best
features, but others considered more. Our own intuition is
that we perform some intuitive mental arithmetic: starting
at a baseline value (e.g., 50%) and adjusting the probability
higher and lower based on the presence of positive and neg-
ative features, assuring to give the stronger indicators more
weight and not permit probabilities to extend outside the 0-
100% range. In post-experiment interviews, we have found
that participants have sometimes reported strategies like this,
but they also indicate many misconceptions, including setting
a baseline that is not 50%. So, our initial model assumes that
for each predictor, people understand its relative weight in
predicting a probability of a storm, these weights add together
to form an internal odds ratio, which is transformed to a prob-
ability using a logit transform logistic(x) = 1/(1+ e−x). This
is identical to the logistic regression model without error:

p = logistic(∑
i

fiβi) (1)

Here, fi are feature values that are either +1 (consistent
with hurricane), -1 (consistent with calm), or 0 (absent). The
coefficients βi can differ for each predictor, but in our initial
model, all features that are present are used, and a probability
is estimated exactly from the beta weights and feature values,
with no error. If an individual has a good intuitive estimate of
the βi values, they should be able to produce a close approx-
imation to the true probability; otherwise, they are likely to
mis-estimate the probability.

Learning rule
. Next, we must consider how the βi weights change over
time. Many learning schemes are based on the so-called
‘delta’ rule: if a feature is present and its value is positive,
errors between the model and the feedback signal should ad-
just the beta weights to reduce the likelihood of future error
(see Rescorla & Wagner, 1972; Gluck & Bower, 1988). If the
message contains features fi ∈ −1,0,1, the weights at time j
are β

[j]
i , the difference between the estimated probability and

the feedback is ε, and α is a learning rate parameter,

β
[j+1]
i = β

[j]
i + ε∗ (1− fi)∗ | fi| ∗α (2)

The inner 1− fi implicitly assumes that the canonical pat-
tern for maximum chance of a hurricane is all features set
to 1.0. For more complex classification schemes in which
different classification patterns are of interest, this could be
replaced with pi− fi, where pi is a prototype classification
pattern. The logic of the learning rule is that β values are
changed from previous values in the direction that would re-
duce error, but only for the features that are present (-1 or
1).

Error and Anomaly Detection
As currently described, it is not clear how an error could rea-
sonably assessed. This is in part because the model has no

ICCM2018

86

Figure 3: Results from weather sensemaking experiment. Individuals who are better at estimating the model’s probability are
also better at discriminating correct model behavior (left panel) from incorrect model behavior (center and right panels).

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

System Correct Human Error

Proportion within 7.5%

P
ro

po
rt

io
n

bl
am

in
g

se
lf

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

System Incorrect Human Error

Proportion within 7.5%

P
ro

po
rt

io
n

bl
am

in
g

se
lf

worse better
●

●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

System Incorrect Human Correct

Proportion within 7.5%

P
ro

po
rt

io
n

bl
am

in
g

se
lf

worse better

sense of how sure it is about its β values. For any set of fea-
tures, it can provide an estimate, but this estimate will almost
never be exactly the same as the true model prediction. Thus,
we need to consider how the model knows the value is likely
to have arisen from its internal model.

Clearly, a number of mechanisms could suffice. A sim-
ple bounded confidence model would identify any estimates
greater than some fixed difference as outside the model’s
bounds, but Mueller and Tan (2017) questioned the utility of
such models in many contexts. Many likelihood-based model
and fuzzy models could have the ability to provide bounds on
the outcome estimates. For example, if the β weights were
not point estimates but rather distributions, the posterior esti-
mate would also be a distribution, and the likelihood of that
distribution could be measured by applying Bayes rule–and in
fact the β weights could be estimated via Bayesian inference.

We have opted for an approach that approximates this,
without requiring the mechanisms and distributional assump-
tions of Bayesian inference. We assume that instead of a sin-
gle set of beta weights, the individual has a collection of inde-
pendent prediction models whose coefficients start randomly
and evolve independently over time. One might consider the
multiple versions of each parameter an empirical prior distri-
bution, or a fuzzy-set representation of the uncertainty in the
value. For example, an agent may have have ten versions of
beta estimates. On each trial, a prediction can be made by
sampling one or more of these versions and using it to com-
pute estimates. This provides both a noisy estimation, and
the possibility of using mental simulation to sample a range
of possible values. When feedback is given, a subset of the
models (as few as 1, but multiple are possible) are sampled
and updated using Equation 2. Models thus can start out with
a wide range of values, producing a range of possible out-
comes, but over time will converge to similar weights and
similar predictions. Thus an agent that has multiple sets that

are similar can be highly confident in its estimate (even if it is
not calibrated), whereas an agent with very different weights
will have less confidence in its estimate.

This scheme has a direct functionality for blame assess-
ment. An agent can make an estimate by sampling one model
and producing an estimate. But if the agent is given another
estimate, it can estimate the likelihood that the estimate arose
from any of its models. Although this posterior distribution
could be generated by smoothing or estimating a specific dis-
tribution, we will use the simple decision policy of asking
whether the given estimate is outside the entire range of esti-
mates the agent could make at any point in time. An estimate
outside the set of possible estimates is considered anomalous
or an error.

In the current design, detecting an error is synomomous
with assigning blame. That is, if the given feedback is out-
side of the agent’s bounds, it is judged as being the fault of
the system, rather than the agent. Thus, agents with β weights
that are similar will be likely to detect that the system is bro-
ken even when the amount of error is small, but agents with
widely varied weights are likely to produce an estimate even
more extreme than the error, and thus attribute the error to
their own lack of knowledge.

Simulation
The behavioral data showed systematic differences in how ac-
curate people were in estimating the probability. There are
multiple ways in which we might represent individual differ-
ences in ability in the model. Two natural explanations are
that (1) there are differences in how well people learn in re-
sponse to feedback; and (2) there are differences in how well
people generate initial (prior) estimates of β weights in re-
sponse to instructions. There are other possibilities as well,
such as how many versions of the β weights are stored, how
many are update in response to a given piece of feedback, and

ICCM2018

87

Figure 4: Results from two simulations (n=5000). Left panels show how prediction error is impacted by varying either learning
rate (top panel) or prior noisy (bottom panel). Center panels show impact of learning rate on probability of blaming oneself
either when the system is correct (black) or incorrect (gold). Right panels show relationship between prediction accuracy and
blame, analogous to data in Figure 2. Dashed lines represent best-fit linear-model for simulation, and solid lines represent
best-fit linear model from human data in Figure 2.

0.00 0.10 0.20 0.30

0.
05

0.
15

0.
25

0.
35

Learning rate

P
ro

po
rt

io
n

w
ith

in
 7

.5
%

0.00 0.10 0.20 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Learning rate

P
r(

B
la

m
e

on
es

el
f)

0.05 0.15 0.25 0.35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion within 7.5%

P
r(

B
la

m
e

on
es

el
f)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Priors Std. Dev.

P
ro

po
rt

io
n

w
ith

in
 7

.5
%

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Priors Std. Dev.

P
r(

B
la

m
e

on
es

el
f)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion within 7.5%

P
r(

B
la

m
e

on
es

el
f)

the extent to which multiple versions might be sampled prior
to making an estimate.

To examine how this model can account for results of the
experiment, we conducted two simulation studies. In each
study, we had each agent go through the 80-trial design that
human subjects were exposed to, making an estimate, getting
feedback, and assigning blame on each trial. For each of 5000
simulated participants, we recorded their accuracy across the
80 trials (in terms of the proportion of trials within 7.5% of
the true value), and their blame assessment probabilities for
both system correct and incorrect trials (mapping onto the left
and right panels of Figure 3). In all models, agents initiated
an ensemble of 8 beta-weight sets, and on each update, four
sets were sampled (with replacement) and a single delta-rule
step was initiated on each. These simulations have no free
parameters for fitting the human data in Figure 3, and the
only arbitrary parameters involve the number of beta-weight

ensembles, the number of ensembles sampled on each set,
along with the prior distribution in Simulation 1 (set to a uni-
form distribution between 0 and 2) and the learning rate in
Simulation 2 (set to 0).

The top panel of Figure 4 shows simulation results for
a model in which the main between-agent variable was the
learning rate. On each simulation, a learning rate parameter
was sampled between 0.0 and 0.3 (horizontal axis of left panel
of Figure 4). As learning rate increased, overall accuracy in-
creased (note that as seen in Figure 3, typical values produced
by human participants ranged from about .2 to .6). As learn-
ing rate gets larger, we see that the ability to discriminate
system-correct errors (black points) from system-incorrect er-
rors (gold points) increases. The right panel shows a plot akin
to that in Figure 3. Overall, the system-error trials show very
similar results to the human data. In contrast, the system-
incorrect condition shows a negative slop (like human data

ICCM2018

88

did), but there are some overall mismatches. Nevertheless,
the qualative pattern is similar, suggesting that a learning-rate
account may explain the individual differences we found.

The bottom panel of Figure 4 shows a model that involves
no learning (α = 0.0), but systematically varies the standard
deviation of the different examplars of each β weight around a
starting level that matched the true model (.8, .8, .6, .5, .5, .2,
.1, and .01). The rightmost panel shows that as the standard
deviation of the values increased, overall accuracy decreased,
and when the standard deviation was near 0, performance was
close to 50% (half of trials were estimated within 7.5% of the
true value). Now, when comparing performance to blame as-
sessment, the slope of the system-incorrect trials (in gold) is
perhaps a better approximation of the human data. The main
problem is that when the system is correct, the agent correctly
blames the system close to 100% of the time, in contrast to
humans who blame the system around 80% of the time. This
difference likely arises because the starting values were cen-
tered on the true values, and so the correct estimate would
almost always be in the center of the estimates. Had the start-
ing mean beta weights been less calibrated, more correct esti-
mates would have been outside the agents estimates and this
probability would have been lower.

Discussion
The two simulations provide two examples of model param-
eters that might produce the systematic variability we saw in
our human experiments. Each produced some mismatches to
data, but they are nevertheless informative about what kinds
of individual differences may produce systematic differences
in sensemaking ability. We find the model involving better as-
sessment of priors more satisfying in its account of our data,
aside from it being too good when it made an error.

To examine the difference between these in greater detail,
we fit a linear regression model predicting overall error rate
by participant and trial, and also computed accuracy across
the entire experiment and for the first five trials.

We found that the accuracy for the first five trials was
highly correlated with the performance over the entire task
(R = .79, t = 6.4, p < .001). Performance on the first five tri-
als was negatively correlated with slope (R =−.41, t = 2.23,
p = .03), but performance over the entire experiment was not
(R = −.15, t = .76, p = .45). The negative slopes indicate
that people who had less error at the beginning overall had
relatively more positive slopes. In other words, those who
started out good improved less than those who started out
more poorly. This suggests that both of the factors studied
in the simulation may be at play. Some people are able to
set good priors, and so if they are, they are good immediately
and end up doing the best of all participants. Others start out
less good, and tend to improve more, but their overall perfor-
mance remains worse than those who start off good.

Conclusions
This model attempts to integrate several complementary func-
tions related to sensemaking that have previously been stud-

ied mainly in isolation. We found that performance in one
skill (estimation) is predictive of performance in a second
task (assessing whether an error arose because of the per-
son or the system). Our computational model of sensemaking
integrates different functions via a simple model, and incor-
porates error detection by assuming that feature-weights are
fuzzy and encoded as an ensemble of values that get updated
independently. This type of assumption is not necessary when
studying just the learning aspect of the task, but by adding ad-
ditional sensemaking tasks, we are able to identify, simulate,
and discriminate sources of individual differences, which in-
volve both ability to set reasonable feature-weight estimates
based on instruction, and ability to learn based on trial-by-
trial feedback.

Acknowledgments
The experiment presented in this paper was part of the Mas-
ter’s thesis of BN. The modeling was supported by DARPA
Explainable Artificial Intelligence (XAI) program.

References
Dawes, R. M. (1979). The robust beauty of improper lin-

ear models in decision making. American psychologist,
34(7), 571–582.

Gluck, M. A., & Bower, G. H. (1988). From conditioning to
category learning: An adaptive network model. Journal
of Experimental Psychology: General, 117(3), 227–247.

Gluck, M. A., Shohamy, D., & Myers, C. (2002). How do
people solve the “weather prediction” task?: Individual
variability in strategies for probabilistic category learn-
ing. Learning & Memory, 9(6), 408–418.

Hoffman, R. R., LaDue, D. S., Trafton, J. G., Mogil, H. M., &
Roebber, P. J. (2017). Minding the weather: How expert
forecasters think. MIT Press.

Knowlton, B. J., Squire, L. R., & Gluck, M. A. (1994). Prob-
abilistic classification learning in amnesia. Learning &
Memory, 1(2), 106–120.

Klein, G., Moon, B., & Hoffman, R. R. (2006). Making sense
of sensemaking 1: Alternative perspectives. IEEE intel-
ligent systems, 21(4), 70–73.

Klein, G., Moon, B., & Hoffman, R. R. (2006). Making sense
of sensemaking 2: A macrocognitive model. IEEE Intel-
ligent systems, 21(5), 88–92.

Mueller, S. T. (2009). A Bayesian recognitional decision
model. Journal of Cognitive Engineering and Decision
Making, 3(2), 111–130.

Mueller, S. T., & Piper, B. J. (2014). The psychology exper-
iment building language (PEBL) and PEBL test battery.
Journal of neuroscience methods, 222, 250-259.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlo-
vian conditioning: Variations in the effectiveness of rein-
forcement and nonreinforcement. Classical conditioning
II: Current research and theory, 2, 64–99.

ICCM2018

89

Predicting Learning and Retention of a Complex Task

 1Jacob D. Oury (OuryJacob@psu.edu)

2Farnaz Tehranchi (farnaz.tehranchi@psu.edu)

1Frank E. Ritter (frank.ritter@psu.edu)

1College of Information Sciences and Technology, Penn State, University Park, PA 16802 USA
2Department of Computer Science and Engineering Penn State, University Park, PA 16802 USA

Abstract

We use an ACT-R model of a complex task to explore the
implications of ACT-R’s learning and forgetting mechanisms
to better understand learning and retention. The model
performs a task that has 14 non-iterated subtasks that takes
approximately 25 min. to perform the first time. The results
show that a typical learning curve is generated by the model
that is well fit to human data. When decay is examined we
find that the retention curves basically match the shapes
predicted by the KRK theory, and that training and testing
have been confounded in many studies. From these results
we see that the previously hypothesized mixed declarative
procedural stage of learning actually starts on the first trial
and is never completely exited, so we will need to propose
other thresholds to mark transitions between declarative,
mixed, and proceduralized knowledge. We predict based on
this model that learning and retention will vary greatly by
task components, practice schedule, and learner’s strategy.

Keywords: ACT-R; learning curve; retention model

Introduction

Kim, Ritter, and Koubek (2013) provided a summary of
learning theories in a review paper. Their summary theory
is based on learning theories by Fitts (1964), Anderson
(1982), Rasmussen (1986), and VanLehn (1996). It is also
consistent with further work reviewed by Kim et al. (2013),
as well as other theories of learning (e.g., Posner, 1973) and
data on learning (e.g., Seibel, 1963)–the diagrammatic
representation of this theory is shown in Figure 1.

In this paper we first briefly review the work this theory is
based upon to suggest how to better test it. We then use the
ACT-R cognitive architecture to make predictions about
learning and forgetting, including where the stages might
appear. We then test the predictions of the theory using data
(Kim & Ritter, 2015), and use the model to design a further
empirical study to test and illustrate the theory’s predictions.

The KRK Theory
This review starts with the KRK theory and its predictions.
Some of the data and theories that it was based on and some
further work, both empirical and theoretical is examined to
find further support and limitations. Implications for further
development are provided in a summary.

 Figure 1. The KRK theory of learning. This represents a
summary theory of predictions 1-5 from Table 1. Taken

from Kim, Ritter, and Koubek (2013).

The KRK theory was developed as part of Kim’s PhD
thesis (Kim, 2008). The theory, shown in Figure 1, makes
several predictions implicitly. Table 1 explicitly shows
predictions from Figure 1 and new predictions. In a larger
paper we explain these predictions in more detail (Ritter et
al., forthcoming). Here, we simply summarize them before
testing them.

Of the nine hypotheses in Table 1, items 1-6 are basically
supported in the Kim et al. (2013) review paper. Items 7-9
are new and come from the inclusion of perceptual-motor
and recognition memory. The empirical support for the
hypotheses are piece-wise and often on simple tasks (e.g.,
Choice Reaction Theory, Seibel, 1963). The forgetting
curves often are from single points of learning (e.g., Kim
2008). That is, we do not know of a single study that
predicts all these curves, and most of the studies that are
used to derive and support these hypotheses use simple
tasks, such as word association.

It would be useful to explore these predictions with a
complex, multi-step task and to explore the whole set of
predictions with a single empirical study with longer reten-
tion intervals. This study would be a large undertaking. So
we will use a model of a complex task in an architecture
with learning and forgetting that has multiple skill repre-
sentations to explore the study first and see what the
model’s predictions are for learning and retention.

ICCM2018

90

Table 1. Human performance hypotheses from the KRK
theory. Items 1-6 are supported by Kim et al. (2013). 7-9 are

new predictions from incorporating new memory types.

Prior Predictions
(1) Learning follows the power law curve of learning

Time = A + BN-C (A, B, C are constants)
(2) Three stages of knowledge:

a. Acquiring declarative and procedural knowl-
edge

b. Consolidating the acquired knowledge
c. Tuning the knowledge towards overlearning

(3) Retention of declarative knowledge decays
quickly and catastrophically

(4) Retention of mixed declarative and procedural
knowledge decays moderately

(5) Retention of proceduralized knowledge has least
decay

(6) Recognition and perceptual-motor knowledge
have different learning curves than procedural or
declarative.

New Predictions
(7) Ideal training schedules will vary by knowledge-

type; perceptual-motor may require minimum
training block size

(8) Retention of perceptual-motor knowledge appears
to decay little

(9) Recognition memory is (probably) not fragile

Method
We will first describe a complex task that we use and for
which we have some data and a running model that learns.
We will then describe the architecture and the model, which
serves as a subject in this simulated study. We then
describe the human data, and how we ran the model.

The Dismal task

The Dismal task, illustrated in Figure 2, is a spreadsheet
task that can be used to measure procedural knowledge and
skills learning and decay (Kim & Ritter, 2015). The Dismal
task was created to be done in the Dismal spreadsheet
(Ritter & Wood, 2005). Dismal is an open source, extend-
able spreadsheet in Emacs.

The overall task length and subtask variety make Dismal
a relatively complex task. There are 14 different subtasks in
Dismal (Table 2). The subtasks contained attention shifts,
encoding of information, attending to information, key
presses, and mouse moves/clicks. Previous work using
Dismal allows comparison to human data and model
predictions.

These tasks can be done with two different interfaces—
(a) a keyboard with key-based commands, or (b) a mouse or
vertical mouse. The vertical mouse provides new motor
skills to learn and forget because it requires a different hand
posture.

Table 2. The 14 Dismal spreadsheet subtasks.

Dismal task sequence
(1) Open a file, named normalization.dis under the “experiment”

folder
(2) Save as the file with your initials
(3) Calculate and fill in the frequency column (B6 to B10)
(4) Calculate the total frequency in B13
(5) Calculate and fill in the normalization column (C1 to C5)
(6) Calculate the total normalization in C13
(7) Calculate the length column (D1 to D10)
(8) Calculate the total of the “Length” column in D13
(9) Calculate the Typed Characters column (E1 to E10)

(10) Calculate the total of the “Typed Characters” column in E13
(11) Insert two rows at A0 cell
(12) Type in your name in A0
(13) Fill in the current date in A1 using the command
(14) Save your work as a printable format

Figure 2. Dismal interface with initial state (top) and final

state of the task (bottom).

The two interface modes can be used to study different
types of knowledge: recall of keystroke commands and
recognition of menu-based commands.

ACT-R

ACT-R is a theory of the mechanisms that make up cog-
nition. It is an example of a unified theory of cognition
(Byrne, 2012; Newell, 1990), in that intends to predict and
explain human behaviour by simulating the steps of cogni-
tion with a fixed set of mechanisms. ACT-R predicts
behaviour and activation of brain regions by using mecha-
nisms including procedural and declarative knowledge, and
working memory as activation, to perform tasks.

We briefly review ACT-R’s components and then the
memory equations; other more complete treatments are
available (e.g., Anderson 2007; Anderson 1982). Thus, we
briefly review ACT-R’s components and then the memory
equations.

ICCM2018

91

The architecture components
ACT-R consists of modules and buffers. Modules are

responsible for processing one kind of information and are
the mechanisms for modifying and implementing a buffer;
buffers are contents that are visible to other modules. The
modules descriptions and roles include:

the Visual module is for identifying objects in the visual
field. Visual objects and their identities are located in the
visual buffer and visual location buffer and monitoring
attention and visual objects such as scanning a computer
screen.

the Manual module is for controlling the hands; the man-
ual/motor buffer handles controlling and monitoring hand
movement such as typing on a keyboard.

the Declarative module is for retrieving information from
memory, and a Goal module is for keeping track of current
goals and intentions. The Goal buffer stores the current sub-
goal step and its next step.

A central production system is a rule-based system that
performs the matching, selection, and execution of produc-
tion rules. Also, it coordinates the communication and per-
formance of these modules through the application of
production rules. The central production system works in
parallel with modules and constantly updates and queries
the buffers’ data.
The memory equations
Throughout the task completion by an ACT-R model, each
declarative memory used will have its base-level activation
increased. Presentation of an item (or chunk), and thus
subsequent changes in base-level activation, can occur at
three points in the process: at item/chunk creation, at the
time when two items are merged, and when the chunk itself
is retrieved.

This process has two mutually exclusive options for how
to calculate learning for chunks during the task procedure:
the Optimized Learning Equation (OL), and the Base-Level
Learning Equation (BL),. These are shown in Equations 1
and 2. Parameters (e.g., :bll) refer to specific values set
within ACT-R’s base configuration.

Equation 1: The Optimized Learning Equation (OL)

n: The number of presentations for chunk i
d: The decay parameter set using the :bll parameter
βi: A constant offset set using the :blc parameter

Equation 2: The Base-Level Learning Equation (BL)

L: The lifetime of chunk i (the time since its creation).
tj: The time since the jth presentation. A presentation, or
reference, is either the chunk’s initial entry into DM or
when another chunk is merged with a chunk
Unlabeled variables in BL are shown in Equation 1.

The two equations differ in their accuracy and computa-

tional cost. BL is costlier because it accounts for time
through the tj parameter (with associated repeated
exponential computations based on tj’s), while OL
simplifies the equation to primarily rely on the number of
presentations.

The model

Herbal, a high-level behaviour representation language,
creates ACT-R source code (Ritter et al., 2006). Herbal has
been used to build several ACT-R models of this
spreadsheet task that ranged in expertise from novice to
expert. Further details about the mode can be found in Paik,
Kim, Ritter, & Reitter (2015). We used the novice model
with 9 initial rules and 520 declarative memory elements
because it starts the task using declarative knowledge.

Number of runs

Completion time curves were generated from the mean time
for a given data point based on multiple runs of the model
for the task (N=5). This number is sufficient because we are
observing broad trends rather than focusing on specific
effect sizes (Ritter, Schoelles, Quigley, & Klein, 2011).

Existing human data

Participants in Kim’s (2008; Kim & Ritter, 2015) study
(N=60) were divided equally into two groups: one used only
the keyboard (N=30), and another group used the combina-
tion of vertical mouse and keyboard (N=30). They
completed the Dismal task and came back at 6, 12, or 18-
day intervals. We used the vertical mouse interface
subjects’ data. The human data for days 1-4 matches the
model predictions for trials 1-4 shown in Figure 3.

Results
We ran a series of models to explore how the ACT-R model
of the Dismal task predicts learning and decay. For each
test, the model was run with the OL and BL equations to
compare their predictions. We found similarly shaped
retention curves for both, but there were differences as well.

Predictions with Optimized Learning and Decay

Figure 3 shows a standard learning curve on task time where
the model was run over 10 trials without delays between
trials. Decay curves are shown for up to 5 days decay.

This is how most repeated trial ACT-R models are run.
They are run multiple times, with no time between trials in
the model, even if there is time between human trials for the
subjects, which there was for this data set–each trial was run
on a separate day.

These results are consistent with most of the predictions
in Table 1. (1) Task completion times on the solid black line
followed the shape predicted by the power law of learning.
(2) The three stages are there, but when examining the
model trace, we see that proceduralization starts in the first

ICCM2018

92

Figure 3: Predictions for task time with OL (black). For-
getting curves show task time after [1-5] days of decay after
a period of consistent practice.

Figure 4: Predictions for task completion time with OL for
10 trials with 24-hour decay periods between each trial.

task of the first trial. (3) Declarative knowledge decays but
did not do so catastrophically for this model and task. (4 &
5) the decay of the mixed knowledge (middle trials) was
slower than the declarative knowledge but not as slow as the
procedural knowledge (later trials). We could not examine
the other predictions (7,8,9) with this task.

We found unexpected results from applying a decay
period in the model. After one practice and 24 hours of
decay, the task time was slower than during the first trial.
Decay caused a worse time than a novice’s first trial. The
mean task time for trial 1 was 1335 s. After the 24-hour
decay period, task time for trial 2 was 2228 s compared to
882 s for the normal curve. In short, decay causes memories
(and thus performance) to be worse than the very first trial
of the experiment.

So, we explored the effects of decay by including a 24-
hour decay period after each practice to simulate what the
subjects did, that is, practice and then wait a day until the
next practice. These results are shown in Figure 4.

Figure 4 shows a typical learning curve after trial 2. The
initial 24-hour decay causes performance to be longer on
day 2 than on the first day. The performance does not get as
fast as day 1 until trial 5. Including the time between prac-
tices does not improve our predictions. We do not include
forgetting curves because the learning curve is unusual.

Predictions with base-level learning equation

Next, we used the base-level learning equation for the same
process. Figure 5 shows the decay and retention curves
through 10 trials of practice with the base-level learning

Figure 5: Predictions for task time with BL for ten trials of
practice (black). Forgetting curves show task time after [1-
5] days of decay after a period of consistent practice.

Figure 6: Predictions for task completion time with BL for
10 trials with 24-hour decay periods between each trial.

equation instead of the optimized learning equation. Figure
5 is without time between trials and Figure 6 is with 24
hours between trials. In Figure 6 we do not include
forgetting curves to emphasize the unusual shape of the
learning curve.

Overall, the learning and retention curves with BL are
shaped similarly to the OL model predictions but start with
a higher mean task time at trial 1 (1901 s). The final task
time was 424 s, or 22% of the first trial. Again, this showed
that the performance on trial 2 following 24-hour decay was
worse than the initial time.

Predictions with initial day delay and day delays
inserted

We then considered applying a day delay in the initial
declarative knowledge before starting to perform the task.
This could represent less complete declarative learning of
the task knowledge. So, we set the model to run with a day
delay after the declarative knowledge has been first learned.

Figure 7 (top) shows three learning curves using the OL
equation, and the BL equation (bottom). The red dashed
curve is the learning curve without time decays; it is the
same as Figure 3. The blue dotted line is with 24 hours
between each trial, the same as Figure 4. The black solid
line has a 24-hour decay before the first trial and after each
trial.

ICCM2018

93

Figure 7: Predictions for task completion time with OL

(top) and BL (bottom) with 24-hour decay periods between
each trial and an initial 24 decay on the declarative knowl-
edge.

Final model, base-level learning with day delays
and retention curves

The predictions in Figure 7 remain somewhat unsatisfac-
tory. They either leave out the decay between practice trials
(but fit the data fairly well), or they include the decay, but
over predict the task time. We thus tried an adjustment to
the decay parameter suggested by Lebiere (personal
communication, October 2017).

This adjustment provides different decay constants for
within and without an experimental situation. This change
probably represents the effect of proactive interference more
accurately in that during a study the task-related memories
are more similar in a time block in a study than they are
outside a study. With non-study time, the decay time is
reduced to be ¼ of the actual delay time, that is, instead of
24 h between trials, only 6 hours is added as decay after
learning the task knowledge and between trials. Figure 8
shows this model’s predictions.

Discussion and Conclusions
This model provides several insights about learning and the
ACT-R memory equations.

Insight: There are no fixed learning stages

The results of the model’s learning show that there are no
crisp divisions between the learning stages, contrary to
predictions made in previous theories for the learning curve
– there are no points of inflection in the learning curve to
show the transition. In the knowledge used in the model
(declarative and procedural), there are also not inflection
points. The model thus predicts that there are not distinct
stages in this task at least, where the knowledge is

 Figure 8. Predictions for task completion time with BL with
24-hour decay periods between each trial and an initial 24
decay on the declarative knowledge, adjusted

all declarative or all procedural. Subtasks are more clearly
one or the other because only one type of knowledge might
be used in a smaller task. However, the model shows that
even during the first trial, knowledge is being not only
proceduralized, but also that the procedural knowledge is
being used. So, partway through the first trial, the model has
mixed task knowledge in some technical sense.

We suggest that the stages be relabeled into mostly
declarative, mixed, and nearly all procedural. This is in
contrast to [all] declarative, mixed, and [all] procedural.

Insight: the stages will vary by task and strategy

These stages will also depend on the task components and
the task distribution. If the task is primarily a declarative
task, it will basically stay a declarative task. If it is a
perceptual-motor task or a procedural task, it will transfer
into a proceduralized task.

This model also shows that location of these stages will
vary by task. Tasks with high declarative components will
remain in the mostly declarative stage longer, according to
this definition, because more parts that will stay declarative.

If an unusual task from the distribution of possible tasks
comes along, the learner may be shifted back towards more
declarative task knowledge, or as Rasmussen (1983) notes,
knowledge-based control knowledge. So, distribution of
tasks that all occur equally will have different learning and
stages than a distribution of same tasks (and knowledge)
where some only occur rarely.

Insight: implications for empirical studies

The model provides some implications for running a human
study in this area. To measure the decay curve, you must
have at least three decay points or two points and a strong
theory. A study with humans cannot reset the model to get
multiple decay measurements but will have to train a subject
and then can only measure decay once without retraining
occurring. To measure these points, you must train subjects
to standard, and then have them come back at a delay. You
can only have them come back once, because the measure is
a training. Thus, to measure the decay at three points, you
have to each data point be its own condition. To study
decay after training 1, 2, and 5 days, and decay at 4, 8, and
16 days, you require nine groups. Thus, the decay graph 9x

ICCM2018

94

more expensive (assuming subject drop out does not
increase because of the delay) than the simple learning
curve. This is partly why these curves are studied less.

Insight: The decay curve at one day is practice on
the next day

Consider that you will be training every day and wish to
study the decay function after 1, 2, and 5 consecutive prac-
tice days. If you measure the amount of decay after one day,
the performance after one day of decay when you are
training once per day is the same as the group that is on the
training schedule. Thus, the decay curve in such
circumstance has a decrease in performance time with one
day decay (if the test includes training such as doing the
task), and then decreased performance on later days. This
may be like walking as being way of falling forward.

Insight: The subtask curves within most instruction
are a mix and have varied retention intervals

Very few real-world tasks will have this pure of a training
and retention schedule. In the real world, after an hour of
training, the learner will move into new material in later
sessions. Thus, the learning and retention curves will
include multiple small curves, and some subtasks will be
trained every session and get much faster, and some tasks
will occur only rarely and will have long decay times (if
learned early) or short decay times (if learned later). You
would need a computer to keep track of them!

Future Work: How to run a study of a complex
task to test the KRK theory

Based on these results, in our empirical test of the KRK
theory we will examine a complex task, a trouble shooting
task, with 1, 2, and 5 practice trials, separated by a day per
trial. We will look at performance at 3, 5, and 7 days decay
after the last practice. We will not have the full training
material at the decay tests, just the trouble shooting tests.
This will measure the decayed knowledge with little or no
relearning of it.

Acknowledgments
Kevin Gluck gave useful comments about this model in a
discussion at ICCM. This project was supported by ONR
grant N00014-15-1-2275.

References

Anderson, J. R. (1982). Acquisition of cognitive skill.
Psychological Review, 89, 369-406.

Byrne, M. D. (2012). Unified theories of cognition. Wiley
Interdisciplinary Reviews: Cognitive Science, 3(4), 431-
438.

Destefano, M. (2011). The mechanics of multitasking: The
choreography of perception, action, and cognition over
7.05 orders of magnitude. Unpublished PhD thesis,
Cognitive Science, RPI.

Fitts, P. M. (1964). Perceptual-motor skill learning. In A.
W. Melton (Ed.), Categories of human learning (Vol. 47,
pp. 381-391). New York: Academic Press.

Kim, J. W. (2008). Procedural skills: From learning to
forgetting. Unpublished PhD thesis, Department of
Industrial and Manufacturing Engineering, The
Pennsylvania State University, University Park, PA.

Kim, J. W., & Ritter, F. E. (2015). Learning, forgetting, and
relearning for keystroke- and mouse-driven tasks:
Relearning is important. Human-Computer Interaction,
30(1), 1-33.

Kim, J. W., Ritter, F. E., & Koubek, R. J. (2013). An
integrated theory for improved skill acquisition and
retention in the three stages of learning. Theoretical
Issues in Ergonomics Science, 14(1), 22-37.

Newell, A. (1990). Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.

Paik, J., Kim, J. W., Ritter, F. E., & Reitter, D. (2015).
Predicting user performance and learning in human-
computer interaction with the Herbal compiler. ACM
Transactions on Computer-Human Interaction, 22(5),
Article No.: 25.

Posner, M. I. (1973). Cognition: An introduction. Glenview,
IL: Scott Foresman.

Rasmussen, J. (1983). Skills, rules, and knowledge; signals,
signs, and symbols, and other distinctions in human
performance models. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-13, 257-266.

Rasmussen, J. (1986). Information processing and human-
machine interaction: An approach to cognitive
engineering. New York, NY: Elsevier.

 Ritter, F. E., Haynes, S. R., Cohen, M. A., Howes, A., John,
B., Best, B., et al. (2006). High-level behavior
representation languages revisited. In Proceedings of
ICCM - 2006- Seventh International Conference on
Cognitive Modeling, 404-407. Edizioni Goliardiche:
Trieste, Italy.

Ritter, F. E., Schoelles, M. J., Quigley, K. S., & Klein, L. C.
(2011). Determining the number of model runs: Treating
cognitive models as theories by not sampling their
behavior. In L. Rothrock & S. Narayanan (Eds.), Human-
in-the-loop simulations: Methods and practice (pp. 97-
116). London: Springer-Verlag.

Ritter, F. E., & Wood, A. B. (2005). Dismal: A spreadsheet
for sequential data analysis and HCI experimentation.
Behavior Research Methods, 37(1), 71-81.

Seibel, R. (1963). Discrimination reaction time for a 1,023-
alternative task. Journal of Experimental Psychology,
66(3), 215-226.

Tehrachi, F., Oury, J.D., Ritter, F. E., Predicting learning
and retention (forthcoming).

Tenison, C., & Anderson, J. R. (2016). Modeling the
distinct phases of skill acquisition. Journal of
Experimental Psychology: Learning, Memory, and
Cognition, 42(5), 749.

VanLehn, K. (1996). Cognitive skill acquisition. Annual
Review of Psychology, 47(513–539.

ICCM2018

95

An SGOMS Model of Human StarCraft Game Playing in Autonomous Agents

Chad A. Peters (chad.peters@carleton.ca),

Robert L. West (robert_west@carleton.ca),

Babak Esfandiari (babak@sce.carleton.ca)
Institute of Cognitive Science, Carleton University, Ottawa, Ontario, Canada

Abstract

This paper uses cognitive modeling to investigate how human
players are still able to beat artificial intelligence (AI) players
in tournament games of StarCraft. To do this we modeled
human game play using the SGOMS macro cognitive
architecture. Using the same perceptual motor functions and
the same strategies and rules as the AI player, the SGOMS
player produced significantly more wins. Possible reasons for
this are discussed.

Keywords: GOMS, SGOMS, StarCraft, Macro Cognition,
Dynamic Systems.

Introduction

As recently demonstrated by the victory of AlphaGo (Silver

et al., 2016) over a high ranked GO master, artificial

intelligence for games is reaching a level that exceeds

human abilities. However, there is still at least one game

that humans dominate; a Real-Time Strategy (RTS) game

called StarCraft1. Despite the best efforts of researchers in

the field of Artificial Intelligence, autonomous systems have

yet to claim the title of World Champion against the best

professional StarCraft tournament players (Kim & Lee,

2017). The game is relatively simple in design, and yet

requires a comprehensive skillset including resource

management, decision making under uncertainty, opponent

modeling, and real-time planning; all of which no one

autonomous system has been able to produce at the level of

a professional human player (Ontanon et al., 2013).

To better understand how humans win in StarCraft we

played a baseline StarCraft agent against the same StarCraft

agent modified to use the SGOMS architecture. SGOMS

(West & Nagy, 2007) is a theory of human expertise and is

well suited to model StarCraft as the StarCraft play relies

heavily on executing fixed memorized strategies in a

dynamically changing environment, which is what SGOMS

is designed to do (West & Nagy, 2007). The reasoning was

as follows; if SGOMS is a valid model of human expertise

then it might capture the ability that allows humans to win

in StarCraft.

To test this theory, we played an SGOMS agent against

the baseline (herein “standard”) StarCraft agent in a

tournament format to record and capture a variety of metrics

such as win ratio over time, resource utilization, and action

rates. Knowledge, actions, and perception were held

constant across the models; that is, both models had access

to the same information from the game, could execute the

same game commands, and had the same memorized

1 https://starcraft.com

strategies. The only difference was the way the expertise

was processed.

The standard agent was programmed using best practices

for this type of game, including transition points between

strategic moves, as well as the use of encapsulating routine

interactions in procedural functions. The proper transition

between game states is important to ensure a constant

collection and flow of resources to the proper units, or unit-

producing buildings, such as to maximize the chances of

survival regardless of the passage of time. Examples of

states in a game of StarCraft include maximizing the

number of resource collection units for an area, expanding

the base when necessary, creating additional supply depots

before the maximum unit count is reached, attacking the

enemy when possible, and retreating when appropriate to

counter-attack at a later time.

Of equal importance to a game-playing agent is how the

underlying logic is represented and implemented in code.

For example, many routine actions will be used regardless

of game state (building, attacking, defending), and can be

abstracted into proper functions, such as collecting

environmental information, or selecting and moving units.

In the case of the standard agent, all environmental factors

and possible moves were considered for every frame, and

like many agents with comparable architectures, produced

hundreds of actions per second, which in most situations

can be handled by the client without slowing down in either

simulated- or real-time. This kind of behavior is very unlike

the way a human being plays, as most world-class

professional StarCraft players will produce around 300 to

400 Actions Per Minute (APM) at peak intervals (Lewis,

Trinh, & Kirsh, 2011).

In contrast to the standard agent, the SGOMS model

operated according to the SGOMS architecture, which

caused it to run considerably slower due its more centralized

and deliberate processing design. Therefore, in terms of

processing speed, the standard model had an advantage.

Assuming all other things to be equal, the standard model

should have been the better player, but this is not what we

found.

The Macro-Architecture Hypothesis

SGOMS is a macro cognitive architecture (West &

Macdougall, 2014). The macro architecture hypothesis

states that Newell’s (1990) cognitive band (see Figure 1),

can be divided into a micro cognitive level and a macro

cognitive level, where the macro cognitive level describes

how we execute and manage higher-level functionality such

ICCM2018

96

as expertise, problem solving, strategic thinking, etc. (see

Figure 2). SGOMS has been implemented using the ACT-R

micro cognitive architecture (see West & Pronovost, 2009),

but in this case, SGOMS was implemented using the

underlying code for the StarCraft agents.

Figure 1: Newell’s System Levels

The SGOMS Framework

SGOMS, or Sociotechnical GOMS, is a type of GOMS

model (Card et al., 2008). The unique feature of SGOMS is

that it adds a structure above unit tasks called planning

units. Planning units are larger flexible units that can be

interrupted, switched, and restarted where the agent left off.

The purpose of planning units is to allow agents to

quickly adapt to unexpected interruptions. Planning unit

choice is based on constraint-based decision-making and is

strategic in nature. Constraints are continuously updated

through parallel perception functions and interruptions are

triggered by a parallel monitoring function (West & Nagy,

2007).

Figure 2: The Macro Cognitive Hypothesis

Real-Time Strategy Environments

Real-Time Strategy (RTS) games provide a challenging

landscape for gamer and scientist alike. RTS games possess

a number of distinct differences over alternative forms of

competitive strategy games (such as Chess or Go), and force

players to rely on partial information while pursuing

multiple complex goals; and usually all at the same time

(Weber & Mateas, 2008).

The StarCraft game presents the user with a selection of

three different alien races, each with their own unique blend

of strengths and weaknesses that have been balanced by the

game designers using nearly two decades of online

competitive play. The StarCraft game universe requires

players to develop and utilize a number of specialized

skillsets that are, at the time of this writing, a considerable

challenge for expert agents; these challenges can be

organized into recurring organizational themes (Ontanon et

al., 2013) such as Resource Management, Decision making

under uncertainty, Spatial and Temporal reasoning,

Collaboration between multiple humans/agents, Opponent

modeling and learning, and Adversarial real-time planning.

Ontanon et al. (2013) also make an interesting distinction

between how these logical organizations manifest as major

architectural units in a large sample of competitive bots, and

how the StarCraft community divides their own human

behavior into two types of tasks; micro and macro. This

distinction is consistent with the distinction between micro

and macro architectures proposed in the Macro Architecture

hypothesis (West & Macdougall, 2014).

Micro behavior in most RTS games is characterized by

fast, reactive tactical maneuvering of small preconfigured

groups of units. This would be akin to the squads found in

standard military parlance, and in RTS gameplay requires a

sharp focus and quick reflexes to survive the hit-and-run

techniques so prevalent in competitive play.

Macro behavior, in comparison, is all about the long

timeframe and strategic choices in base building, expansion,

and choosing the best time for investing in technology

upgrades that benefit all units instead of simply building

more units; these are all character behaviors ascribed to the

seasoned battlefield commander who knows when to initiate

a corrective course and switch to a more appropriate

strategic plan.

The Standard Agent

The first StarCraft agent implemented a set of basic

procedural rules in order to provide a baseline of

rudimentary behavior capable of finishing a standard game.

Action classes included the operations required to build a

base, create and replace units, and attack the enemy. We

added strategic logic in order to manage resources, find and

attack the nearest enemy units or buildings, and retreat when

appropriate.

These conditionals are, in effect, an oversimplification of

the code required to interface with the game but will serve

for the purpose of this example. Using these principles, we

created a simple reactive agent to walk through the

ICCM2018

97

following constraint-based decisions until the game context

matched the most appropriate production rule:

• If a Barracks is ready, train another Marine.

• If we are Supply Blocked, build a new Depot.

• If we have resources, build a new Barracks.

• If we have at least 10 Marines, attack the Enemy.

• If we see the Enemy, and have less than 10 Marines,

retreat to our Command Centre.

The entire series of production rules was invoked once

every in-game frame (StarCraft runs at 24 frames per

second), with every matching rule triggering the associated

operator action.

StarCraft Brood Wars API

Our StarCraft agent was implemented using a proxy layer

that allows a third-party developer to directly interact with

the game in real-time, without manual control of any system

peripherals. The Brood Wars Application Programming

Interface (BWAPI)2 was designed for this purpose; it

provides a standard definition for agents written in C++ to

read the game state, make intelligent decisions, and send

commands to the game in a fashion similar to a human

player.

The agent was originally written using the BWAPI

tutorials designed to produce a game-playing agent capable

of progressing through all game states required to reach the

final state of either winning or losing by total annihilation.

In this case, the agent is able to manipulate units, build

buildings and units, form groups of units, move across the

map, and attack opposing forces. Every command that is

available to a human player can be interpreted as GOMS

operator using BWAPI, with the exception of panning the

screen using the mouse cursor.

The SGOMS Agent

The next iteration of the standard agent was based on the

principles of SGOMS theory. In order to test the viability

and impact of this architecture, all standard agent logic was,

in principle, left alone. This approach simplified the

application of SGOMS theory, freeing us to classify each

conditional block into a hierarchy of operators, methods,

unit tasks, or macro-level planning units (see Figure 3), all

depending on estimated system-level action times.

Operators

Operators are the lowest level of system interaction and can

be completed in milliseconds. In terms of the motor actions

used by humans in the StarCraft game, any immediate

operations involving a single mouse click or depressing a

keyboard button was identified as a system level operation.

Example operations would include selecting a building,

creating a new unit at a pre-selected building, selecting a

2 https://bwapi.github.io/

new unit, or issuing a command to a pre-selected unit. These

operators were abstracted in order to provide a general

function interface for more complex grouping of operations.

Methods

Methods are a sequence of operators performed as a group

to accomplish an efficient task without interruption. These

sequences take from 1 to 3 seconds and require the focused

attention of an expert player; a momentary diversion from

the “main action” of what is going on in the larger context.

Example methods would include grouping units, or

creating a building at a specified location on the map. Most

of the methods used two or three Operators fired in a

ballistic fashion without opportunity for interruption

through arousal.

Figure 3: SGOMS Agent Architecture

Unit Tasks

Methods and operators are performed in groups to

accomplish unit tasks. Unit tasks in SGOMS are

strategically controlled by planning units. A unit task can

fire independently, or as part of a chain of tasks performed

in quick succession, or as one of a few options selected in a

moment based on constraint-based decision making.

According to Newell’s (1990) system levels, a typical unit

task would require between 3 and 10 seconds for an expert

player to accomplish.

Example unit tasks would include grouping units into a

squad, queueing rally and patrol points, or building a series

of buildings or units in succession.

ICCM2018

98

Planning Units

Strategic decision making is found in the higher system

levels of Newell’s cognitive band and is the main

contribution of the Macro layer of SGOMS theory. As

described by (West, 2013), there are three main classes of

planning units - situated, ordered, and identity. Situated

planning units will queue and execute a unit task if the

constraints of the environment are satisfied. Ordered

planning will perform a pre-defined series of unit tasks such

as used in a first-in-first-out (FIFO) queue. Identity planning

units are the simplest form and will execute a specific unit

task to accomplish the goal.

A Real-Time Strategy Game defines a series of

overarching goals that must be accomplished (sometimes in

no specific order), to bring the player closer to a winning

state. For example, in an adversarial context with multiple

squad-level and unit-level tactics, a series of offensive and

defensive maneuvers, coupled with gathering intelligence,

planning base expansions, territory control, and resource

management, must all be performed in order and unison. In

some cases, goals must be paused or abandoned if critical

interruptions occur, such as enemy units attacking the

player’s critical units or structures.

Planning units in StarCraft can be broadly classified as

defensive or offensive in nature, depending on enemy force

involvement. Defensive maneuvers would include scouting

raw materials, repairing a base, building or replenishing a

group of units, or responding to an attack. Offensive

planning units would include scouting to find enemy

positions, and directly attacking an enemy force.

Context and Situational Awareness

The Internal Contextual and Situational Awareness modules

represent how the player interprets the game and what they

know about the current state of the game. This module uses

situational information from Intelligence gathering and

feeds the top-level executive control of the player agent.

Similar to the standard agent, the Contextual factors used

by the SGOMS agent’s executive control included tracking

primary resources such as mineral and unit supplies (see

Figure 4 overlay), transitions between defensive and

offensive states of combat, and tracking the nearest known

enemy position.

External Monitoring and Interrupt System

The External Monitor module serves as an interface module

between procedural/motor sub-systems (Operator interface)

and receptors as reported by the Brood Wars API. This

system acts as the buffer between audio/visual game cues

and whether to ignore the cue or escalate to Situational

Awareness for Planning Unit interruption. This module acts

at the higher Biological band, as an expert player will

require around 100ms to 300ms to react to arousal cues; in

this case, a reaction could be choosing to ignore a

distraction based on prior experience.

The SGOMS agent handles a variety of game-supplied

stimulus types including text messages, discovering a new

unit, destruction of a unit, and supply shortages; all of these

events would be interpreted by a game player as

Figure 4: SGOMS Agent Playing StarCraft

ICCM2018

99

unmistakable auditory or visual cues, and used to signal the

interruption of the existing Planning Unit when appropriate.

Experimental Design

Preliminary tests of both the Standard and S-GOMS agents

confirmed that the simple production logic used in both was

not enough to win against the default A.I. provided with the

game. This came as no surprise to the authors, as the

original StarCraft agents will quickly adopt newer units and

buildings and win through technical superiority against most

early-game strategies. This begs the question; if a Standard

agent cannot win against the default A.I., how then can we

viably measure the effects of an equally bad (or possibly

worse) variant of itself?

Considering the purpose of this research is to measure the

effects of using a human-inspired cognitive architecture, we

deliberately chose to compare the Standard agent against the

SGOMS variant of itself, with no more than a refactoring of

the same GOMS-inspired production rules into a Macro-

Cognitive implementation. This was done such that all else

being truly equal, we can measure the effects of an SGOMS

implementation; an approach that could be extended to any

such agent.

We compared the Standard and SGOMS agents in a 1 vs

1 tournament configuration comprised of 10 maps used at

previous competitions run at SSCAIT (Čertický &

Churchill, 2017), with 3 rounds per map, for a total of 30

games. The tournament maps cover a spectrum of terrain

styles and sizes, and were originally designed to cater to

matches involving between 2 and 8 players total. The test

environment was composed of three virtual machines

running on Windows 10, each having an identical

configuration apart from tournament-specific roles. One of

the machines served as the tournament server, while the

other two were registered clients, all contained within the

same local area network.

The BWAPI Tournament Manager was configured to

alternate agents between test machines to eliminate any

machine-specific advantage. We also selected the standard

range of map sizes with randomized starting locations to

account for location advantage and the effects of travel

distance between bases. Once all 30 rounds were concluded,

the win/loss results as well as replay files were saved for

comparison and insights for further in-game analysis.

Results

As shown in Figure 5, the SGOMS model won, by far, the

most games. The replay files were post-processed using

BWChart3 for visual inspection and to derive metrics for

each agent during the match. Of primary note was the effect

of combat intensity on agent APM, and the difference in

APM during observable skirmishes.

3 http://liquipedia.net/starcraft/BWChart

Figure 5: Tournament Rounds Won per Agent

Figure 6 shows APM in a typical game. The standard

agent (red) has a higher APM for most of the skirmishes,

and only after it flatlines (combat units destroyed) does the

SGOMS agent APM (blue) go up as it cleans up the leftover

worker units and buildings. Further visual inspections

revealed a similar pattern across matches.

Figure 6: Actions-per-Minute across a replay

From observations we also noted that the standard agent

sometimes produced a style of play that looked more

“jittery” than normal human play; for example, if the game

state reached an indeterminant position, units movements

would quickly oscillate between competing priorities. This

observation could be caused by the ability to more quickly

adjust the behaviors of individual units in the game.

Conclusions

The standard and SGOMS agents were identical in terms of

the information they had access to and the rules they used to

create responses. And yet, the SGOMS agent was clearly the

0

5

10

15

20

25

30

SGOMSbot StandardBot

Rounds Won

ICCM2018

100

better player. This occurred despite the fact that SGOMS

was significantly slower, which should produce a

disadvantage in this game. Another interesting finding was

that SGOMS produced an APM rate that was often similar

to the human APM for this game, roughly 300-600 APM

(Lewis, Trinh, & Kirsh, 2011). This may be coincidence,

but it raises the possibility that the human APM is also due

to cognitive processing, rather than perceptual/motor speed

alone.

The standard agent was clearly more active (faster) than

SGOMS, yet it lost the majority of the games. However, as

West and Lebiere (2001; see also West et al., 2005)

demonstrated, when the outputs of two competing agents

feed back on each other it can create a coupled system with

hard to predict dynamic properties. Also, unlike chess or

GO, StarCraft has been tuned to human play. The number of

units, the terrain, and the construction times are all tuned to

make it a challenging but playable game for humans. In

other words, the dynamics of the game may be tuned to

respond to specifically human cognitive abilities. More

research is required to further understand these results.

In terms of SGOMS, the results were encouraging. Not

only did the SGOMS agent show a closer resemblance to

the result of humans being able to beat a faster and

seemingly more powerful opponent, it also produced an

APM rate closer to that of human players. The results also

suggest that the dynamics of certain types of video games

may have evolved, through feedback, to resonate with

human cognitive abilities. Unlike chess or GO, to win this

type of game artificial agents would need to be more

human-like, not faster or more powerful. In this regard, the

architectural distinction between micro and macro cognition

may be of critical importance.

Acknowledgments

This research was supported in part by the Carleton

Cognitive Modeling (CCM) Lab, and the Network

Management & Artificial Intelligence Lab at Carleton

University, Ottawa.

References

Čertický, M., & Churchill, D. (2017). The Current State of

StarCraft AI Competitions and Bots. In Proceedings

of the AIIDE 2017 Workshop on Artificial Intelligence

for Strategy Games.

Kim, Y., & Lee, M. (2017, November). Humans Are Still

Better Than AI at StarCraft—for Now. Retrieved from

https://www.technologyreview.com

Lewis, J., Trinh, P., & Kirsh, D. (2011). A corpus analysis

of strategy video game play in starcraft: Brood war.

Proceedings of the 33rd Annual Conference of the

Cognitive Science Society, 687–692.

MacDougall, W. K., West, R. L., & Hancock, E. (2014).

Modeling Multi-Agent Chaos: Killing Aliens and

Managing Difficult People. 36th Annual Meeting of

the Cognitive Science Society, 2603–2608. Retrieved

from https://mindmodeling.org

Newell, A. (1990). Unified Theories of Cognition.

Cambridge, Massachusetts: Harvard University Press.

Ontanon, S., Synnaeve, G., Uriarte, A., Richoux, F.,

Churchill, D., & Preuss, M. (2013). A survey of real-

time strategy game AI research and competition in

starcraft. IEEE Transactions on Computational

Intelligence and AI in Games.

Pronovost, S., & West, R. L. (2008). Bridging Cognitive

Modeling and Model-Based Evaluation: Extending

GOMS to Model Virtual Sociotechnical Systems and

Strategic Activities. Proceedings of the Human

Factors and Ergonomics Society Annual Meeting,

52(19), 1635–1639.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,

Van Den Driessche, G., … Hassabis, D. (2016).

Mastering the game of Go with deep neural networks

and tree search. Nature, 529.

Weber, B. G., & Mateas, M. (2008). Building Human-Level

AI for Real-Time Strategy Games.

West, R. L. (2013). The Macro Architecture Hypothesis: A

Theoretical Framework for Integrated Cognition.

AAAI Fall Symposium Series, 102–108. Retrieved

from https://www.aaai.org

West, R. L., & Lebiere, C. (2001). Simple games as

dynamic, coupled systems: randomness and other

emergent properties. Cognitive Systems Research,

1(4), 221–239.

West, R. L., & Macdougall, K. (2014). The macro-

architecture hypothesis: Modifying Newell’s system

levels to include macro-cognition. Biologically

Inspired Cognitive Architectures, 8, 138–147.

West, R. L., & Nagy, G. (2007). Using GOMS for Modeling

Routine Tasks Within Complex Sociotechnical

Systems: Connecting Macrocognitive Models to

Microcognition. Journal of Cognitive Engineering

and Decision Making, 1(2), 186–211.

West, R. L., & Pronovost, S. (2009). Modeling SGOMS in

ACT-R:Linking Macro- and Microcognition. Journal

of Cognitive Engineering and Decision Making, 3(2),

194–207.

ICCM2018

101

Modelling metareasoning about decision thresholds in a perceptual learning task
Vasundhara Rakesh

Department of Chemical Engineering
IIT Kanpur

Nisheeth Srivastava
Department of Computer Science and Engineering

IIT Kanpur

Abstract

The mathematical relationship between the drift diffusion
model and sequential probability ratio testing implies that ob-
servers choose thresholds to optimize some desired level of
accuracy across the entire set of trials. We argue that it is
more cognitively natural to assume that decision-makers set
this threshold adaptively, using information from recent trials
to adjust it for upcoming ones. To test this hypothesis, we
designed and conducted a random dot motion discrimination
experiment where the coherence parameter that controls task
difficulty varies across trials in a predictable manner. We found
that observers are quicker to respond in trials that follow suc-
cessively easier trials and vice versa. We designed a hierarchi-
cal drift diffusion model that allows decision-makers to adapt
their evidence threshold based on the trend of difficulty of pre-
vious trials and show that it fits our experimental data better
than a simple drift diffusion model.

Keywords: drift diffusion model; ideal observer model;
Bayesian modelling; meta-cognition; rational analysis

Introduction
The drift diffusion model (DDM) is a very successful se-
quential sampling model of the choice process (Ratcliff &
McKoon, 2008). Particularly when applied to perceptual
decision-making tasks, where the stream of evidence is trans-
parent to the experimenter, this model has shown excel-
lent fits to choice and response time data from a wide va-
riety of experimental paradigms, even generalizing across
organisms (Brunton, Botvinick, & Brody, 2013). While
it shares several components, including parallel accumula-
tion and race-to-a-threshold with other competing paradigms
such as leaky competing accumulation (Usher & McClelland,
2001) and decision field theory (Busemeyer & Townsend,
1993), its stochastic specification of important components
of the choice process - rate of accumulation of evidence, re-
sponse bias, and variability in the evidence accumulation rate
- gives it excellent flexibility and interpretability in modelling
the summary statistics seen in perceptual decision-making ex-
periments.

While on the one hand, its mathematical construction
makes the DDM an excellent descriptive model of the choice
process, it simultaneously makes it challenging to associate
its optimality criterion with the goals and costs faced by
real decision-makers. Specifically, the drift diffusion model
is known to implement the sequential probability ratio test
(SPRT) (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006),
which is statistically optimal in the sense that for any choice
of the decision threshold, using the DDM criterion for choice
will yield the highest possible accuracy (Wald & Wolfowitz,
1948).

The relationship between the SPRT and DDM imbues it
with a normative sense of optimality - observers are being

statistically optimal in the SPRT-sense if we show that the
DDM model fits their behavior well. But the underlying as-
sumptions of SPRT - perfect evidence integration, approx-
imately linear evidence accumulation rates, race to a fixed
evidence threshold - are not good fits for the information
and processing limitations that organisms face in real-world
decision-making scenarios. In recent years, objections to
these premises have been raised on both computational and
empirical grounds. Deneve has documented how the con-
ventional drift diffusion paradigm fails to accommodate sit-
uations where sensory inputs are unreliable (Deneve, 2012).
Thura and colleagues have shown how reaction time distri-
butions in perceptual decision-making tasks may be better
described by evidence accumulation terminated by breach-
ing a time-collapsing threshold responsive to an increasing
’urgency’ signal than classic accumulation to a fixed thresh-
old (Thura, Beauregard-Racine, Fradet, & Cisek, 2012).
Glaze et al have demonstrated how perfect evidence integra-
tion - a fundamental assumption of drift diffusion models -
is sub-optimal in the face of unsignalled context shifts in the
decision-making environment (Glaze, Kable, & Gold, 2015).
Thus, using DDM as a normative baseline, research is in-
creasingly focusing on identifying aspects of the environment
that constrain real-world decision-making.

Threshold adaptation as metareasoning about effort
We question the premise that decision-makers accumulate
evidence up to a fixed threshold. Whereas such propos-
als have been made previously (Thura et al., 2012), they
have focused on incorporating the opportunity cost of con-
tinued sampling in the form of a threshold that decreases over
time (Drugowitsch, Moreno-Bote, Churchland, Shadlen, &
Pouget, 2012). We focus on a different aspect of the threshold
determination process - that decision-makers are likely to use
information from previous trials to set decision thresholds for
upcoming trials. Here again, it is well-documented that pat-
terns of responding can introduce response biases in experi-
ments (Ratcliff & McKoon, 2008). The drift diffusion model
allows such biases to be modeled explicitly using changes in
diffusion start-point parameters.

We consider a different normative possibility: the thresh-
old parameter used in drift diffusion modeling is a proxy for
the amount of effort the observer believes is necessary for
adequate performance, and that the observer infers the ef-
fort needed for upcoming trials using effort measurements
in recent trials. Grounding this hypothesis in a perceptual
decision-making task, we model behavior on this task us-
ing hierarchical ideal Bayesian observer that performs 2AFC
random dot motion (RDM) discrimination, using a meta-

ICCM2018

102

Response Time

On the screen

Press to
respond

'Right'

Press to
respond
'Left'

MZ

1 RDM Trial

A B

Trial
1 3 5 7 9 11 13 15 17 19 21 23 25

0.1

0.175

0.25

0.325

0.4

C
oh

er
en

ce

U
p

R
am

p

D
ow

n R
am

p

Each dot
represents

one RDM trial:

One Phase Cycle

Each phase cycle
comprises of 8 trials

Each subject has to undergo
20 phase cycles i.e. 161 trials

Tr
ia

ls
 g

et
ti
ng

 e
as

ie
r

Trials getting harder

Trial
1 3 5 7 9 11 13 15 17 19 21 23 25

Figure 1: Schematic illustrating the experiment design. (A) On each experiment trial, participants saw a set of dots in Brownian
motion, with a horizontal drift added to some fraction of the dots. Participants had to discriminate motion direction using key
presses on a computer keyboard, and were incentivized to emphasize accuracy. (B) The sequence of trials each participant saw
possessed a higher-order structure, with the difficulty of successive trials increasing and decreasing in a cyclic manner.

cognitive controller to set appropriate values of the decision
threshold on each trial. To test this hypothesis, we designed a
specific variation of the standard RDM task. In the standard
task, trial difficulty is either blocked or randomized across
trials. We instead designed a sequence of trial presentation
that introduced a predictable trend in the coherence parame-
ter across trials. If people are adaptively tracking the amount
of effort they are having to expend on individual trials, we
expect such inference to inform their effort allocation on up-
coming trials. A hierarchical extension of the drift diffu-
sion model, with a top-down controller setting the evidence
threshold adaptively across trials, would potentially fit choice
and RT data gathered from such an experiment design better
than a simple DDM that assumes a fixed evidence threshold.

Experiment
An RDM Task with higher-order structure

Participants saw a screen with moving dots designed accord-
ing to the following algorithm. Random motion of the dots
was provided by allowing Brownian motion in the vertical di-
rection, i.e. all the dots drifted vertically about their mean
position by a distance chosen from a Gaussian distribution.
For horizontal movement, we first determined whether a dot
was coherent or incoherent as a Bernoulli trial governed by a
coherence parameter c. The coherent dots were horizontally
moved to a randomly chosen direction (such that each coher-
ent dot was to move in the same direction) by a distance cho-
sen from a Uniform distribution. The incoherent dots were
allowed to move horizontally in a randomly chosen direction
(such that each incoherent dot had a randomly chosen direc-
tion) by a distance chosen from a Uniform distribution.

As in all RDM discrimination experiments, the critical ma-
nipulation of task difficulty was governed entirely by the co-
herence parameter c. We selected a range of values of the co-
herence parameter by running a calibration pilot with 5 partic-
ipants, performing 280 trials of the discrimination task under
accuracy emphasis. We picked a range of coherence values
that permitted 65% accuracy at the low end of the range and
95% accuracy at the high end of the range.

Participants had to indicate the direction of motion of the
overall dot pattern on each trial, as illustrated in Figure 1A.
They were allowed to take as much time as they wanted to
respond to each trial, and as much time as they wanted to
rest between the trials. Each correct response fetched points.
The scoring system was such that a correct response fetches
10 points; the score of each correct response doubled on re-
sponding correctly to three successive trials, and reset to 10
points in case the streak was broken. We encouraged the par-
ticipants to score well by way of promising a reward to the
highest scorer.

The specific higher-order structure introduced in our exper-
iment was a cyclic shift across the 5 specific values of the co-
herence parameter used in the experiment {0.1, 0.175, 0.25,
0.325, 0.4}. For example, a participant starting the experi-
ment with a trial with coherence 0.1 would next see a trial
with coherence 0.175, then one with 0.25, up to the max-
imum coherence level of 0.4, beyond which the coherence
would begin dropping down to 0.325, then to 0.25 etc. Each
such phase cycle from one coherence value through the other
4 and back to the original takes 8 trials, given we use 5 unique
coherence values. Participants completed 20 such phase cy-
cles for a total of 161 trials per participant, as illustrated in
Figure 1B.

ICCM2018

103

0 2000 4000 6000 8000 10000 12000
Previous Trial Response Time

0

2000

4000

6000

8000

10000

12000

C
ur

re
nt

 T
ria

l R
es

po
ns

e
T

im
e

Increasing Coherence
Decreasing Coherence

0 2000 4000 6000 8000 10000 12000

Previous Trial Response Time

0

2000

4000

6000

8000

10000

12000

C
ur

re
nt

 T
ria

l R
es

po
ns

e
T

im
e

Increasing Coherence
Decreasing Coherence

0 2000 4000 6000 8000 10000 12000
Previous Trial Response Time

0

2000

4000

6000

8000

10000

12000

C
ur

re
nt

 T
ria

l R
es

po
ns

e
T

im
e

Increasing Coherence
Decreasing Coherence

0.175 0.25 0.325

A B

0 2000 4000 6000 8000 10000 12000

Previous Trial Response Time

0

2000

4000

6000

8000

10000

12000

C
ur

re
nt

 T
ria

l R
es

po
ns

e
T

im
e

Increasing Coherence
Decreasing Coherence

Figure 2: Current trial RT vs Previous trial RT for (A) all coherence levels and (B) individually for each of the three intermediate
coherence levels {0.175,0.25,0.325}. Best fit lines along with 95% CI (dotted lines) are shown for both the up ramp and the
down ramp. Consistently higher RTs than the preceding trial seen at the same coherence level when the trial difficulty is
trending up (i.e. on the down ramp) instead of down suggests adaptive changes in the evidence threshold responsive to past
trials.

Task
The task was administered via a web-based interface. Partic-
ipants indicated responses with keyboard button presses, and
were allowed to take as long as they liked before pressing the
space bar to begin the next trial.

Since the UI was web-based, there were likely variations in
the visual angle across participants. To verify that the visual
angles of the display were not beyond our participants’ ability
to foveate, we calculated the visual display angle for a range
of setups based on the following conservative assumptions:
(1) the subject used a laptop to access the experiment, (2) the
subject was sitting 45-65 cm away from the laptop screen, (3)
the laptop used had a screen ranging from 13” - 17” in size,
and (4) the laptop used was a model released after 2012. Cal-
culated visual angles for all known standard pixel resolutions
for such devices varied from 14 - 28 degrees in the horizontal
direction (Mean = 23.4 degrees, SD = 4.4 degrees) , and 8 -
19 degrees in the vertical direction (Mean = 13.9 degrees, SD
= 2.7 degrees), mostly within the foveal range of normally
sighted observers.

Participants
52 undergraduate and postgraduate students participated in
the experiment for course credit (4 female, mean age 20.5±
1.57 SD). All participants had normal or normal-corrected vi-
sion.

Post-task, we excluded the data for participants who had
less than 85% accuracy on the highest coherence trials. For
the remaining data (from 34 participants), we excluded the
bottom 5% and top 5% response times across the 34 partic-
ipants for each of the 8 ramp positions to eliminate outliers.
We report results both with and without outliers in our analy-
sis below.

Testing the basic prediction
We expected that an observer tracking the cross-trial varia-
tions in difficulty would end up tracking the repeated ramp-

like movement of the coherence parameter, and take longer
on an upcoming trial if the cross-trial coherence was trend-
ing downward (i.e. the trials were becoming more difficult)
than if it was trending upward (i.e. the trials were becoming
easier).

We see that this does happen on average across our n = 34
participants (Figure 2A). However, even observers insensi-
tive to cross trial information would be expected to show the
same pattern, because upcoming trials aren’t just expected
to be easier/harder on up/down ramps, they actually are eas-
ier/harder too.

Therefore, in Figure 2B we show the current vs previous
trial RT stratified by coherence level of the present trial for
the three intermediate coherence values in our experiment.
By virtue of the up-down phase cycle of our design, for two
of the three cases, observers make easy to hard and hard to
easy transitions on both up and down ramps. Nonetheless,
we still see the same pattern of faster RTs during trials where
the coherence had been drifting upward and slower RTs when
vice versa which would not happen if observers were insen-
sitive to cross-trial information.

Further, the effect is consistently seen within individuals.
In Figure 3 we show the difference between the magnitudes
of the slopes for the down ramp and up ramp of the current vs
previous trial RT for individual participants. Positive values
for all participants confirm that the result holds within indi-
viduals in addition to at the cohort level.

These empirical results, while conceptually congruent with
our hypothesis, are inadequate to draw strong inferences. We
therefore sought to test our metareasoning hypothesis at a
trial-by-trial level by developing a generative model of the
information accumulation process involved in a 2AFC per-
ceptual learning task that accommodates such adaptive con-
trol over the evidence threshold, and comparing its ability to
explain our data vis-a-vis a fixed threshold evidence accumu-
lation model.

ICCM2018

104

0 5 10 15 20 25 30 35
Participant

0

0.2

0.4

0.6

0.8

D
ow

n
R

am
p

S
lo

pe
 -

 U
p

R
am

p
S

lo
pe

Error Bar = 95% CI

Figure 3: Difference in magnitude of slopes of best fit lines
for Up and Down Ramps across all coherence levels for each
participant. Consistently higher RTs than the preceding trial
when trial difficulty is trending up instead of down suggests
adaptive changes in the evidence threshold responsive to past
trials for every individual.

A hierarchical drift diffusion model
The DDM, in its standard form is a Wiener diffusion process
with drift,

dy = vdt + sdW, (1)

where y is the diffusion state, v is the drift, s determines the
amount of diffusion and dW represents the standard Wiener
process. The model accumulates normally distributed pieces
of evidence for either alternative until a bound on the cumu-
lative evidence is crossed, and then emits the winning option
as the choice.

We developed a hierarchical model of the choice pro-
cess using a recently proposed Bayesian version of the
DDM (Bitzer, Park, Blankenburg, & Kiebel, 2014). This
takes the form of a sequential Bayesian update model that
maps noisy stimuli observations to latent Gaussian represen-
tations

xt ∼ N(µi,σ
2), (2)

constructs a generative model of the likelihood of seeing cer-
tain latent feature values for each stimulus alternative,

p(xt |Ai) = N(µ̂, σ̂2), (3)

and updates beliefs about the correctness of a decision alter-
native given these noisy observations

p(Ai|X1:t) =
p(xt |Ai)p(Ai|X1t−1)

∑
M
j=1 p(xt |Ai)p(A j|X1t−1)

, (4)

where xt are noisy observations from stimuli belonging to cat-
egory i, with true prototypical values µi and measurement
noise σ, estimated prototypical values µ̂ and internal gener-
ative variability σ̂, Ai as possible alternatives and M as the
number of considered alternatives. Bitzer et al show that this
intuitive ideal observer model is formally identical to the drift

diffusion model given certain assumptions about the relation-
ship between parameters of the model.

We augmented this model with a metalearner that esti-
mates the expected sampling effort needed for upcoming tri-
als based on effort allocation on previous trials. We assume a
very simple model for this metalearner. It simply updates the
effort estimate λ as

λt = λt−1 + γ∆t , (5)

where
∆t = z(RTt−1)− z(RTt−2), (6)

γ is a free scaling parameter, z(RT) is the normalized z-score
of RT at time t with respect to the RT distribution and λt
serves as the threshold for the DDM for the tth trial. This
model is not meant to be comprehensive. We have designed
it purely to simulate our expectation of the role of predictable
up and down changes in dot motion coherence on observer
behavior. We expect that observers will be sensitized to these
trends and extrapolate from them to set decision thresholds
for upcoming trials. Increasing effort on recent trials should
yield a larger threshold for the upcoming trial and vice versa.
Normalization is used to induce a natural scale on the size of
the change in the threshold; the RT distribution is admittedly
non-Gaussian so this assumption could be further refined in
future work. Also, to avoid overfitting, we have used the
global RT distribution to normalize the RTs, whereas a more
realistic model may use sequential summary statistics within
participants. Indeed, a filtering-based model might capture
the basic intuition of the metalearner more elegantly, but we
wished to compare the augmented model with a complicated
baseline using only choice and RT data, necessitating parsi-
mony in parameter extension. The version of the meta-learner
we have proposed has just one additional free parameter be-
yond the baseline.

As in (Bitzer et al., 2014), we reduced the set of estimated
parameters of the Bayesian model from seven to three by as-
suming equal amount of drift for both stimuli. In practice we
did this by setting µ = µ̂ = ±1 for the 2AFC case. Parame-
ter fitting for the 3 parameters to be estimated θ = {σ, σ̂, tnd}
also followed the procedure outlined in (Bitzer et al., 2014).
We defined the log likelihood of the data given all parameters
as

log p(Acc,RT|θ) = log p(Acc|θ)+ log p(RT |θ)
∝−wacc (Acc−Acc(θ))2

−
1

∑
e=0

7

∑
i=1

wqe,i (qe,i−qe,i(θ)
2,

where qe,i is the ith of seven quantiles
(0.02,0.05,0.1,0.3,0.5,0.7,0.9) for either correct or
error responses as indicated by e.

To evaluate the log likelihood function, again following the
procedure in (Bitzer et al., 2014), we simulated our experi-
ment with the Bayesian observer model for different parame-
ter values, averaging the accuracy and RT quantiles obtained

ICCM2018

105

Model AIC BIC
Simple DDM 23.2 (0.72) 42.7 (0.72)

Hierarchical DDM 11.7 (0.47) 36.7 (0.47)

Table 1: Model comparison. Standard deviation across 20
model runs are given in parentheses.

across 30 model runs per parameter tuple θ and setting the
likelihood weights w to the inverse variance over these repe-
titions. We scaled each iteration in our simulation to 125 ms.
However, we found the MCMC approach advised in (Bitzer
et al., 2014) to be too slow (on the order of days) for fitting
our hierarchical model that used different threshold values
for each trial. Therefore, we used a two-stage grid-search
of the parameter space (logarithmic exploration in one stage
followed by linear refinement in the second) to optimize the
negative log likelihood. In practice, we found that the grid
search yields comparable mean parameter values for the base-
line DDM model as the MCMC procedure implemented in
(Bitzer et al., 2014).

Since we don’t use MCMC to obtain a posterior distribu-
tion over the parameters, it is useful to average over multi-
ple runs of the likelihood computation at the optimal param-
eter values to obtain representative likelihood values. After
finding optimal parameters via grid search for both models,
we calculate model likelihood as the average likelihood ob-
tained from 20 runs of the model for the optimal parameter
values. The results from our model comparison using these
average likelihood values are presented in Tables 1 and 2.
∆BIC measures difference between baseline DDM and hier-
archical DDM BIC. Positive values support the hierarchical
DDM, negative values support the baseline model. ∆BIC val-
ues with magnitudes smaller than 2 imply insignificant differ-
ences between models; values larger than 10 constitute very
strong support for a model. Using this measure, the hierar-
chical DDM is clearly preferable to the simple DDM, across
data from all 34 participants (∆BIC = 6 from Table 1 and
∆BIC = 7.8 from Table 2).

We additionally ran a block-wise analysis, dividing each
participant’s trials into 4 sequential blocks of 40 trials and cal-
culating model complexity statistics on the likelihoods emit-
ted by the model for the best fitting parameter values of the
overall model (σ = 11, σ̂ = 8, tnd = 250ms). We anticipated
that any evidence of gradual adoption or relinquishment of
threshold metareasoning would show up in the relative model
complexity tracked across these four blocks.

As the results in Table 3 show, the hierarchical model is
heavily preferred over the simpler model during the first quar-
ter of trials, measured across all participants. For later tri-
als, both models are evenly matched, with the simpler model
slightly preferred. This finding is congruent with an account
where the participants try to use the higher-order structure
across different RDM trials to begin with, but then shift away
from it, since it does not offer any material advantage.

Model AIC BIC
Simple DDM 16.5 (2.7) 36.3 (2.7)

Hierarchical DDM 8.9 (1.5) 28.5 (1.5)

Table 2: Model comparison without outlier removal (i.e. in-
cluding top 5% and bottom 5% RTs). Standard deviation
across 20 model runs are given in parentheses.

Block 1 2 3 4
∆ BIC 12.4 -3.0 -0.07 -0.78

Table 3: Model comparison across four sequential blocks of
40 trials each from all participants. Block 1 contains the first
40 trials from each participant, etc.

Discussion
Researchers have begun to question the drift diffusion
model’s assumption of a fixed evidence threshold in recent
years, basing these arguments on the temporal opportunity
costs of continued sampling (Thura et al., 2012). We ask
the same question from a different standpoint. We ask
whether observers might be sensitive to higher-order statis-
tics in decision-making tasks and adaptively adjust evidence
thresholds on upcoming trials to use them efficiently. To see
if this can happen, we created a novel variation of the classic
random dot motion discrimination task, introducing an up-
and-down ramp in difficulty across trials (Gold & Shadlen,
2000). We predicted that observers would be sensitive to
this variation. We designed an extension of the drift diffu-
sion model that incorporates metacognitive adaptation of the
evidence threshold based on the trend of difficulty of recent
trials, and found that it offers a better explanation of partici-
pants’ behavior in our experiment than a simple drift diffusion
model. Our model comparison also suggested initial use and
then a shift away from the use of the metareasoning strategy
by participants.

Our results support a shift in interpretation of the evidence
threshold from its SPRT-driven association with accuracy, to-
wards a more general view of it as a metacognitive effort pa-
rameter influenced by previous observations. Such a view
also makes it easier to generate normative accounts of deci-
sions from memory using DDM-like models, building upon
its descriptive success in modeling retrieval success and RT
distributions in this domain (Krajbich & Rangel, 2011). Un-
like in perceptual decisions where the rate of evidence pre-
sentation is fixed, and decisions receive immediate feedback,
value-based decisions from memory are made with evidence
streams of unknown and unreliable provenance and without
feedback. The empirical success of DDM in explaining data
from such experiments warrants a broader interpretation of
the normative principles of the framework, along the lines
proposed in this work.

Previous work has showed that decisions made using ei-
ther the (log) posterior probability or the log posterior odds

ICCM2018

106

0 20 40 60
0.4

0.6

0.8

1

P
ro

b
a
b

ili
ty

0 20 40 60
0

0.5

1

P
ro

b
a
b

ili
ty

3
0

200

400

600

Tr
a
je

ct
o
ry

 c
o
u
n

t

7 11 15 19 23 27 31 35 39

0 10 20 30 40 50

Time

-50

0

50

E
v
id

e
n
ce

Log posterior odds

0 10 20 30 40 50

Time

0

0.5

1

1.5

2

2.5

E
v
id

e
n
ce

Mean evidence

0 10 20 30 40

Time

0

50

100

150

200

250

300

350

Tr
a
je

ct
o
ry

 c
o
u
n

t

RT Distribution

RT DistributionPosterior probability

Time Time Time

Figure 4: Simulation of the
sequential probability ratio
test in a 2AFC with noisy
Gaussian representations of
input stimuli. The log odds
ratio rises approximately
linearly in the direction
of the correct outcome
on average (across 1000
simulations) while the pos-
terior probability increases
asymptotically towards it
(across 1000 simulations).
Decision-makers using
either decision variable
make decisions with very
similar accuracy and RT
distributions.

yield essentially equivalent observations in terms of accu-
racy and RT distributions (Bitzer et al., 2014). Conceptu-
ally though, the decision-within-a-decision to terminate evi-
dence sampling is vital for decision-makers using the poste-
rior probability, and not the log posterior odds as the decision
variable in 2AFC decision-making tasks. Figure 4 demon-
strates how the posterior probability, but not the log posterior
odds, shows asymptotic sub-linear growth with time on aver-
age. A decision-maker using log posterior odds to make deci-
sions can be confident that any threshold he seeks to place on
the decision variable will ultimately be breached. A decision-
maker setting a bound on the posterior probability of the com-
peting options cannot be so sure. Thus, we suggest the exis-
tence of extensive metareasoning about threshold placement
indirectly supports the use of the log posterior probabilities
instead of log posterior odds (Zhang & Maloney, 2012) as the
brain’s decision variable in decision-making.

References
Bitzer, S., Park, H., Blankenburg, F., & Kiebel, S. J. (2014).

Perceptual decision making: drift-diffusion model is equiv-
alent to a bayesian model. Frontiers in human neuro-
science, 8, 102.

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Co-
hen, J. D. (2006). The physics of optimal decision
making: a formal analysis of models of performance in
two-alternative forced-choice tasks. Psychological review,
113(4), 700.

Brunton, B. W., Botvinick, M. M., & Brody, C. D. (2013).
Rats and humans can optimally accumulate evidence for
decision-making. Science, 340(6128), 95–98.

Busemeyer, J. R., & Townsend, J. T. (1993). Decision field
theory: a dynamic-cognitive approach to decision making
in an uncertain environment. Psychological review, 100(3),
432.

Deneve, S. (2012). Making decisions with unknown sensory
reliability. Frontiers in neuroscience, 6, 75.

Drugowitsch, J., Moreno-Bote, R., Churchland, A. K.,
Shadlen, M. N., & Pouget, A. (2012). The cost of accumu-
lating evidence in perceptual decision making. Journal of
Neuroscience, 32(11), 3612–3628.

Glaze, C. M., Kable, J. W., & Gold, J. I. (2015). Norma-
tive evidence accumulation in unpredictable environments.
Elife, 4.

Gold, J. I., & Shadlen, M. N. (2000). Representation of a
perceptual decision in developing oculomotor commands.
Nature, 404(6776), 390.

Krajbich, I., & Rangel, A. (2011). Multialternative drift-
diffusion model predicts the relationship between visual
fixations and choice in value-based decisions. Proceed-
ings of the National Academy of Sciences, 108(33), 13852–
13857.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision
model: theory and data for two-choice decision tasks. Neu-
ral computation, 20(4), 873–922.

Thura, D., Beauregard-Racine, J., Fradet, C.-W., & Cisek, P.
(2012). Decision making by urgency gating: theory and ex-
perimental support. Journal of neurophysiology, 108(11),
2912–2930.

Usher, M., & McClelland, J. L. (2001). The time course
of perceptual choice: the leaky, competing accumulator
model. Psychological review, 108(3), 550.

Wald, A., & Wolfowitz, J. (1948). Optimum character of the
sequential probability ratio test. The Annals of Mathemati-
cal Statistics, 326–339.

Zhang, H., & Maloney, L. T. (2012). Ubiquitous log odds:
a common representation of probability and frequency dis-
tortion in perception, action, and cognition. Frontiers in
Neuroscience, 6, 1.

ICCM2018

107

Mechanisms of Rule Resolution in Premotor Cortex:
A Combined TMS/Computational Modeling Study

Patrick J. Rice (pjrice@uw.edu)
Department of Psychology, University of Washington

Campus Box 351525, Seattle, WA 98195 USA

Andrea Stocco (stocco@uw.edu)
Department of Psychology, University of Washington

Campus Box 351525, Seattle, WA 98195 USA

Abstract

In the present study, repetitive transcranial magnetic stimula-
tion was applied over left dorsal premotor cortex (PMd) while
participants were performing a novel task paradigm that re-
quired on-the-fly planning of responses in accordance with
both instructed rules and present stimuli. In conjunction, an
ACT-R cognitive model of the task was developed in order to
test hypotheses on the potential cognitive functions that may
be affected by stimulation of PMd. Two methods of simulat-
ing TMS within the ACT-R architecture were tested. In the be-
havioral experiment, increased response times were observed
specifically when TMS was applied while participants were
preparing to execute a complex response to an uninstructed
stimulus. Model results suggested participant’s behavior was
due to an effect of TMS on a “re-planning” process, indicating
that PMd may be specifically involved in planning of complex
motor responses to specific visual stimuli.
Keywords: Rule resolution; TMS; dorsal premotor cortex;
ACT-R

Introduction
Rules that guide behavior often consider categories of stimuli
and responses; for instance, a particular color may indicate
that a specific finger should be used to press a button. Spe-
cific identities within these categories are linked through a
conditional association to form an exemplar of the rule – fol-
lowing the rule above, a conditional association indicated by
the rule may be, “If the light is blue, use your ring finger to
respond”. This format necessitates representation of rules in
an abstract way that allows of consideration of a potentially
wide range of stimuli and responses. A growing body of re-
search suggests that abstract rules are represented by frontal
cortices. Activation of prefrontal cortex (PFC) has been ob-
served while humans either learn task rules, or execute be-
havior in accordance with previously-learned rules (Stocco,
Lebiere, O’Reilly, & Anderson, 2012).

Despite this, it is obvious that behavior itself is concrete:
specific effectors are utilized in specific manners in response
to specific stimuli. For effective control, potential/present
concrete stimulus identities must be utilized in conjunction
with known rules in order to “resolve” a concrete behav-
ioral response. Compared to the representation of abstract
rules, relatively little is known regarding this process of rule
resolution in the brain. A potential candidate to execute a
rule-resolution process is the dorsal premotor cortex (PMd).
Anatomically, PMd receives input from both PFC, responsi-
ble for abstract rule representation, and posterior parietal cor-

tex, a site of multisensory integration (Tomassini et al., 2007).
Electrophysiology conducted in nonhuman primates has re-
vealed that PMd neurons encode movement kinematics (such
as direction or amplitude of to-be-performed movements), but
that this activity is dependent on the context the movement
is performed within (Cisek & Kalaska, 2005). As a result,
it has been proposed that PMd may serve to transform sim-
ple contextual cues into motor responses (Wise, Boussaoud,
Johnson, & Caminiti, 1997).

To investigate whether PMd activity is necessary to re-
solve behavioral responses in accordance with known rules
and stimuli, we constructed a novel task based on the Rapid
Instructed Task Learning (RITL) paradigm, which allows for
the examination of encoding, planning, and execution of rules
(Cole, Laurent, & Stocco, 2013). On each trial, the partici-
pants were first required to encode a trial-specific conditional
association, and then resolve and execute a response after a
stimulus was given. Rules that generated conditional asso-
ciations were categorized as either “Concrete”, in which a
specific stimulus identity (e.g., a number being “even”) was
associated with a specific motor effector (e.g., index finger),
or “Symbolic”, in which a specific stimulus identity was as-
sociated with a placeholder symbol that, upon stimulus pre-
sentation, allowed resolution of a secondary association that
indicated a specific response. Stimuli on a subset of trials
were designed to violate the instructed conditional associa-
tion, requiring participants to replan the correct response.

While performing this task, high-frequency repetitive tran-
scranial magnetic stimulation (rTMS) was applied over PMd
during one of two time points during a given trial: ei-
ther while presenting the trial-specific conditional association
(termed “early”), or while presenting the stimulus to respond
to (“late”). If PMd is involved in the encoding of the rule,
rTMS should significantly affect response times during the
“early” encoding phase. Alternatively, if PMd underpins rule
resolution, “late” rTMS should leading to increased response
times during the execution phase.

Interpretation of the effects of TMS on behavior requires a
careful consideration of the possible processes that might be
disrupted by the TMS pulse train. A high-frequency pulse
has limited temporal duration (in our experiment, 0.5 sec-
onds) and its effects crucially depend on the timing of the
underlying process. For example, a delay in the response to

ICCM2018

108

a stimulus could be interpreted as either resulting from an
inhibitory effect on motor execution or from an inhibitory ef-
fect on the retrieval of a stimulus-response mapping before
the execution. Without a reasonable process model, it is im-
possible to fully examine the space of possible explanations.
For this reason, the effects of rTMS on behavior were also
compared to the predictions of a computational model de-
veloped within the ACT-R cognitive architecture (Anderson,
2007)1. ACT-R is the most successful and popular cogni-
tive architecture, and allows for the testing of specific hy-
potheses of cognition in a controlled and parameterized man-
ner, as the architecture’s constituent components are linked
to known brain regions and functions. ACT-R models are a
combination of declarative, factual knowledge and procedu-
ral knowledge. Declarative knowledge is stored in the form of
structured records (“chunks”), while procedural knowledge is
represented as IF-THEN rules (production rules or “produc-
tions”). Behavior unfolds as one production at the time is
selected for execution, and it retrieves, moves, or modifies
chunks as part of its actions. Chunks and productions interact
with each other through a series of “buffers”, limited-capacity
temporary stores that hold a single chunk for extended peri-
ods of time, making it accessible to productions.

We reasoned that, between the concrete and symbolic rule
conditions, identical buffers and production rules should be
utilized to produce behavior under the task. In general, the
model utilizes the presentation of the conditional association
to “plan” a response to the specified stimulus. When pre-
sented with a stimulus, if it matches that which was planned
for, the response is immediately executed. However, if there
is a violation of the expected stimulus, a “re-planning” oc-
curs in which a new plan considering the evident stimu-
lus is prepared and subsequently executed. The only dif-
ference between how the model considers “concrete” com-
pared to “symbolic” conditions is the information content of
the chunk produced by “planning”. We hypothesized that the
“re-planning” in response to a violation of expected stimulus
identity is what may be affected by rTMS in the behavioral
experiment. To our knowledge, the effects of TMS on brain
and behavior have never been simulated in ACT-R, and ACT-
R has never been used to clarify the possible interpretations
of TMS effects.

Methods
Participants
Twelve right-handed participants (8 females, mean age = 24.7
± 3.3) with no history of neurological disorder, head injury,
or any other contraindications to rTMS were were recruited
to participate in the study. Recruitment was restricted to in-
dividuals who had previously participated in neuroimaging
experiments at the University of Washington, and for whom
structural and functional imaging data already existed. All

1The model code, together with the experimental
data, can be found at our laboratory’s GitHub account:
http://github.com/UWCCDL/DRI/

participants received monetary compensation proportional to
the total amount of time devoted to the study.

Task Paradigm
We constructed a RITL-based paradigm focused on condi-
tional motor behaviors. The progression of the task is de-
picted in Figure 1. Participants were instructed to determine
the parity of a numeric stimulus (restricted to the single-digit
numbers 2 – 9; presented in the center of the screen during
stimulus presentation) and respond on the basis of a trial-
specific rule. Responses occurred by pressing the “left” or
“right” arrow keys on a standard keyboard with the partici-
pant’s right-hand index and middle fingers, respectively.

Figure 1: Time course of concrete (left) and symbolic (right)
trials. Red lines represent the moments at which rTMS was
applied.

Participants were presented with two types of rules: “Con-
crete” rules, which indicated the association of a specific ef-
fector (either index or middle fingers of the right hand) to a
specific parity (“EVEN” or “ODD”); and “Symbolic” rules,
which indicated the association of a specific letter on the
screen (“A” or “B”) to a specific parity. Specific effectors in
the “Concrete” condition were indicated during rule presenta-
tion by a stylized hand (black on white background), with the
rule-specific effector denoted by a red circle around the tip
of the finger. Specific effectors in the “Symbolic” condition
were indicated during stimulus presentation by the placement
of the letters “A” and “B”, which were randomly assigned
to the bottom left and right corners of the screen on a trial-
by-trial basis. To make the two conditions visually compa-
rable, these letters appeared during the stimulus presentation
phase of both “concrete” and “symbolic” trials, although they
only carried meaning in the “symbolic” condition. Partici-
pants were informed that the bottom left corner corresponded
to the “left” arrow key, while the bottom right corner corre-
sponded to the “right” arrow key. Due to this manipulation,
during a “symbolic” trial participants could not prepare a spe-
cific motor effector until stimulus presentation.

ICCM2018

109

Crucially, instructions specified only half of a trial’s
rule. That is, participants may be given the instructions
“EVEN:Index” but then asked to respond to a stimulus (e.g.,
“7”) that is odd. Under these circumstances, participants
have to mentally re-plan a new stimulus-response configu-
ration. This created a third experimental factor in which the
trial is either “instructed” (e.g., the instructions mention an
even number, and the stimulus is even) or “inferred” (i.e.,
the instructions mention an even number, but the stimulus
is odd). Inferred trials are of particular interest because the
re-processing of the rule likely occurs within the window of
delivery of a TMS pulse train during “late” stimulation.

The task consisted of 4 blocks of 60 trials each, with a
5-minute break enforced between each block. At the begin-
ning of each trial, a central fixation cross was illuminated for
1s. Once the fixation was extinguished, the rule informing
the subject of the individual trial’s valid associations was dis-
played for a maximum of 5s. Presentation of rule condition
was randomized across trials within a block. Subjects ac-
knowledged understanding of the presented rule by pressing
the spacebar with their left hand, so as to not to interfere with
the activity of the right hand used for the response mappings.
After subjects acknowledged the rule, a variable (0.25 – 2
seconds) delay occurred while a fixation “asterisk” was dis-
played (Figure 1). Once this delay had passed, the stimulus
was displayed and subjects were given a 5 second window to
respond by pressing the left or right arrow key with the index
or middle finger of their right hand. Upon response (or af-
ter 5 seconds had passed), a variable inter-trial interval (5 – 9
seconds) was enforced while a blank screen was displayed.

Event-related, high-frequency rTMS was delivered across
two sites (left PMd, experimental; Vertex, control) in alter-
nating blocks, with the order counterbalanced across sub-
jects. Commonly used as a control condition in TMS stud-
ies, Vertex stimulation provides the same scalp sensation and
audible click as stimulation of the targeted region, but does
not evoke a functionally significant neural response (Jung,
Bungert, Bowtell, & Jackson, 2016). As noted above, there
were two possible time points of stimulation during a trial, ei-
ther upon presentation of the rule instructions (“early” stim-
ulation), or upon presentation of the stimulus (“late” stimu-
lation; Figure 1). In one third of trials in a given block, no
stimulation was delivered; in all other trials, only one stim-
ulation train occurred (either “early” or “late”). Trials were
pseudo-randomized so that consecutive series of three trials
each contained one instance of early stimulation, one instance
of late stimulation, and one instance of no stimulation. Due to
the possibility of rTMS delivery either inducing an unwanted
motor response or suppressing a genuine response, subjects
were locked out of responding to either screen for the first
0.5 seconds of presentation, and made aware of this fact. In
agreement with the rTMS safety guidelines (Rossi, Hallett,
Rossini, & Pascual-Leone, 2009), instances of stimulation did
not occur more than once every 8 seconds.

Transcranial Magnetic Stimulation

Parameters High-frequency, event-related rTMS was ap-
plied with a 70–mm figure–of–eight coil (Double 70–mm
Alpha coil, Magstim, UK) connected to a biphasic transcra-
nial magnetic stimulator (Super Rapid2, Magstim, UK). Each
stimulations consisted of a five-pulse train at 10 Hz and 110%
of the individual’s Resting Motor Threshold (RMT). The coil
was placed over the stimulation sites tangential to the skull,
with the handle pointed at 45◦ to the sagittal plane (PMd) or
parallel to the midline (Vertex).

Assessment of Resting Motor Threshold Each partici-
pant’s RMT was estimated using motor evoked potentials
(MEPs) elicited in response to stimulation of the primary
motor cortex. MEPs were estimated from electromyogra-
phy surface electrodes on the right first and third dorsal in-
terosseous (FDI) muscles in a belly-tendon montage. Valid
MEPs (> 50 mV peak-to-peak amplitude) were used to cal-
ibrate the TMS intensity using a sequential estimation algo-
rithm (PEST: Taylor and Creelman, 1967).

Target Localization for TMS The participants’ existing
structural and functional MRI data were used to achieve sub-
millimeter precision in the targeting of stimulation sites. The
position of the TMS coil was controlled through a frameless
stereotaxic system, which tracked the location of the partici-
pant’s heads relative to the coil with an infrared tracker cam-
era and co-registered these locations with the individual par-
ticipants structural and functional images. The location of
PMd stimulation was determined by targeting the most sig-
nificant voxels of a cluster identified while the subject was
making a motor response with their fingers, ensuring that the
location was in good agreement with published anatomical
landmarks. The Vertex was located over the sagittal midline,
at the level of the postcentral gyri.

Computational Model

The ACT-R model consists of 18 production rules and 30
chunks. The model’s strategy is illustrated in the flowchart of
Figure 2, and follows common assumptions. In broad strokes,
during each trials the model proceeds through five consecu-
tive stages: (1) Instruction encoding, (2) Task plan prepara-
tion, (3) Parity judgment, (4) Task re-planning (if necessary),
and eventually (5) Motor response.

The task instructions are first encoded by storing the parity
(“EVEN” or “ODD”) and the action (finger: “Index” or “Mid-
dle”; or letter: “A” or “B”) into a working memory buffer.
Following this shallow encoding, the model uses the infor-
mation to prepare a mental plan of the action to perform (a
finger movement for concrete rules, or a visual search fol-
lowed by a finger movement for symbolic rules) if the parity
of the stimulus matches that which was instructed. The men-
tal plan contains a detailed chunk specification of the stimulus
quality to verify (i.e., the parity of a number) and the action
to perform (the motor action or the visuo-motor procedure),
and is thus specific to the type of rule (as underscored by the

ICCM2018

110

Encoding Phase

Concrete
rule

encoded

Execute
response

Visual
search

Re-plan Re-plan

Visual
search

Judge
parity

Instructed Inferred

Execution Phase

Symbolic
rule

encoded

Plan
prepared

Plan
prepared

Model Stage

1. Encoding

2. Planning

3. Parity
 judgment

4. Re-planning

5. Response
 execution

Figure 2: Model’s processing strategy and stages

yellow and green boxes in Figure 2). There is ample evidence
in the RITL literature for the existence of such intermediate,
deeper representations of the task (Cole et al., 2013; Stocco
et al., 2012). After planning is completed, the model uses the
left hand to proceed to the execution phase.

During the execution phase, the model first retrieves the
parity associated with the stimulus (i.e., the declarative fact
that “8 is EVEN”). If the parity of the stimulus matches the
parity considered by the previously prepared plan, the model
proceeds with the response phase. If the parity of the stim-
ulus does not match the condition for the intended action, as
in the case of “Inferred” trials, the model discards and re-
prepares the mental plan on the basis of the apparent parity
of the stimulus. This re-planning is again specific to the type
of rule (green and yellow “Re-plan” boxes in Figure 2). Af-
ter re-planning, the model proceeds to the response phase, in
which the model simply follows the most recently prepared
plan and executes the visuo-motor commands as specified.

Modeling the Effects of TMS There are no established
guidelines nor precedents on how to model the effects of
high-frequency rTMS in ACT-R. For this reason, two comple-
mentary methods in which TMS stimulation could be mod-
eled within the ACT-R architecture were considered:

• Method 1: TMS affects the operation of individual ACT-R
buffers. This is consistent with the established ACT-R liter-
ature, in which buffers are associated to different cognitive
modules and correspond to distinct cortical regions spe-
cialized for different functions (Anderson, Fincham, Qin,
& Stocco, 2008).

• Method 2: TMS affects the execution of individual ACT-

R productions. Although the canonical interpretation is
that ACT-R productions are related to the basal ganglia
(Anderson et al., 2008), it has been argued in the past
that productions can alternatively be interpreted as cortico-
cortical connections (Stocco, Lebiere, & Anderson, 2010).
Thus, since productions combine knowledge from differ-
ent sources, they might be ideally suited to represent the
function of cortical associative areas, such as PMd.

In both cases, the effects of TMS were simulated by forc-
ing a delay into the operation time of the corresponding target
structure (buffer or production), with the delay extending un-
til the end of the simulated rTMS pulse train. For Method
1, this was achieved by forcing a buffer’s status to “failure”
throughout the duration of the TMS train. For Method 2, this
was achieved by modifying a production’s action time param-
eter at the moment of selection.

Experimental Results
Participants were highly accurate throughout the task (M =
95%), with no significant differences in accuracy due to ei-
ther experimental manipulation or TMS. For this reason, the
analyses reported here will focus on the response times.

In both the encoding and execution phases, there was no
difference in response times between trials belonging to either
of the two control conditions (Vertex stimulation and no stim-
ulation trials). Thus, the No-stimulation trials were excluded
from the remaining analyses, so that comparisons were al-
ways made between conditions in which the participants re-
ceived stimulation (on Vertex and PMd sites, respectively) .

The main behavioral results of our experiment are summa-
rized in Figure 3. In the encoding phase, a two-way ANOVA
considering the effect of site of stimulation and type of rule
revealed no significant main effects or interactions of these
conditions on the encoding response time. However, in the
execution phase, a four-way ANOVA examining the effect of
site of stimulation, timing of stimulation, type of rule, and in-
struction/inference of rule on response times revealed a main
effect of rule (F(1,7) = 238.3, p < 0.0001, η2 = 0.12) along-
side a main effect of instruction/inference (F(1,7) = 31.44, p
= 0.0008, η2 = 0.061). A significant two–way interaction
between site of stimulation and type of rule was observed
(F(1,7) = 16.7, p = 0.0047, η2 = 0.006), while a signifi-
cant three–way interaction between site of stimulation, tim-
ing of stimulation, and instruction/inference (F(1,7) = 13.3, p
= 0.0082, η2 = 0.006) was also present. Subsequent two-way
ANOVAs considering site of stimulation and type of rule, per-
formed within the subconditions defined by the conjunction
of timing of stimulation and instruction/inference, demon-
strated that the Inferred-Late stimulation subcondition was
the only subcondition in which the two–way interaction be-
tween site of stimulation and type of rule occurred (F(1,7) =
10.11, p = 0.015, η2 = 0.037). These effects were qualita-
tively similar across the eight participants considered by the
analysis. Within the Inferred-Late stimulation subcondition,
paired t-tests revealed there to be no difference in mean re-

ICCM2018

111

sponse times between PMd and Vertex stimulation on “Con-
crete” trials (paired t(7) = 0.119, p = 0.909, Cohen’s d =
0.08), but a significant difference in mean response times be-
tween PMd and Vertex stimulation on “Symbolic” trials was
observed (paired t(7) = 3.21, p = 0.015, Cohen’s d = 2.27).

In summary, rTMS on PMd yielded a very specific effect,
significantly delaying response only in the execution of sym-
bolic rules, and only when the rules need to be re-processed
(“Inferred” trials: red column in Figure 3C). These results
strongly suggest an involvement of PMd during the creation
of mental plans for “Symbolic” rules only. This interpretation
was further examined through the ACT-R model.

Figure 3: Experimental results and model simulations.
Columns represent mean values +/- SEM. Green denotes con-
crete trials; yellow denotes symbolic trials; red denotes the
effects of rTMS. Circles represent model predictions.

Model Results
Before examining the effects of TMS, the model was fit to
behavioral data from the control conditions. The process of
fitting the model required a minimal amount of tuning, and
concentrated on the three parameters: (1) the imaginal latency
L, which determines the time to create or update the mental
plan; (2) The base-level activation B of the parity facts that are

retrieved; (3) and the motor preparation time M, which deter-
mines the time to prepare a motor response from instructions.
The parameter L can be estimated from the experimental data,
as the only difference between the execution of “Inferred” and
“Instructed” rules is the time necessary to update the mental
plan. In our experimental data, this difference was 133 ms. In
the model, this difference corresponds to the time to execute
a production that updates the imaginal buffer, and is the sum
of the production’s action time (50 ms) and L, which can then
be estimated as 133 - 50 = 83 ms. The values of B = 1.5 and
M = 150 ms were estimated through a grid-search procedure
to minimize the discrepancy between the model’s predicted
mean reaction times and the mean reaction times of the ex-
perimental data.

When fit to the empirical behavioral data, the model pro-
vides predictions of participant performance without stimula-
tion. The model’s performance is represented by the blue dots
in Figure 3A–C. Without simulated stimulation, the model re-
produces three key patterns in participant behavior. The first
is that both type of rules take the same time to encode (Fig-
ure 3A: RMSE = 64ms, χ(3) = 1.43, p > 0.69). The second
is an increased response time for “Symbolic” trials relative
to “Concrete” trials (compare green to yellow bars in Figure
3B). The third is an increased response time for Inferred trials
relative to Instructed trials (compare yellow or green bars in
Figure 3B: RMSE = 55ms, χ(3) = 3.27, p > 0.35). This is a
good indication that the model implementation is representa-
tive of the cognitive dynamics required by the task.

After parameter fitting, the two methods of TMS simula-
tion were applied exhaustively to all buffers (Method 1) and
productions (Method 2) of the model. A parameter space par-
titioning approach was applied to the simulations to identify
the conditions in which the model produced the qualitative
pattern of Figure 3C, that is, a significant effect of TMS only
for the Inferred Symbolic trials. Interfering with the operation
of a given buffer (i.e., Method 1 of TMS simulation) could
never reproduce the results observed in the behavioral exper-
iment, as the simulated interference always caused increased
response times across multiple subconditions (dependent on
the exact buffer that is manipulated). In comparison, Method
2 was capable of replicating the behavioral result in one spe-
cific case–when the production responsible for re-planning a
symbolic trial was delayed (i.e., the production corresponding
to the yellow “re-plan” box in Figure 2). In this condition, the
model displayed increased response times specifically for the
Symbolic-Inferred-Late subcondition (the red bar in Figure
3C: RMSE = 62ms, χ(3) = 1.64, p > 0.65). Disruption of
any other production could not reproduce this effect, provid-
ing greater support for our conclusion that the behavioral re-
sult is explained by assuming a role of PMd in the preparation
of complex responses that require visuomotor coordination.

Discussion
Application of rTMS during a RITL paradigm revealed that
PMd was specifically involved when participants had to re-

ICCM2018

112

solve an inferred conditional rule that was abstracted away
from concrete response identities, as demonstrated by in-
creased response times in the Symbolic-Inferred-Late stim-
ulation subcondition. In comparison, when the conditional
association had been instructed, or when it considered con-
crete response identities, rTMS over left PMd had no signif-
icant effect relative to controls. To investigate the potential
cognitive operations that were affected by rTMS (and there-
fore potential cognitive operations performed by PMd), we
developed an ACT-R cognitive model of the task. The model
performs the task by creating a “response plan” on the ba-
sis of the trial-specific instructions, thus preparing to respond
when a valid stimulus appears. If there is a mismatch between
the expected and actual stimulus, a “re-planning” occurs in
which the actual stimulus parity is used to create a new re-
sponse plan to guide response execution. The effect of TMS
was simulated through both a buffer-specific method and a
production-specific method.

The model reproduced the two major patterns of partici-
pant behavior under this task: an increase in response time for
“Symbolic” relative to “Concrete” trials, and an increase in
response time for “Inferred” trials relative to “Instructed” tri-
als. When simulated TMS was applied to the model’s buffers
(Method 1), the model could not reproduce the main behav-
ioral result (i.e., a specific effect of TMS within the Inferred-
Symbolic-Late stimulation subcondition). Method 2 of TMS
simulation was capable of replicating the behavioral results,
specifically when the production dedicated to re-planning of
“Symbolic” response plans was targeted. This finding, to-
gether with the behavioral data, provides strong evidence of
an involvement of PMd in the planning of complex responses
to specific stimuli. From a computational point of view, the
model suggests that the function of brain regions not tradi-
tionally associated with ACT-R buffers (such as PMd) might
be interpreted in terms of specific productions, whose opera-
tions represent cortical associative areas.

The use of a plausible computational model provides a new
way to predict the effects of stimulation. Examination of the
model’s structure allows for a priori predictions of partici-
pant behavior in response to varied regimes of TMS appli-
cation. For example, since the model encodes the task in-
structions before creating a response plan, “early” stimulation
(i.e., time-locked to presentation of the encoding phase) of
the productions responsible for the initial “planning” does not
change the model’s behavior. If, however, stimulation were
to instead occur later in the encoding phase, the model pre-
dicts that response planning would be disrupted and encoding
times during Symbolic-Instructed trials would be increased
(opposite to what was observed in the present experiment).
Another prediction is that a different cortical region, distinct
from PMd, is responsible for planning and re-planning “Con-
crete” responses (green boxes in Figure 2). A likely candidate
for this cortical region is the ventral premotor cortex (PMv),
a brain area (shown to be anatomically distinct from PMd)
which demonstrates functional selectivity for concrete mo-

tor actions (Rizzolatti, Fogassi, & Gallese, 2002). Taken to-
gether, these results suggests that computational models and
TMS are complementary tools for cognitive neuroscience re-
search.

References
Anderson, J. R. (2007). How can the human mind occur in

the physical universe? Oxford University Press.
Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A.

(2008). A central circuit of the mind. Trends in Cognitive
Sciences, 12(4), 136–143.

Cisek, P., & Kalaska, J. F. (2005). Neural correlates of
reaching decisions in dorsal premotor cortex: specification
of multiple direction choices and final selection of action.
Neuron, 45(5), 801–814.

Cole, M. W., Laurent, P., & Stocco, A. (2013). Rapid
instructed task learning: A new window into the human
brains unique capacity for flexible cognitive control. Cog-
nitive, Affective, & Behavioral Neuroscience, 13(1), 1–22.

Jung, J., Bungert, A., Bowtell, R., & Jackson, S. R. (2016).
Vertex stimulation as a control site for transcranial mag-
netic stimulation: A concurrent TMS/fMRI study. Brain
Stimulation, 9(1), 58–64.

Rizzolatti, G., Fogassi, L., & Gallese, V. (2002). Motor and
cognitive functions of the ventral premotor cortex. Current
Opinion in Neurobiology, 12(2), 149-154.

Rossi, S., Hallett, M., Rossini, P. M., & Pascual-Leone,
A. (2009). Safety, ethical considerations, and application
guidelines for the use of transcranial magnetic stimulation
in clinical practice and research. Clinical neurophysiology,
120(12), 2008–2039.

Stocco, A., Lebiere, C., & Anderson, J. R. (2010). Condi-
tional routing of information to the cortex: A model of the
basal ganglias role in cognitive coordination. Psychologi-
cal Review, 117(2), 541.

Stocco, A., Lebiere, C., O’Reilly, R. C., & Anderson, J. R.
(2012). Distinct contributions of the caudate nucleus, ros-
tral prefrontal cortex, and parietal cortex to the execution
of instructed tasks. Cognitive, affective, & behavioral neu-
roscience, 12(4), 611–628.

Taylor, M., & Creelman, C. D. (1967). Pest: Efficient esti-
mates on probability functions. The Journal of the Acous-
tical Society of America, 41(4A), 782–787.

Tomassini, V., Jbabdi, S., Klein, J., Behrens, T., Pozzilli, C.,
Matthews, P., . . . Johansen-Berg, H. (2007). Diffusion-
weighted imaging tractography-based parcellation of the
human lateral premotor cortex identifies dorsal and ventral
subregions with anatomical and functional specializations.
Journal of Neuroscience, 27(38), 10259–10269.

Wise, S. P., Boussaoud, D., Johnson, P. B., & Caminiti, R.
(1997). Premotor and parietal cortex: corticocortical con-
nectivity and combinatorial computations. Annual Review
of Neuroscience, 20, 25–42.

ICCM2018

113

Implications of Guessing Types in Multinomial Processing Tree Models:
Conditional Reasoning as an Example

Nicolas Riesterer (riestern@cs.uni-freiburg.de)
Cognitive Computation Lab, Georges-Koehler-Allee 79

79110 Freiburg, Germany

Marco Ragni (ragni@cs.uni-freiburg.de)
Cognitive Computation Lab, Georges-Koehler-Allee 79

79110 Freiburg, Germany

Abstract

Human responses in reasoning are sometimes based on guess-
ing which is a cognitive process usually accounted for by ad-
equate cognitive models. In the literature, different types of
guessing have been reported but investigations of their impact
on the overall model performance are rare.
This article focuses on three theories of conditional reason-
ing implemented as Multinomial Processing Trees (Oberauer,
2006). We analyze the impact of the different guessing types
on the raw goodness of fit, on information criteria commonly
found in the literature (AIC, BIC, FIA), discuss the partial in-
fluences of reasoning, guessing, and additional heuristic com-
ponents, as well as assess the impact of guessing on param-
eter estimates. The results indicate that using different types
of guessing can have a reliable impact on the model’s per-
formance and implications about the assumed cognitive pro-
cesses.
Keywords: Cognitive Modeling; Conditional Reasoning;
Multinomial Processing Trees; Guessing

Introduction
Computational modeling has recently gained popularity in a
wide variety of research domains for its capability to evaluate
and compare competing theoretical accounts in a well-defined
manner. In cognitive science and psychology, theories are
now routinely formalized as computational models such as
Multinomial Processing Trees (MPTs; Riefer & Batchelder,
1988; Purdy & Batchelder, 2009). These models are of par-
ticular interest due to their inherent capability of modeling la-
tent processes and have been used in a multitude of research
domains such as memory storage and retrieval, perception,
reasoning, or psychometrics (e.g., Batchelder & Riefer, 1999;
Erdfelder et al., 2009). Even in the case of underspecified or
verbally defined theories, they allow for a profound assess-
ment of underlying assumptions.

Computational modeling is comprised of three phases:
model implementation, model evaluation, and model com-
parison. While methods for model evaluation and compar-
ison are standardized and available in various toolboxes (e.g.,
MPTinR; Singmann & Kellen, 2013), the development of
models still offers considerable freedom to the modeler. In
principle, there are (at least) two computational modeling ap-
proaches: First, cognitive computational models are devel-
oped to formalize (verbally specified) cognitive theories to
evaluate their explanatory power (e.g., Oberauer, 2006). Sec-
ond, the connections between identified cognitive processes
and experimental variables can be systematically manipulated

Root

Reasoning

Guessing

r

1 - r

Figure 1: General structure of MPT models augmented with a
guessing subtree. A parameter r represents the probability of
entering the reasoning submodel, i.e., the process motivated
by a cognitive theory.

to develop a cognitively grounded theory (e.g., Klauer, Stahl,
& Erdfelder, 2007).

Different goals have different requirements with respect to
the modeling approaches being applied. Theory formaliza-
tion requires the model to be as close to the original the-
oretical specification as possible. This largely prevents the
modeler from incorporating additional assumptions targeted
towards optimizing the performance of the resulting model.
On the other hand, in general cognitive modeling, the mod-
eler might decide on modifying the original theory in order to
account for missing outcomes, or to make the resulting model
comparable to a selection of alternative models with incom-
patible high-level process assumptions.

A model augmentation commonly found in the literature is
a process usually coined “guessing”. While technically repre-
senting a response generation process differing from regular
inference, guessing is often incorporated into models as an al-
ternative strategy to account for missing response categories
in order to enable evaluation on general datasets or compari-
son with other candidate models (cf. Figure 1). Guessing can
be based on different methods such as uniform approaches
assigning equal probability to all outcomes, bias guessing as-
suming a bias for general acceptance of conclusions, or inde-
pendence guessing specifying independent bias probabilities
for individual inferences. Even though including a guessing
component is a common asset in cognitive modeling, discus-
sions of its influence and potential for negatively influenc-

ICCM2018

114

ing obtained results are rarely found. Furthermore, previous
research showed that sometimes guessing alone can achieve
better performance than when paired with a reasoning part
(Ragni & Tse, 2017). While this previous study evaluated
the contribution of each inference pattern for conditional rea-
soning (with a bias guessing approach), the overall impact of
different types of guessing has not been systematically ana-
lyzed yet.

Our goal is to add to the comprehensible and in-depth anal-
ysis conducted by Oberauer (2006). We extend it by analyz-
ing the impact of different types of guessing on raw model
performance with respect to goodness of fit, and a set of
established information criteria (AIC, BIC, FIA), assessing
the impact of guessing and a heuristically driven system, as
well as evaluating the influence of guessing on parameter es-
timates. While we use the term guessing consistent with the
literature in referring to the additional subtree, this does not
imply that it can only reflect guessing processes and not al-
ternative strategies such as heuristics. Our analysis compares
the effects of three types of guessing: random guessing, a
heuristically guided process and a theoretically motivated ap-
proach.

The article is structured as follows: In the next section
we present our demonstrative domain of conditional reason-
ing and introduce three theories implemented as MPTs by
(Oberauer, 2006). In Section 3, this set of models is aug-
mented with different types of guessing and fit to data in or-
der to analyze the impact of guessing on model performance
and individual parameter estimates. A discussion about the
impact of guessing types concludes the article.

State of the Art
In this section we briefly introduce conditional reasoning as
our demonstrative domain and sketch the set of cognitive the-
ories we base our analysis upon (Oberauer, 2006).

A conditional such as if A then C consists of an antecedent
(here abbreviated by A) and a consequent (here abbreviated
by C). If additional knowledge is given, such as A, then the
consequent C can be inferred from the conditional (Modus
Ponens, MP), for other additional information, such as not-C,
the inference mechanism Modus Tollens (MT) can be applied
to infer not-A. Both mechanisms are correct with respect to
propositional logic. If instead the information C is given, the
Affirmation of Consequent (AC) is sometimes applied by rea-
soners to infer A. If not-A is given the Denial of Antecedent
(DA) can be applied to infer not-C. The last two mechanisms
only make sense if the conditional is interpreted as a bicondi-
tional.

Human reasoners do deviate from the classical logical in-
ferences (e.g., Klauer et al., 2007) and so cognitive theories
have been developed that can better capture the human in-
ference process than purely logical systems. Among them
are the Mental Model Theory (MMT; Johnson-Laird, 1990;
Johnson-Laird & Byrne, 2002) that assumes that human rea-
soners do reason with respect to a mental model of a con-

ditional. A mental model is an interpretation of the given
conditional with the initial mental model assuming that the
antecedent and consequent are both true at the same time.
While performing the reasoning task, other interpretations are
possible and can be derived in a flesh-out process.

For his investigation of conditional reasoning, Oberauer
(2006) implemented a set of models as Multinomial Pro-
cessing Trees (MPTs; Riefer & Batchelder, 1988; Purdy &
Batchelder, 2009). MPTs are a family of probabilistic mod-
els which can be used to model categorical data. Their core
principle is based on the multinomial distribution and the as-
sumption that observations are the product of a series of latent
processes. By defining a tree structure on the set of assumed
latent cognitive processes, MPTs can be used to test hypothe-
ses related to human cognition. Model comparison is usu-
ally performed on the basis of so-called Information Criteria
weighing the complexity of a model against the achieved fit
to experimental data. The most prominent information crite-
ria are Akaike’s Information Criterion (AIC; Akaike, 1974),
the Bayesian Information Criterion (BIC; Schwarz, 1978),
and the Fisher Information Approximation (FIA; Rissanen,
1996).

Oberauer (2006) developed two models following the men-
tal model theory as MPTs: one with directionality (i.e., with
an additional assumption that mental models are processed
from the antecedent to the consequent) and one without this
additional assumption. These models define predictions for
individual patterns on the basis of processes underlying the
MMT account of reasoning, i.e., he presents MPTs that can
predict an individual reasoners’ choice of inference mecha-
nisms from MP, AC, DA, MT.

Apart from MMT, Oberauer (2006) presents three fur-
ther implementations of cognitive theories in form of MPTs:
two variations of the Suppositional Theory (Evans & Over,
2004) which assumes that there are two reasoning processes,
a fast and heuristic and a slower analytic one, as well as
a Dual-Process (DP) approach (Verschueren, Schaeken, &
d’Ydewalle, 2005) which combines inference on the basis of
heuristic probability estimation with MMT.

Analysis of Guessing Types
Method
Guessing is understood as a way to produce answers “when
reasoners are uncertain about the appropriate response but
have to make a response nevertheless” (Klauer et al., 2007).
In this sense, guessing represents an alternative strategy to
reasoning for producing responses. It serves the purpose of
explicitly representing human uncertainty as well as a gen-
eral means of producing answers not accounted for by the
theoretical account for reasoning.

Technically, guessing is a distribution over all possible re-
sponses. Depending on its degrees of freedom, it can rep-
resent true random guessing, or alternative strategies which
may include biases or other strategies of varying complexity.
In the following we investigate the effects of guessing based

ICCM2018

115

MT

¬MT

MT

¬MT

MT

¬MT

MT

¬MT

MT

¬MT

MT

¬MT

MT

¬MT

MT

¬MT

DA

¬DA

DA

¬DA

DA

¬DA

DA

¬DA

AC

¬AC

AC

¬AC

MP

¬MP

Guessing

MP, AC, DA, MT

MP, AC, DA

MP, AC, MT

MP, AC

MP, DA, MT

MP, DA

MP, MT

MP

AC, DA, MT

AC, DA

AC, MT

AC

DA, MT

DA

MT

None

g1

1 - g1

g2

1 - g2

g2

1 - g2

1 - g3

g3

g3

g3

g3

1 - g3

1 - g3

1 - g3

g4

1 - g4

g4

g4

g4

g4

g4

g4

g4

1 - g4

1 - g4

1 - g4

1 - g4

1 - g4

1 - g4

1 - g4

Figure 2: Guessing Subtree. Root node is reached with proba-
bility (1− r). Parameters g1,g2,g3,g4 specify the probability
distribution for reaching the 16 possible outcomes. ¬ indi-
cates that the inference is not applied. This type of guessing
corresponds to the independence model defined in Klauer et
al. (2007).

on a set of three representative strategies taken from recent
literature: Bias Guessing, Independence Guessing, and Uni-
form Guessing.

Bias Guessing. In his original paper, Oberauer (2006) aug-
mented the theoretical accounts of conditional reasoning with
guessing subtrees consisting of a single free parameter g rep-
resenting a bias of accepting any of the four inference types
(MP, AC, DA, MT). In this sense, bias guessing represents a
basic strategy defined by a single probability parameter repre-
senting a reasoner’s bias towards applying an inference with-
out relying on reasoning processes. The MPT representing
this type of guessing can be obtained from Figure 2 by set-
ting the parameters equal: g = g1 = g2 = g3 = g4. By mul-
tiplying the parameters of a certain branch, the correspond-
ing outcome probability is computed. For instance, the pat-
tern (MP, DA, MT) has the probability P((MP, DA, MT)) =
g× (1−g)×g×g.

Independence Guessing. A different way of handling
guessing has been used as part of the Inference-Guessing
model for conditional reasoning (Klauer et al., 2007). Orig-
inally devised for the Wason Selection task (Wason, 1968),
this model employs a guessing strategy which assigns indi-
vidual probability parameters (g1, g2, g3, g4) to each infer-
ence. In a sense, it extends on bias guessing by introducing
independent biases for each inference increasing its capabil-
ity to adapt to observed data. The MPT submodel for in-

0

100

200

G
2

Uniform Bias Independence

0

100

200

A
IC

MMT

MMT-D
ir

Supp-Seq

Supp-Exc DP

0

100

200

B
IC

MMT

MMT-D
ir

Supp-Seq

Supp-Exc DP

0

50

100

FI
A

Figure 3: Visualization of the relations between the different
metrics.

dependence guessing is depicted in Figure 2. Pattern (MP,
DA, MT) is assigned the probability P((MP, DA, MT)) =
g1× (1−g2)×g3×g4.

Uniform Guessing. Uninformed guessing can be repre-
sented by a uniform probability distribution over the set of
outcomes. In the case of conditional reasoning with 16 differ-
ent inference patterns producing a binary guessing tree, this
corresponds to a fixed g parameter of g = g1 = g2 = g3 =
g4 = 1/2. Each pattern is therefore assigned the probability
P(x) = g4 = 1/16.

Note, that uniform guessing does not relate processing
paths to their corresponding outcomes. Instead it just uni-
formly assigns probability mass to the set of potential con-
clusions. This raises the question which properties of guess-
ing differentiate between guessing and alternative reasoning
strategies. One possibility to define guessing in a clear dis-
tinction from alternative reasoning strategies could be by fo-
cusing on context-dependency. If guessing processes are af-
fected directly by the context of the task being modeled, e.g.,
by the premise information for conditional reasoning, it might
be more accurate to refer to them as (heuristic) strategies.
Arguably, this notion then ties into the framework of dual-
process models (e.g., Evans, 1984).

Results
We analyze the set of models created by combining the con-
ditional reasoning MPTs with the three guessing strategies
on the dataset for “basic conditionals” reported by Oberauer
(2006). This data was originally obtained by conducting an
online study where 343 participants assessed the validity of
conditional inferences. Model fits were computed via MPTinR
(Singmann & Kellen, 2013), a state-of-the-art framework for
evaluating MPT models using the R environment for statisti-
cal computation (R Core Team, 2014). Goodness of fit results
as well as the information criteria AIC, BIC, and FIA are re-
ported as produced by the MPTinR analysis.

ICCM2018

116

Table 1: Fitting results of the model-guessing combinations and guessing alone (None).

Cognitive Theory Guessing Log Likelihood G2 AIC BIC FIA Parameters

None Uniform -1902.00 1120.90 1120.90 1120.90 - 0
Bias -1856.19 1029.28 1031.28 1035.81 518.82 1
Independence -1495.85 308.60 316.60 334.72 168.26 4

MMT Uniform -1432.72 182.34 190.34 208.46 103.28 4
Bias -1395.82 108.55 118.55 141.20 69.12 5
Independence -1349.92 16.75 32.75 69.00 30.97 8

MMT-Dir Uniform -1403.68 124.27 134.27 156.92 76.03 5
Bias -1364.76 46.43 58.43 85.62 39.79 6
Independence -1346.23 9.37 27.37 68.15 28.33 9

Supp.-Sequential Uniform -1403.45 123.82 135.82 163.00 77.76 6
Bias -1390.26 97.44 111.44 143.15 66.22 7
Independence -1351.76 20.42 40.42 85.73 35.04 10

Supp.-Exclusive Uniform -1461.70 240.30 252.30 279.49 135.54 6
Bias -1454.50 225.90 239.90 271.61 129.96 7
Independence -1349.33 15.57 35.57 80.88 32.35 10

Dual Process (DP) Uniform -1344.32 5.54 19.54 51.26 20.99 7
Bias -1344.32 5.54 21.54 57.79 23.05 8
Independence -1343.21 3.33 25.33 75.17 28.34 11

Table 1 and Figure 3 depict the results obtained from fit-
ting the set of models to the data. Apart from the fits of the
combined model, Table 1 also contains the results produced
by fitting the guessing subtrees alone. Due to the fact that
the theories themselves do not account for the complete set
of possible outcomes for the conditional reasoning task, the
performance metrics without guessing parts could not be de-
termined.

The resulting values illustrate that the choice of guessing
has a substantial impact on the overall model performance.
Depending on the type of guessing, a wide range of values is
obtained. Independence guessing leads to the best perform-
ing models, followed by bias guessing, and lastly uniform
guessing as the worst option when considering optimality of
the fit alone. These results are to be expected as they fol-
low the number of degrees of freedom the guessing strate-
gies add to the model. This is also reflected by the distance
between the results of the different types of guessing. Bias
guessing, which has only one free parameter is much closer to
uniform guessing than independence guessing which features
three free parameters. The only exception to this behavior is
constituted by the Dual-Process (DP) model, which produces
the overall best results and appears to be affected less severely
by guessing. However, the comparatively superior goodness
of fit results and insignificant variation of the three guessing
types suggest that an upper bound of performance is reached.
In consequence, the penalty terms of AIC, BIC, and FIA have
a bigger impact on the information criteria values.

The guessing models by themselves result in the worst ac-

counts for the data. This is not surprising since guessing does
not contain theoretically motivated assumptions about cogni-
tion. Instead, these models represent uninformed strategies
for producing responses to the task being modeled. Still,
when being used as additions to formalized cognitive the-
ories, they are capable of positively influencing the result-
ing model’s performance. By accounting for responses not
matching the underlying theory’s implications, the predictive
power of the theory is enhanced.

Figure 4 illuminates the effects of guessing from the per-
spective of individual parameter estimates. It shows that the
different types of guessing influence the parameter estimates
obtained from the fitting procedure. For instance, when con-
sidering MMT, the a parameter varies between a value of 0.56
for uniform guessing, 0.66 for bias guessing, and 0.26 for in-
dependence guessing. The magnitude of variance observed
shows that guessing needs to be applied cautiously when aim-
ing at interpreting the cognitive processes represented by the
model parameters. However, the plots also illustrate that the
impact guessing has on parameter estimates is dependent on
the model itself. MMT with directionality and the dual pro-
cess model appear to be much less influenced than MMT or
the sequential suppositional model, for instance.

Of particular importance is the parameter r which repre-
sents the probability of entering the reasoning part of the
model instead of relying on guessing for producing a re-
sponse. Considering the values of r, depicted isolatedly from
the other parameters in Figure 5, a considerable influence of
guessing can be observed for most of the models. The reason-

ICCM2018

117

a e f r

0.0

0.2

0.4

0.6

0.8

1.0
P

ar
am

et
er

 V
al

ue

(a) MMT

a d e f r

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

am
et

er
 V

al
ue

(b) MMT with Directionality

b c i r s s*

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

am
et

er
 V

al
ue

(c) Suppositional Sequential

b c i m r s

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

am
et

er
 V

al
ue

(d) Suppositional Exclusive

a c e f i m r

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

am
et

er
 V

al
ue

Uniform
Bias
Independence

(e) Dual Process

Figure 4: Parameter estimates resulting from fitting the set of models with different guessing trees to the data.

MMT

MMT-D
ir

Sup
p-S

eq

Sup
p-E

xc DP

0.0

0.2

0.4

0.6

0.8

1.0

R
ea

so
ni

ng
 P

ar
am

et
er

 r

Uniform Bias Independence

Figure 5: Reasoning parameter r resulting from fitting the
theory-guessing model combinations.

ing parameter r differs between 0.73 for uniform and 0.36 for
independence guessing. Put differently, by simply switching
the type of guessing, the underlying theory is 37% less likely
to account for the data. This adds to the observation indicat-
ing that the impact of guessing follows the degrees of free-
dom of the respective strategies. If guessing features larger
numbers of free parameters, it is able to account for larger
proportions of the data, reducing the importance of the actual
reasoning component.

General Discussion
Implementing cognitive theories has become a core aspect of
cognitive science. Apart from the raw goodness of fit met-
rics, interpretability and theoretical merit are essential factors
to judge models by. However, when implementing models,

the need to add assumptions unwarranted by the underlying
theoretical foundation frequently arises. This obfuscates the
true power of the theory and may lead to a distortion of re-
sulting qualitative assessments.

Our results show that even seemingly unintrusive additions
such as the addition of guessing processes not accounted for
by the underlying theory may have unexpectedly high impact
on the overall model performance. A shift in the performance
of the models following the degrees of freedom available in
the guessing trees can be observed. Uniform guessing is not
able to be adapted for an optimal fit to the data resulting in
the most explanatory weight being assigned to the underlying
theory which is reflected by the worst performance values but
a relatively high probability of entering the reasoning part of
the model. In contrast, bias and independence guessing rep-
resent theoretically motivated strategies as alternatives to rea-
soning. By offering one or three parameters, respectively, for
fitting the model, higher levels of performance are achieved
at the cost of larger proportions of the data being accounted
for by guessing.

When evaluating theoretical accounts on the basis of model
implementations, special care needs to be taken to disentan-
gle the original theory’s performance from the influence of
the additional assumptions. Our results illustrate that there
is a fine line between guessing and what must be considered
alternative strategies to reasoning. Even when introducing
additional processing paths based on a single additional pa-
rameter, a hybrid model is formed which produces results that
cannot be attributed solely to the underlying theoretical con-
cepts. By disregarding the need for theoretical justification
due to treating those alternative strategies simply as “guess-
ing”, their potential intricacies, dependencies to the data, and
thus influence on the theoretical foundation are obscured.

ICCM2018

118

The results of this work can be generalized to other model-
ing tasks. Regardless of the framework in use, the addition of
alternative processing paths to producing conclusions have an
impact on the overall model performance. Without ensuring
that the modifications only result in controlled local effects,
the soundness of the underlying theoretical assumptions can-
not be expected to remain intact. As a conclusion, the role
of the model as a representative instance for a theoretical ac-
count becomes debatable.

Our findings raise the question as to whether parameter-
ized guessing components can be understood as guessing in
the first place. Instead, it might be more appropriate to dis-
tinguish pre-determined probability distributions with no de-
grees of freedom as guessing and parameterized versions as
(sometimes implicit) realizations of dual-process models with
a representation of heuristics. Consequently, guessing might
be better defined in terms of context-independent processes
that do not depend on the presented information. The present
analysis demonstrates the impact of the different types of
guessing on reasoning. It highlights the need for a compre-
hensive theory of guessing.

Acknowledgements

This paper was supported by DFG grants RA 1934/3-1,
RA 1934/2-1 and RA 1934/4-1 to MR.

References
Akaike, H. (1974). A new look at the statistical model iden-

tification. IEEE transactions on automatic control, 19(6),
716–723.

Batchelder, W. H., & Riefer, D. M. (1999). Theoretical
and empirical review of multinomial process tree model-
ing. Psychonomic Bulletin & Review, 6(1), 57–86.

Erdfelder, E., Auer, T.-S., Hilbig, B. E., Aßfalg, A., Mosha-
gen, M., & Nadarevic, L. (2009). Multinomial processing
tree models: A review of the literature. Zeitschrift für Psy-
chologie/Journal of Psychology, 217(3), 108–124.

Evans, J. S. B. T. (1984). Heuristic and analytic processes in
reasoning. British Journal of Psychology, 75(4), 451.

Evans, J. S. B. T., & Over, D. (2004). If: Supposition, prag-
matics, and dual processes. Oxford University Press.

Johnson-Laird, P. N. (1990). Mental models: Towards a cog-
nitive science of language, inference, and consciousness.
Cambridge University Press.

Johnson-Laird, P. N., & Byrne, R. M. (2002). Conditionals:
a theory of meaning, pragmatics, and inference. Psycho-
logical review, 109(4), 646.

Klauer, K. C., Stahl, C., & Erdfelder, E. (2007). The ab-
stract selection task: New data and an almost comprehen-
sive model. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 33(4), 680.

Oberauer, K. (2006). Reasoning with conditionals: A test
of formal models of four theories. Cognitive Psychology,
53(3), 238–283.

Purdy, B. P., & Batchelder, W. H. (2009). A context-free
language for binary multinomial processing tree models.
Journal of Mathematical Psychology, 53(6), 547–561.

R Core Team. (2014). R: A language and environment for
statistical computing [Computer software manual]. Vienna,
Austria. Retrieved from http://www.R-project.org/

Ragni, M., & Tse, A. P. P. (2017). Cognitive Computational
Models for Conditional Reasoning. In M. K. van Vugt,
A. Banks, & W. Kennedy (Eds.), Proceedings of the 15th
International Conference on Cognitive Modeling (p. 109-
114). Coventry, United Kingdom: University of Warwick.

Riefer, D. M., & Batchelder, W. H. (1988). Multino-
mial modeling and the measurement of cognitive processes.
Psychological Review, 95(3), 318.

Rissanen, J. J. (1996). Fisher information and stochastic com-
plexity. IEEE transactions on information theory, 42(1),
40–47.

Schwarz, G. (1978). Estimating the dimension of a model.
The annals of statistics, 6(2), 461–464.

Singmann, H., & Kellen, D. (2013). MPTinR: Analysis of
multinomial processing tree models in R. Behavior Re-
search Methods, 45(2), 560–575.

Verschueren, N., Schaeken, W., & d’Ydewalle, G. (2005). A
dual-process specification of causal conditional reasoning.
Thinking & Reasoning, 11(3), 239–278.

Wason, P. C. (1968). Reasoning about a rule. The Quarterly
journal of experimental psychology, 20(3), 273–281.

ICCM2018

119

ACT-Droid Meets ACT-Touch:

Modelling Differences in Swiping Behavior with Real Apps

Nele Russwinkel (nele.russwinkel@tu-berlin)

Sabine Prezenski (sabine.prezenski@tu-berlin.de)

Lisa Dörr (lisa-madeleine.m.doerr@campus.tu-berlin.de)
Department of Cognitive Modeling in dynamic Human-Machine Systems, TU Berlin,

 Marchstr. 23, 10587 Berlin, Germany

Frank Tamborello (frank.tamborello@cogscent.com)
Cogscent, LLC, Houston, Texas, USA

Abstract

This paper presents a tool (ACT-Droid) that integrates user
models with mobile devices and enables modelling time-sensitive
touch interactions via ACT-Touch. It demonstrates that using
ACT-Droid in combination with ACT-Touch is a step towards
model-based user studies of real smartphone apps. A special focus
is set on modeling swipe interactions. Hereby, different
interaction strategies depending on preknowledge of the interface
type (e.g. sorted or unsorted lists) are modeled.
Results of an empirical study conducted with a real smartphone
app indicate that searching through lists results in different kinds
of swipe behavior for sorted vs. unsorted lists. Sorted list
interfaces elicited fewer and quicker swipes than unsorted lists.
This paper introduces ACT-R model approaches capable of
capturing such behavior.
Finally, the importance of understanding top-down strategies
involved in such regular tasks is discussed.

Keywords: Applied research, ACT-R, User Modelling, item
search, swipes, Touch interaction, tool.

Applied Cognitive Modelling

To test the validity of theoretical approaches in real word

scenarios, applied tasks are needed. The question hereby is,

whether developed theoretical concepts also apply for

realistic, less-controlled tasks. Already experiments outside

the modeling community are conducted on mobile devices

(e.g. tablets, smartphones) or on online platforms (e.g.

mechanical Turk), since this is often more convenient.

Modelling such tasks often neglects the kind of interaction.

Not only different devices, but also different interaction

modalities (such as swiping, steering, tapping) not only

influence how we interact with devices but also how we plan

and represent tasks internally and how we judge an

interaction as successful, since the feedback could be

different.

Another interesting question is: How do we adapt our

behavior with specific devices we use every day? Over time

we develop strategies to be more efficient in our tasks. These

strategies help users to achieve easier and more effortless

interactions. In this manner, interfaces that allow such

effortless interaction will be judged as being of high usability.

More so, if users find efficient strategies for device

interaction this changes the perceived usability of a device.

For example, Burnett et al (2013) showed that the speed and

length of touch screen interaction differs if users are

preoccupied with another task (e.g. driving) then when they

are focusing on just interacting with a touchscreen. The

authors speculate that observed slower swiping behavior

during driving is due to reduced resources available in such

task. A cognitive modeling approach has the potential to shed

light on such claims.

Gray & Boehm-Davis (2000) identified that people are

sensitive to the costs of low-level processes in their

interactive task behavior and adapt their behavior

accordantly. Especially for reoccurring strategies in low level

steps of interactive behavior, these strategies quickly add up

and produce relevant time differences that user models

should be able to account for.

However, to address these topics appropriate tools and

approaches are needed. These should shed light on

understanding what factors, strategies and task demands

influence interaction with mobile devices. Cognitive

Modelling is a relevant method for understanding interaction

behavior (Ritter, Van Rooy & Amant, 2002). Cognitive

modeling can help to develop theoretical concepts and allows

to predict behavior for new tasks and devices. This can be

used as a validation for the theoretical approaches. To support

research in this area we will present cognitive modeling

approaches for ACT-R (Anderson, 2007)

In this paper we present the newest version of ACT-Droid

(Dörr, Prezenski & Russwinkel, 2016), a tool that allows a

cognitive model to connect with an application on a mobile

device. ACT-Droid can be used with any open-source

Android application. It allows ACT-R models to directly

interact with the interface of a mobile device. A new feature

is that ACT-Touch commands are now integrated in ACT-

Droid. Thus, directly modeling long tap, touch, swipe and

other kinds of interactions on the actual Android application

is now possible.

We want to show that our modeling approach allows the

capture of user behavior occurring in natural tasks such as

efficiently finding and selecting items. Therefore, the

differences in search time, and behavior evolving due to the

use of different strategies are examined in an empirical study.

A modeling approach which integrates these different swipe

interactions is presented.

ICCM2018

120

ACT-Touch Introduction

ACT-R includes a library of HCI routines. However, these

routines assume a traditional desktop computing

environment. Hereby, the modelled user views an upright,

freestanding computer monitor while holding hands upon a

keyboard's home row and occasionally reaching for a one-

button mouse (Bothell, 2017). However, since the iPhone

popularized the handheld, multi-touchscreen mobile

computer starting in 2007, Apple has produced 1.2 billion

iPhones (Washington Post, 2017) and Android has more than

two billion monthly active users (Statista, 2017). Mobile

computing has eclipsed desktop computing (Ofcom, 2017, p.

147) and HCI modeling tools must address this reality.

ACT-Touch (Tamborello, 2018) is an add-on to the ACT-

R software distribution. It provides a library of additional

motor commands for the model to execute in the milieu of a

simulated multi-touch display computing environment. For

example, contrasting with canonical ACT-R's default hand

position, ACT-Touch assumes both hands are positioned

relative to the display, rather than the keyboard, on a

coordinate system corresponding to the pixels of the display,

floating approximately 1 inch above the display surface.

ACT-Touch enables ACT-R's hands to move around the

display and to perform many of the gestures familiar to users

of mobile multi-touchscreen devices, such as taps, swipes,

and pinches. While some of these motor commands, such as

tap, are essentially repackaged extant ACT-R commands

renamed to reflect the multi-touchscreen environment, other

commands, such as swipe, depart further from ACT-R's

desktop environment.

ACT-R movements use features, such as hand, finger,

distance, and direction, to describe movement. Models

compose these features into a movement and ACT-R

calculates movement preparation, execution, and finish time

from those features. Tap is peck renamed, including hand,

finger, distance, and direction. Swipe, on the other hand,

includes two additional features: number of fingers and

speed. Number of fingers is important to the swipe gesture

because some touch interfaces, such as iOS on the iPad,

interpret the varying numbers of fingers in the swipe gesture

as unique commands, to, for example, scroll a document or

switch to iOS' multitasking display (Patterson, 2013). The

project reported herein implemented a new speed feature for

the swipe motor command to allow models to control swipe

speed. This is important because, e.g. iOS scrolls more of a

document with each pixel of the display traversed by the

fingers the faster the fingers move, accelerating scrolling

behavior in response to accelerated user input.

ACT-Droid Tool

In the future it may be possible to use cognitive models

instead of user testing (see Prezenski & Russwinkel, 2014).

However, studies with human participants are necessary for

most user-study related questions and thus, also real human-

computer interfaces. In a smartphone setting these are either

Android or iOS applications. Thus, until recently an ACT-R

modeler interested in modelling user-behavior had to

translate the entire GUI into Lisp.

ACT-R‘s GUI, the AGI, is limited in several ways. For

example, there are only three different types of objects that

can be created for interactions: text, line and button. These

objects have limitations themselves, as one cannot create a

button with background color and font color.

Figure 1: Structure of ACT-Droid

To avoid such restrictions and to realize direct interactions

between ACT-R models and applications we developed the

tool, ACT-Droid. This tool connects an ACT-R model with

an Android app, thus enabling the model to execute its motor

commands on the app and the app to fill ACT-R‘s visicon

with the visible objects it displays. See Dörr, Prezenski and

Russwinkel for more details on how ACT-Droid works. The

first version of ACT-Droid could not cope with touch

interactions.

Now, ACT-Droid performs the motor output via ACT-

Touch commands (e.g. swiping) on the app and subsequently

updates the visicon (if the app screen changes). These

functionalities are provided by the model interface and the

app interface, which communicate with each other (see figure

1).

For our study an example real-estate app was installed on

a smartphone. ACT-R communicates with the app over

TCP/IP sockets. Hereby, the app interface establishes a server

socket and the model interface connects ACT-R as a client.

ACT-Touch commands are used for motor output. So, each

time the model’s finger is moved, the model interface sends

the new position to the app interface. The app interface saves

the current position of the finger. Furthermore, if the

command to tap, swipe etc. is received, the app interface

performs it at the saved cursor position.

The app interface provides already a basic description of

all visible information and it can be further adjusted to

different apps. Hence, higher fidelity modeling of user

behavior within a mobile context should be possible with

ACT-Droid. Thus, it is now possible to write ACT-R models

that capture slow or quick swipes occurring while using a real

app.

ICCM2018

121

In this paper a study is reported that investigates different

scrolling behavior. This data is used to develop a modeling

approach. This study can be regarded as a proof of concept to

show the usefulness of this tool to test theories in applied

settings. Since the focus of the paper is set on the tool only

the most relevant data is presented.

Modelling Approach for Swipe Interactions

Swipe Mechanics

First, the Lisp environment loads ACT-R and then ACT-

Touch. After this the motor commands ACT-Touch provides

are available to any ACT-R model just as canonical ACT-R

motor commands are. Within the manual request movement

type other request slot values indicating the movement

features are defined. For example, to swipe with the right

index finger rightward with two fingers for 100 pixels at a

moderate speed, the production's righthand side should

indicate:

+manual>

cmd swipe

hand right

finger index

r 100

theta 0

num-fngrs 2

speed 3

ACT-R uses Fitts' Law to compute movement execution

times. ACT-Touch's swipe execution time function calls

ACT-R's Fitts' law function with coefficient of difficulty

inversely squared to the speed feature the model supplies to

the swipe command. These are execution time, as well as a

width parameter set to the width of the display, 500 pixels in

the case of the example model. See the compute-exec-time

method specified for the swipe class in act-touch.lisp, where

it calls ACT-R's fits function with the motor module.

Model: Swipe in sorted and unsorted lists

In the following, we will introduce a simple, errorless

performance model that uses preknowledge of whether a long

list of items is sorted alphabetically or randomly to decide its

interaction strategy. The model will either swipe with a fast

speed to scroll the interface quickly to the end, where it

“thinks” its target is positioned, or it will swipe slowly to

scroll the interface slowly as it exhaustively searches the list

for its target.

Figure 2: Production graph

If the of the model indicates that the list is ordered, the

model will start the search task by performing a quick, short

swipe to get to the end of the list (do-swipe-quickly) (see

figure 2). Afterwards, a search through the visible items from

top to bottom (find-after-quick-swipe, attend, find-next,

attend, …) is performed. If the chunk in the visual buffer

matches the correct item, it moves the hand (do-move-hand)

and taps on the item (do-tap). This takes the model 3.008

seconds.

If the list is randomly ordered (preknowledge indicates a

random list), then the model must search this list

exhaustively. The model will omit the quick swipe in the

beginning and start searching from the top (find-first-item,

attend, find-next, attend, …). When no visual-location below

the current can be found, the model “knows” that it reached

the bottom of the screen and swipes slowly to make about

four new items visible (do-swipe-slowly). This is repeated

until it finds the correct item. It takes 4.112 seconds to find

and select the target item.

ACT-Droid including this swipe model example can be

downloaded from http://dx.doi.org/10.14279/depositonce-

5181. Detailed instructions on how to install and use ACT-

Droid can be found in “Readme.txt”.

Study Searching through Lists via Scrolling

To demonstrate that different cognitive strategies are used we

looked at targets positioned at the same place on a searchable

list (e.g. upper position vs. lower position in a list over several

screens) that result in different search times and qualitative

behaviors depending on the organization of the lists.

Furthermore, we want to show that an ACT-R model

connected with ACT-Droid and using ACT-Touch can

resemble these behavioral patterns, both quantitatively and

qualitatively.

More precisely, different scrolling behaviors should

emerge depending on whether the lists are ordered randomly.

On the one hand, the participants are required to inspect each

item in the random lists visually. It is expected that a random

ICCM2018

122

order will result in slower scrolling behavior. On the other

hand, with the ordered version (either via alphabet or

numbers) participants can use their expectations to guide

their search behavior. Thus, it is expected that they scroll

faster (or flick) until they reach the predicted position of the

target.

A further proof of concept was to test to what extent

participants touch behavior such as scrolling and regular

behavior can be captured with ACT-Touch in combination

with ACT-Droid.

Application: The study was conducted with a modified

version of a real-estate application for Android (Prezenski &

Russwinkel, 2016). This application has a hierarchical list

style design. Different search criteria for real-estate, such as

city district, number of rooms, or additional features, can be

selected to define a search for real-estate. The criteria are

presented in hierarchically organized lists. Each list can range

over 1 to 3 screens. For example, to a select 3-room-

apartment, users are required first to select room-size and

then select “3” in a list.

In the study, two versions of the application were used. In

one version the criteria in the lists are ordered either

alphabetically or numerically (ORDER) in the other version

they are ordered randomly within the lists (RANDOM).

Task: The participants were asked to imagine that they

were searching for real-estate together with a relative of theirs

who is not familiar with smartphone usage. The task of the

participants was to search for different properties. Hereby,

they had to search and select criteria (e.g. “apartment” with

“3 rooms” and “70 m²” in “Berlin” in the district “center”

with a “balcony” for “800 €” and an “elevator”) using the

app. The criteria were read to the participants one by one. The

criteria required the participants to scroll down in the app.

The app was installed on a Google Nexus 4 smartphone (4.7-

inch, 1280 x 768 pixels, 320 ppi), running Android 4.4

(Kitkat).

The participants were instructed to hold their smartphone

in their hand. This was done to achieve a more natural

interaction posture.

Design: For each real-estate search, eight different criteria

had to be selected. The participants searched for real-estate

with varying criteria three times. After this, the version was

changed without notifying the participants, and they searched

three times again for different real-estate with eight criteria.

Half of the participants began with the ORDERED version,

the other half with RANDOM version.

To ensure that differences in search time resulted from the

scrolling behavior and not on the positioning of the criteria,

the target criteria of both versions were positioned at the same

places in both versions of the app.

The “task time” was measured from the selection of the

correct criterion to the selection of the correct item. Or in

other words, the time the participants needed to find an item

in a list. Only the swipes during that “task time” and longer

than 100 pixels were considered. Touch interactions for a

shorter distance were assumed to be taps, long taps, or a

gesture that had no consequences for this experiment. The

“speed” of the swipes is provided in px/ms with a screen

resolution of 320 ppi. As a straightforward analysis we

calculated the mean speed of every swipe during a search

within a criterion and then took the average over them. This

way we had an indication of how fast/slow the participants

scrolled.

Participants: The participants were 30 students (17 female

and 13 male), between 21 and 31 years old. 28 were right-

handed and 2 were left-handed. Their average self-reported

smartphone usage was 3.46 hours per day. They self-rated

their experience with smartphone apps 3.47 (sd. 1.25) on a

scale from 1 to 5 (1 being no experience and five being a lot

of experience).

Results

Trials with small errors like swiping too far were not

discarded by default. But outliers were handled

systematically, data points of more than 2.5 interquartile

distance from mean value were discarded. The calculated t-

tests focused on general differences between interaction

behavior for sorted and unsorted lists (compare with figure

3). Significant differences were found for tasktime, touches

and speed. Paired (tasktime) t(29) = -9.825, p ≤ 0.001; paired

(touches) t(29)=-6.125, p ≤ 0.001; paired (speed)

t(29)=6.275, p ≤0.001.

Thus, for a better analysis we divided items according to

upper (beginning of list – first page), middle and lower items

which were located at the end of the list. It was expected that

the difference for sorted and unsorted lists was especially

pronounced for items at the end of the list – we called lower

items (see figure 4), that incorporated probably more touch

interactions. Therefore, a special analysis for those cases was

made. Again, a t-test analysis was conducted.

Significant differences for lower items were found for

tasktime, touches and speed between sorted and unsorted

lists. Paired(tasktime_low) t(29)=-9.393,p ≤ 0.001;

paired(touches_low) t(29)=-4.812, p ≤ 0.001;

paired(speed_low) t(29)=6.241, p≤0.001.

The difference in task time between sorted and unsorted

lists might also account for the visual search behavior and not

just swipe behavior. Participants needed more visual

attention to inspect numerous items especially for low

positioned targets, because the target could have been

anywhere. In the ordered search, participants needed this

search behavior only for the items at the end of the list. The

speed and number of touches in the different conditions give

us a better impression of the different touch interaction user

strategies, as explained above.

ICCM2018

123

Figure 3: Touch interactions divided for sorted and

unsorted lists (including standard deviation)

The results show more touches for unsorted lists. The

number of touches would have been more pronounced for

even longer lists than we tested. The results also show higher

speed in swipes for sorted lists, probably used to quickly get

to the part of the list where the target is expected to be.

Figure 4: Touch interactions divided for lower and upper

search targets of participants (incl. std.), and comparison to

Model data for task time_low

Those time differences and touch differences do matter

because they accumulate for every search list and already

show a difference of one second for one selection step in our

relatively short lists. These data represent what differences

arise in such reoccurring general task components and that it

is necessary to account for such differences in the task model

in cases where reaction times are relevant.

A more detailed analysis of the specific kind of different

touch interaction is the topic of another publication. For being

able to capture interaction times for applied tasks and

evaluation of technical systems we do not need to model the

touch interaction in detail. It is sufficient to capture the

general differences if we know that we find the item at the

end of the list or not. This is not necessarily always caused

by a sorted or unsorted list but can be the result of learning

certain visual location or navigational heuristics. Having a

good idea where and how to find the target quickly is what

makes the difference.

Discussion

We introduced a new tool, which connects an Android app

with an ACT-R user model. Furthermore, the tool makes

prototyping of the application in Lisp obsolete by allowing

the model to directly act upon the real app. This tool uses the

ACT-Touch commands to simulate realistic touch

interactions thus making it possible to evaluate user

interfaces and interactive behavior more precisely and

provide a deeper understanding of the underlying processes.

In the current paper, empirical data is presented to show

how different kinds of swipe interactions are used and what

impact this has on task time. These behavioral differences

may not only occur due to sorted and unsorted lists. Other

reasons for different swipe behavior might be preknowledge

about the position of certain icons or targets or strict time

constraints. More research is needed to understand these

kinds of influences on behavior.

Realizing scrolling behavior has been a major burden in

several mobile device experimental setups. Scrolling

behavior was a necessary touch interaction in most

applications that we looked at. Furthermore, task time is a

relevant key factor for usability tests evaluating whether one

application is better than competing apps. Our presented

approach solves these problems.

Since more and more touch displays are integrated into

larger technical systems such as cars or the cockpit of

airplanes, we find a pronounced request from industry to

understand how operators work with such touch displays

within a realistic task.

Now that scrolling behavior on touch displays can be

modeled in simulation, this could be helpful for developing

and evaluating assistant systems, especially in driving

scenarios (e.g. Salvucci, 2006). These models would be tools

to understand, describe and predict in detail how operators

interact with technical systems. This method could help to

decide which kind of interface design is more effective in

some sense than another.

References

Anderson, J.R., Bothell, D., Byrne, M.D., Douglas,

S.,Lebiere, C., & Qin, Y. (2004). An integrated theory of

the mind. Psychological Review, 111, 1036-106. al Review,

111, 1036-106.

Bothell, D. 2017. ACT-R Reference Manual. http://act-

r.psy.cmu.edu.

Burnett, G., Crundall, E., Large, D., Lawson, G.,&

Skrypchuk, L. (2013). A Study of Unidirectional Swipe

Gestures on In-Vehicle Touch Screens. In Proceedings of

the 5th International Conference on Automotive User

ICCM2018

124

Interfaces and Interactive Vehicular Applications (pp. 22-

29). ACM.

Doerr, L.-M., Russwinkel, N., & Prezenski, S. (2016). ACT-

Droid: ACT-R Interacting with Android Applications. In

D. Reitter & F. Ritter (Eds.), Proceedings of the 14th

International Conference on Cognitive Modeling (pp. 225-

227). University Park, PA: Penn State.

Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds

matter: An introduction to microstrategies and to their use

in describing and predicting interactive behavior. Journal

of Experimental Psychology: Applied, 6(4), 322-335.

Halbrügge, M. and Russwinkel, N. (2016). The sum of two

models: how a composite model explains unexpected user

behavior in a dual-task scenario. In D. Reitter & F. E. Ritter

(Eds.), Proceedings of the 14th International Conference

on Cognitive Modeling. University Park, PA: Penn State.

Ofcom. 2017. International Communications Market Report

2017.

https://www.ofcom.org.uk/__data/assets/pdf_file/0032/10

8896/icmr-2017.pdf

Patterson, B. 2013. iPad tip: 3 nifty iPad gstures you need to

try. https://heresthethingblog.com/2013/12/11/ipad-tip-3-

nifty-ipad-gestures/

Prezenski, S.& Russwinkel, N. (2014). Combining cognitive

ACT-R models with usability testing reveals users mental

model while shopping with a smartphone application. Int.

J. Adv. Intell. Syst., 7(3), 700- 715.

Prezenski, S. & Russwinkel, N. (2016). Towards a general

model of repeated app usage. In D. Reitter & F. E. Ritter

(Eds.), Proceedings of the 14th International Conference

on Cognitive Modeling (pp. 201- 207). University Park,

PA: Penn State.

Ritter, F. E., Van Rooy, D., & Amant, R. S. (2002). A user

modeling design tool based on a cognitive architecture for

comparing interfaces. In Computer-Aided Design of User

Interfaces III (pp. 111-118). Springer, Dordrecht.

Salvucci, D. D. (2006). Modeling driver behavior in a

cognitive architecture. Human factors, 48(2), 362-380.

Statista. 2017. "Number of Google Play Store apps 2017 |

Statistic". Retrieved 2018-01-03.

Tamborello, F. 2018. ACT-Touch.

https://github.com/tamborello/ACT-Touch/

Tsukayama, H. 2017. "Apple stock soars to a record high on

great earnings and a strong forecast for the next iPhone".

The Washington Post. Retrieved August 2, 2017.

ICCM2018

125

An Architecture Approach to Modeling the Remote Associates Test
Jule Schatz (schatzju@umich.edu)

Steven J. Jones (scijones@umich.edu)
John E. Laird (laird@umich.edu)

University of Michigan, 2260 Hayward Street
Ann Arbor, MI 48109-2121 USA

Abstract

The remote associates test (RAT) depends heavily on memory
retrieval and is difficult for humans. A previous model of diffi-
culty on this task accounted for difficulty with a measure incor-
porating fan and association strength. This paper investigates
how the choice of knowledge base and agent strategy impact
difficulty on the task while providing a more comprehensive
account for human difficulty on this task in terms of cognitive
architecture components. The models we created, using the
cognitive architecture Soar, vary by using two distinct meth-
ods of retrieval from semantic memory. The knowledge bases
used in our models vary in that one uses only collocations and
compound words to form word associations while the other is
from a crowd-sourced dataset with unrestricted types of word
association. The model which best matches human difficulty
relies on spreading activation to drive retrieval and uses the
crowd-sourced dataset for its knowledge base.
Keywords: Semantic Memory; Remote Associates Test; Soar;
Association-based Retrieval.

Introduction
This paper investigates computational models for the remote
associates test (RAT) (Mednick, 1962). A single RAT prob-
lem consists of presenting three words and then asking the
test taker to respond with a forth word that is associated with
the three given words. For example, if “Swiss,” “cake,” and
“cottage” are the given words, then “cheese” would be the
correct response. Bowden and Jung-Beeman developed 144
RAT problems and tested human performance on those prob-
lems. To minimize any variance from confounding factors,
they used only compound word or phrase associations. For
example, the association between “deep” and “sleep” is valid
because those two words are often found next to each other.
The association between “deep” and “complex” is not valid
because “deep” and “complex” do not form a compound word
or common phrase even though they are associated through
similar meanings. The problems use common words, to avoid
vocabulary difficulties. To avoid priming effects, solution
words are never repeated or used as problem words. Three
additional example problems are shown in Table 1. The hu-
man study included four time limits: 2 seconds, 7 seconds,
15 seconds, and 30 seconds. The paper provides the mean
time to solution, the standard deviation for time to solution,

Word 1 Word 2 Word 3 Answer
man glue star super
dew comb bee honey
rain test stomach acid

Table 1: Example RAT items. The answer is associated with the
words through collocation or as a compound word.

and the percent of participants that correctly answered each
question in each time limit.

As opposed to generally characterizing word association
memory (Griffiths & Steyvers, 2002), Olteţeanu and Falomir
(2015) created a model intended to provide an account for hu-
man performance on those 144 RAT problems. Their model,
comRAT-C, was created within the CreaCogs architecture
(Olteţeanu, 2014) and was inspired by their account of cre-
ative problem solving which posits two extremes of behavior:
“creative search” and “productive representation construction
processes”. The “creative search” extreme is embodied in
comRAT-C, which uses associational links to search a knowl-
edge base for a representation that affords a solution to a
problem. Their knowledge base, called RAT-KB, builds off
of the most frequent 2-grams from the Corpus of Contem-
porary American English (COCA) (Davies, 2008). Associa-
tional links in RAT-KB are bidirectional.

In their analysis (Olteţeanu & Schultheis, 2017), they state
that the difficulty of this task depends on “(i) the frequency of
a query-answer association, as a form of associative strength
and (ii) the ratio between such an associative strength and the
number of answer associations.” We interpret these factors
as being analogous to how association strength (Anderson &
Pirolli, 1984) and fan (Anderson, 1974) govern retrieval dif-
ficulty. Their results were not in terms of providing a model
with matching timing and correctness. Instead, they show the
correlation between their difficulty estimates for RAT items
and human data, i.e., both human timing data and human cor-
rectness data on the RAT items. We interpret this as charac-
terizing the relative difficulty for humans by the ordering of
human solution time and human correctness.

We use their work as inspiration for our research but de-
viate in hopes of providing a more comprehensive analysis.
First, we note that RAT-KB includes only associational links
for collocations and compound words, and that all links are
bidirectional. Humans know many words and associations
beyond this constraint, and possibly do not have bidirectional
links between these words. Thus, our first step is to use a
larger, more comprehensive knowledge base, where links are
not necessarily bidirectional. We then determine how such
a knowledge base influences task performance, and more
specifically, relative problem difficulty. Second, we wish to
determine whether existing architectural long-term declara-
tive memory retrieval theories, as developed in ACT-R (An-
derson, 2009), are sufficient to accurately model RAT prob-
lem difficulty. In these declarative memory models, retrieval
is determined by base-level activation, association strength

ICCM2018

126

(Anderson & Pirolli, 1984), and fan (Anderson, 1974). To
explore these questions, we develop models in Soar (Laird,
2012) whose long-term declarative memory retrieval mech-
anisms mimic those in ACT-R (Jones, Wandzel, & Laird,
2016). Third, there does not exist a simple, deliberate model
of retrieval that does not primarily rely on association strength
or fan that can be used as a baseline for comparison with the
association-based models. Thus, our third step is to develop
such a model in Soar which uses queries that are not influ-
enced by associate strength or fan except in the case of ties.

In the remainder of the paper, we proceed through these
steps, one by one. First, we introduce a new crowd-sourced
knowledge base. Second, we describe the two models we
developed in Soar. Third, we evaluate these models on the
new knowledge base as well as on a replica of the original
RAT-KB knowledge base, focusing on how well these models
(and knowledge bases) model human difficulty. The primary
result is that the more comprehensive knowledge base com-
bined with associational retrieval allow us to model human
difficulty with high correlation (R2 = 0.89).

Knowledge Bases

To allow us to compare our new knowledge base to prior
work, we reconstructed RAT-KB, by creating a knowledge
base called COCA-TG based on the steps described in the
original paper. The final number of words and associations
for COCA-TG are shown in Table 2. RAT-KB includes bidi-
rectional associations for all words, as does COCA-TG.

Because COCA-TG leaves out other types of associations
that can indirectly influence retrieval (e.g. through competi-
tion and the fan effect), we created a larger knowledge base
using the Human Brain Cloud (HBC) database. HBC was
crowd-sourced through an online game of word associations
(Gabler, 2013), where the player is presented with a word and
asked to type in any other word that they believe to be closely
related to the given word (if the given word is “bird” the
player might type “feather” or “fly” or “nest”). The website
records the human responses, and creates a dataset that con-
sists of triples in the form of “word1,” “word2,” and weight,
where weight is the number of times “word1” was associated
with “word2”. HBC only includes links entered by a player,
so not all word pairs have bidirectional links (as in COCA-TG
and RAT-KB). As shown in Table 2, HBC contains over ten
times as many words, and over six times as many associations
as contained in COCA-TG.

HBC COCA-TG
words 231,851 20,809
associations 2,403,203 349,196

Table 2: For each knowledge base, the number of unique words, and
associations between words. Bidirectional associations count as two
associations.

Models

Our models are developed in Soar, which features a long-term
semantic memory that can be queried to retrieve information
into working memory (Derbinsky & Laird, 2010). To run a
model, semantic memory is initialized with the contents of a
knowledge base, where nodes in the memory consist of words
and the links are associations. The weights of the associations
are those in the knowledge bases.

Retrieval in Soar returns the most highly-activated element
which satisfies the provided cue. The activation of an item
is the sum of base-level activation and spreading activation.
Base-level activation represents the frequency and recency of
prior retrievals, but for these models we had no prior values.
Instead, we initialized all words in the knowledge base with a
single base-level activation. However, we assume that words
should have some usage history and we return to this issue in
the discussion.

To solve a RAT problem, a model uses the three presented
words to find the associated answer. There are potentially
many strategies for doing this; however, we focused on two
strategies that are directly supported in Soar. In Soar, an
agent can retrieve information from semantic memory, either
by providing a specific cue that is matched against elements
in long-term memory (Cued Retrieval model), or an agent can
use a general cue and leverage spreading activation to retrieve
words based on context as defined by the contents of work-
ing memory (Free Recall model). The Cued Retrieval model
uses queries that include the original words, whereas the Free
Recall model does not include the original words and relies
on spreading activation, which incorporates both association
strength and fan.

Cued Retrieval

As a baseline, we created the Cued Retrieval model, with the
goal of correctly answering as many RAT items as possible
given the knowledge available in long-term memory, while
keeping agent design simple and in accordance with archi-
tectural constraints. This model first retrieves all three given
words into working memory. It then creates a cue that spec-
ifies semantic memory should only return a word that has an
outgoing link to all three of the given words. Semantic mem-
ory then returns either a word that matches the cue (that is
associated to all given words), or it reports a failure if no such
word exists. If semantic memory has multiple possible solu-
tions, spreading activation acts as a tie breaker. If the initial
query failed, the model changes the cue to only require se-
mantic memory to return a word that is associated to two of
the given words. The model will try all combinations of two
words, and report an answer for the first one it finds. If all
of those fail, it tries each given word individually and reports
that answer. Because the model deliberately queries seman-
tic memory for a word with all associations first, it will find
a correct solution if one exists in the database, which is not
guaranteed in the Free Recall model.

ICCM2018

127

Free Recall
The Free Recall model incorporates association strength and
fan via spreading activation (Jones et al., 2016). The agent
first retrieves the three given words into its working mem-
ory from semantic memory. Having these words in working
memory causes activation to spread to words linked to those
words in semantic memory. Each given word acts as a source
for an equal amount of activation, which is then divided pro-
portionally among the outgoing links based on association
strength. Association strengths from a given source are nor-
malized to sum to one. Activation decays with the distance of
spread, but in this model, for simplicity, spreading is limited
to a depth of 1.

Consider an example where there is a source word s and
recipient word r with a pre-normalized association strength
from s to r of as→r. Assume a set, R, of all recipients. The
contribution of spread from the source to the recipient in this
case is as→r

∑
k∈R

as→k
. Therefore, an item with a stronger association

from the source word will get more activation than one with
a weaker association. In addition, the more links or fan the
source has, the less activation will spread to its recipients.

To retrieve a word, the model initiates a retrieval from se-
mantic memory with the only constraint being that the word
is not one of the three given words. Semantic memory then
returns the word with the highest activation. A high activation
is no guarantee that the retrieved word is associated with all
three words because words can be retrieved that have strong
associations to only one or two of the original words, espe-
cially if they have low fan. Once a word is retrieved from se-
mantic memory, the model tests how many of the three initial
words relate to it by testing if there are links between it and
those initial words. If it is related to all three words, the model
uses the word as its solution. If the retrieved word is related
to two or fewer of the given words, the model queries again
and retrieves a new word from semantic memory, inhibiting
any it has previously retrieved. The number of attempts it will
make is a parameter, which we vary in the evaluation. If the
model runs out of attempts, it chooses one of the retrieved
words that has the most relations with the given words.

This model incorporates the findings from Olteţeanu and
Schultheis’s research in terms of the two factors (association
strength and fan) that influence the difficulty of RAT items for
humans. Their findings indicated that those factors influence
whether humans can solve a RAT problem and the time it
takes for them to find a solution. Words that have stronger
associations are more likely to be retrieved by this model, as
well as words from low fan sources.

Evaluation
We tested both the Cued Retrieval and the Free Recall models
using both the HBC and the COCA-TG databases, giving four
model configurations. Our results compare the models’ tim-
ing and correctness to human timing and human correctness
on the task, focusing on correctness. ComRAT-C provided a
probability value that they consider an estimate of the proba-

bility that a word is an answer. Their results were that for a
RAT item with a given correct answer, comRAT-C’s estimate
of the probability that the correct answer was correct corre-
lates positively with the number of humans who answered
correctly and correlated negatively with human mean time to
solution. However, Soar models retrieval as competitive, so
only a single element is selected. The significance of this is
that the activation of the correct answer does not completely
determine if it will be the model’s answer. An activation can
be high, but if it is not the highest with respect to words that
compete for retrieval, then it will not be retrieved. For this
reason, our results are not directly comparable with those of
comRAT-C. We instead adopt an approach where we compare
the correctness of the answers produced by our models to the
correctness of the human answers.

Overall Difficulty
First, we consider overall task difficulty as it relates to model-
ing difficulty on the RAT. Figure 1 shows two diagrams, one
for each knowledge base. These diagrams include the num-
ber of RAT items that were answered correctly for different
model configurations, as well as the average number of cor-
rect responses made by humans. These averages are for when
humans have only 15 seconds and 7 seconds to generate an
answer, and as is obvious, this is a difficult task for humans.
The x-axis is the number of attempts (1-20) for the Free Re-
call model. The models for humans (light and dark green) and
Cued Retrieval (dots) have only a single attempt. We show
them as straight lines for ease of comparison with the Free
Recall model. We also include the number of items where all
the given words and the answer exist in the database.

The top figure shows results from using COCA-TG for
both models. The Cued Retrieval model with COCA-TG gets
65 RAT items correct. The Free Recall model initially im-
proves as more attempts are made, and achieves better per-
formance than the Cued Retrieval model from 3 attempts on.
The best it achieves is 78 correct at ten, eleven, and fourteen
attempts. This improvement is possible because this model
makes guesses for problems where it cannot find an exact an-
swer, and sometimes those guesses are correct. As the figure
shows, the COCA-TG models outperform humans except in
the case where the Free Recall model makes a single attempt.

The bottom figure shows results using HBC. HBC contains
more correct answers than COCA-TG (105 vs. 55), invari-
ably because of its larger size (see Table 2). Once again,
through guessing, the Free Recall model achieves perfor-
mance better than one might expect. With HBC, Free Recall
achieves the 7 seconds human performance when it uses two
attempts and the 15 seconds human performance with three
attempts. We hypothesize that more attempts are required to
achieve the same performance in the HBC database, because,
on average, HBC words have higher fan (32 vs. 17).

Relative Difficulty
Next, we compare the results to human data provided by
Bowden and Jung-Beeman. We are interested in which

ICCM2018

128

Figure 1: The number of RAT items each model with each database
got correct out of the 144 possible items. Note the Free Recall model
results are shown as 20 separate points.

configuration best matches human behavior. While our
models generally perform better on the RAT than humans,
we can separately characterize behavior by relative difficulty.

Timing Comparison In measuring timing, our goal is to
see if our models are in the ballpark of human response times.
A Soar model’s timing can be roughly compared to human
times. For Soar models, we consider a single decision cycle
as corresponding to 50ms of human behavior. However, we
consider retrieval as requiring roughly 300ms. Using those
parameters, the Free Recall model using HBC and given 2
and 3 attempts took an average time of 2.02 and 2.20 seconds
respectively to find a solution and the Cued Retrieval model
took an average time of 2.27 seconds. The subjects in the
study took on average 4.87 seconds when given 7 seconds to
solve the problem and 7.26 seconds when given 15 seconds.
Thus, the time taken for our models to solve a RAT item is
similar in magnitude to how long it took the subjects. This
rough similarity in timing suggests that our models are using
approximately the same number of steps and retrievals as is
found in human behavior.

Correctness Comparison In this section, we evaluate
whether the RAT questions that are difficult for humans are
also difficult for the models. For human difficulty, we focus
on correctness and we use the percentage of people who got
the correct answer as the metric of difficulty. For our models,
we use whether the model produces the correct answer for a
given item.

In order to compare these two metrics, we binned the 144
RAT items into 12 groups of 12 based on correctness in hu-
mans. The first group being the most difficult for humans
(the lowest percentage of people got them correct), the last
being the easiest (the highest percentage of people got them
correct). We did this for both the 7 seconds and 15 seconds
human results, as they had times closest to those predicted by
our model. From the 12 questions in each bin, we calculated
the mean percentage of people who got the questions correct.
We then compare the average RAT items correct for humans
to the number of items our models got correct for each 12
question bin. We did this comparison for the Cued Retrieval
and the 1-20 guesses Free Recall models for each knowledge
base. The correlations between the number of items correctly
answered by humans and the number of items correctly an-
swered by our models are shown in Figure 2.

Figure 2: The correlations of model difficulty with human difficulty
is displayed. The Free Recall model has a varying number of at-
tempts displayed on the x axis.

ICCM2018

129

The models using COCA-TG are shown in the top diagram
and they have low correlations with human difficulty. Using
COCA-TG, the highest correlated model is Free Recall with
1 attempt: 0.23. The models using HBC are shown in the bot-
tom diagram, and all Free Recall model correlations are better
using HBC. The highest correlated model is Free Recall with
4 attempts for the 15 second human data: 0.89. The Cued
Retrieval model has low correlation for both databases. This
suggests that HBC is a better model for the knowledge hu-
mans use to perform this task, and that the Free Recall model
with 4 attempts is an excellent model of human difficulty.

Figure 3: Agent performance is displayed with respect to human
performance. The human data refers to the average number correct
within a difficulty bin, for 12 bins. The best fit line is shown for both
the Free Recall and the Cued Retrieval model data.

In Figure 3 we further investigate the most highly-
correlating model configuration (Free Recall, 4 attempts)
with a comparison to the Cued Retrieval model (both us-
ing HBC). This figure shows the number of RAT items each
model got correct for each of the 12 groupings of items, or-
dered by difficulty, correlated with the expected number that
humans got correct for each of those groups. The best fitting
line has a slope of 1.074 and an y-intercept of 0.289 making
it a close one-to-one relationship between the human’s rela-
tive difficulty and the model’s relative difficulty. To further
verify our claim that the Free Recall model relates better to
human data than the Cued Retrieval model, we ran a logistic
regression test with the null hypothesis that the model’s cor-
rect versus incorrect output for RAT items does not relate to
the percentage of humans that got the RAT items correct. For
the Free Recall model given 4 attempts, we reject the null hy-
pothesis with a p-value of 2.86e-07. For the Cued Retrieval
model we do not reject the null hypothesis, given a p-value of
0.184.

Fan and Association Strength Influence on Relative Dif-
ficulty Given a model and knowledge base which correlate
with human relative difficulty, we next attempt to character-
ize the effects of association strength and fan on model dif-
ficulty. We selectively lesion the effects of fan and associ-

Figure 4: For our model configuration with the highest correlation
to human relative difficulty, we also display models corresponding
to the removal of association strength (weights) and fan.

ation strength on retrieval to show how the correlation with
human difficulty changes as a result. Lesioning of fan leads
to a model of spread where only association strength governs
spread, and where there is no normalization with respect the
number of outgoing links from the source. Lesioning of asso-
ciation strength leads to a model of spread where all associa-
tion strengths from a given node are equal. These additional
models are plotted with lines of best fit alongside our best
matching model in Figure 4, where we again present model
correctness compared to human correctness.

We expect that lacking association strength and only us-
ing fan should give better results in terms of absolute number
correct because a single strong association can dominate dur-
ing retrieval, whereas with equal strength for all associations,
only those items that have associations with all given words
will be retrieved. We confirm that the lesioned HBC with 4
attempts gets 72 RAT items correct versus the original HBC
with 4 attempts which gets only 51 correct. Additionally, we
expect that lesioning either fan or association weights should
led to worse match to human difficulty. This is the case for
removing weights, with the correlation dropping to 0.679, but
removing fan improves the correlation to 0.921, suggesting a
mismatch between the associations in our database and those
in humans.

Conclusion
We created models that perform the remote associates test by
employing two distinct methods. While a previous model for
difficulty on this task did find association strength and fan to
govern retrieval difficulty, our work provides a better account
of how such influences impact difficulty by using a more real-
istic knowledge base and implementing our models as agents
that complete the task, getting answers which can be directly
compared to human answers. The Cued Retrieval model does
a cued query to semantic memory to find the solution, if it
exists. If a solution was not found, the model makes a plau-

ICCM2018

130

sible guess. The Free Recall model iteratively uses spreading
activation to retrieve a potential solution until it finds a solu-
tion or until it hits a threshold. The semantic memory knowl-
edge bases only contained word associations. This is lim-
ited in comparison to a human’s semantic memory. However,
the use of spreading activation and the associations found in
HBC’s memory network give results surprisingly consistent
in terms of relative difficulty for answering RAT problems
with human performance. While we replicated the RAT-KB
knowledge base associated with the previous work’s model
with our COCA-TG knowledge base, we found that despite it
only consisting of the relevant type of associations for the 144
RAT problems, it performed worse than the HBC knowledge
base in terms of modeling human difficulty. Our hypothe-
sis is that a combination of inclusion of bidirectional links in
COCA-TG leads the model astray by allowing it to find asso-
ciations that are either missing or have very low association
strength in humans.

From the results, we find that the Free Recall model with
4 attempts is an excellent match to relative problem difficulty
in human behavior for when humans have 15 seconds for the
task, although it is also highly correlated for a range of num-
ber of attempts. While the Cued Retrieval model can retrieve
more answers (depending on the choice of attempt parameter
for the Free Recall model), the Free Recall model using the
HBC database has higher correlation with human results than
the Cued Retrieval model with the same knowledge. This is
seen with both the 7 and 15 seconds binned human data.

In attempting to characterize the role of fan and associa-
tion strength in these results, we found that a better match
to human difficulty is achieved when association strength but
not fan influences spreading activation. One possible expla-
nation is that there are artifacts in the HBC knowledge base
in terms of missing items and their connectivity that do not
reflect human semantic memory. We already know that they
do not contain all the relevant knowledge for the RAT ques-
tions. Thus, we plan to expand the HBC database by adding
other databases that include more of the relevant words and
associations, while still being representative of human word
associations, such as the University of South Florida Free As-
sociation Norms (Nelson, McEvoy, & Schreiber, 1998).

Another shortcoming of our databases is that they have no
information about the recency and frequency of the words
they include, and thus there is no contribution of base-
level activation to our model (Anderson, Bothell, Lebiere, &
Matessa, 1998). A reasonable extension would be to initial-
ize our databases with usage information derived from other
databases, such as COCA (Davies, 2008).

Acknowledgments
The work described here was supported in part by the Office
of Naval Research under Grant Number N00014-18-1-2010.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressly or implied, of

the ONR or the U.S. Government.

References
Anderson, J. R. (1974). Retrieval of propositional informa-

tion from long-term memory. Cognitive Psychology, 6(4),
451–474.

Anderson, J. R. (2009). How can the human mind occur in
the physical universe? Oxford University Press.

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M.
(1998). An integrated theory of list memory. Journal of
Memory and Language, 38(4), 341–380.

Anderson, J. R., & Pirolli, P. L. (1984). Spread of activation.
Journal of Experimental Psychology: Learning, Memory,
and Cognition, 10(4), 791.

Bowden, E. M., & Jung-Beeman, M. (2003). Normative data
for 144 compound remote associate problems. Behavior
Research Methods, Instruments, & Computers, 35(4), 634–
639.

Davies, M. (2008). The corpus of contemporary american
english. BYE, Brigham Young University.

Derbinsky, N., & Laird, J. E. (2010). Extending soar with
dissociated symbolic memories. In Symposium on human
memory for artificial agents, aisb (pp. 31–37).

Gabler, K. (2013). Human brain cloud. Retrieved from
https://humanbraincloud.com/

Griffiths, T. L., & Steyvers, M. (2002). A probabilistic ap-
proach to semantic representation. In Proceedings of the
annual meeting of the cognitive science society (Vol. 24).

Jones, S. J., Wandzel, A. R., & Laird, J. E. (2016). Efficient
computation of spreading activation using lazy evaluation.
In Proceedings of the 14th international conference on cog-
nitive modeling.

Laird, J. E. (2012). The Soar cognitive architecture. MIT
Press.

Mednick, S. (1962). The associative basis of the creative
process. Psychological Review, 69(3), 220-232.

Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1998).
The university of south florida word association, rhyme,
and word fragment norms. http://www.usf.edu/
FreeAssociation/.

Olteţeanu, A.-M. (2014). Two general classes in cre-
ative problem-solving? an account based on the cognitive
processes involved in the problem structure-representation
structure relationship. In Proceedings of the international
conference on computational creativity. publications of the
institute of cognitive science (Vol. 1).

Olteţeanu, A.-M., & Falomir, Z. (2015). Comrat-c - a compu-
tational compound remote associates test solver based on
language data and its comparison to human performance.
Pattern Recognition Letters, 67, 81–90.

Olteţeanu, A.-M., & Schultheis, H. (2017). What deter-
mines creative association? revealing two factors which
separately influence the creative process when solving the
remote associates test. The Journal of Creative Behavior.

ICCM2018

131

https://humanbraincloud.com/
http://www.usf.edu/FreeAssociation/
http://www.usf.edu/FreeAssociation/

Modeling Decision Making in a Biased Matchmaker Task
Jaelle Scheuerman (jscheuer@tulane.edu)1,2, Dina Acklin1, Noelle Brown1

1Naval Research Laboratory, 1005 Balch Blvd, Stennis Space Center, MS 39556
2Department of Computer Science, Tulane University, 6823 St Charles Ave, New Orleans, LA 70118

Keywords: cognitive modeling; decision making; ACT-R;
instance based learning theory

Introduction
Decision making involves choosing a course of action based
on goals, knowledge, environmental cues and past experi-
ences. This can be challenging because decision making of-
ten happens in environments where it is difficult to identify
accurate and reliable information. This leads to relying on
learned heuristics that can lead to systematic bias and some-
times costly errors (Kahneman & Tversky, 1972). Since peo-
ple must often make decisions in complex environments, it
is important to better understand the underlying cognitive
mechanisms that lead to bias and develop strategies that may
help mitigate errors. We present a cognitive model of a proba-
bilistic learning task designed to assess bias reduction strate-
gies, particularly attention to contradicting information and
knowledge of erroneous feedback. This model utilizes in-
stance based learning theory and a biased attentional weight
parameter to model two groups completing the task.

Behavioral Task
In the behavioral task, subjects (N=203), were asked to play
the role of a matchmaker and choose one of two bachelors
for a given match, based on five attributes (hair color, hobby,
entertainment preference, drinking habit and age).

Initially, subjects were biased to believe that an irrelevant
factor (entertainment preference) was critical to choosing the
correct bachelor. Instead, another factor (hair color) was crit-
ical to making accurate matches. Subjects responded to three
types of trials: congruent, incongruent and irrelevant. Con-
gruent and Incongruent trials paired the biased irrelevant fac-
tor with the critical factor. Irrelevant trials paired the critical
factor with an entertainment preference that was not related to
the participants’ learned bias. Accepted responses were made
for each trial type by matching based on the critical factor. If
participants made matches based on their bias they were cor-
rect on Congruent trials and incorrect on Incongruent trials.
Their bias was not useful on Irrelevant trials. Using these re-
sponses, it is possible to analyze how well subjects mitigated
the bias and increased their match accuracy.

Subjects completed a Baseline phase of 30 trials, with-
out feedback, to test whether or not a bias towards matching
based on the irrelevant attribute had been established. Sub-
jects then began a Learning phase, lasting 60 trials, where
they received feedback about whether or not their match was
accepted. To simulate making decisions in real world envi-
ronments where information is not always accurate, the feed-
back was incorrect 25% of the time. Half of the subjects were

warned that the feedback would sometimes be incorrect and
the other half were not. Finally, the subjects completed a Test-
ing phase of 30 trials to test whether or not they were able
to overcome the initial bias to make accurate decisions. Re-
sults showed accuracy increasing throughout the task for both
groups, with the Unwarned group outperforming the Warned
group in the Testing phase as seen in Table 1.

Baseline Learning Test
Unwarned 53% 63% 67%

Warned 52% 59% 61%

Table 1: Behavioral results for each group.

Methods
Using the cognitive architecture, ACT-R 7.0, we designed a
cognitive agent to complete the matchmaking task described
above. ACT-R consists of several modules that represent
distinct cognitive systems, such as memory and perception
(Anderson et al., 2004). ACT-R’s learning mechanisms, com-
bined with its declarative and procedural memory modules,
make it well suited to modeling decision making tasks. Our
agent also utilizes instance based learning theory and utility
learning to complete the decision making task. We compare
the cognitive agent’s behavior to human subjects to test the
underlying cognitive theories used in developing the model
(Fum, Missier, & Stocco, 2007).

Instance based learning theory proposes that humans adapt
their decision making strategies based on past experiences.
Initially, they may use a heuristic approach, but as new sit-
uations are encountered, decision makers adjust their strate-
gies to choose actions that previously resulted in favorable
outcomes. When implementing an instance based learning
model in ACT-R, situations are modeled as chunks stored in
declarative memory, and include the situation, decision and
any associated feedback. A production rule can be used to re-
trieve instances that are similar to the present situation, using
ACT-R mechanisms such as partial matching and blending
(Gonzalez, Lerch, & Lebiere, 2003).

Utility learning allows the agent to adapt its strategies
to the environment (Anderson et al., 2004). ACT-R agents
choose which actions to take based on production rules that
reside in procedural memory. The agent selects rules by pat-
tern matching against ACT-R’s buffers that contain informa-
tion available to the agent. These rules are retrieved based
on an associated utility. When utility learning is enabled, the
utilities adjust based on rewards given for retrieving specific
production rules.

ICCM2018

132

Cognitive Model
The cognitive model includes four production rules that gov-
ern how the agent completes the behavioral task. It simu-
lates choosing the matching bachelor by using a heuristic that
an incorrect feature (entertainment preference) is critical for
making the decision. This is done by having a rule that as-
signs the match to Frank if the preferred entertainment is
video games. A second rule assigns the match to James if
sports is preferred. If neither video games or sports is pre-
ferred, a third rule randomly assigns the match to a bachelor.
These rules emulate human behavior at the start of the task
after being biased to believe that entertainment was critical to
making a successful match.

In addition to the heuristic rules, a fourth rule assigns a
match based on past experience, using the instance based
learning approach. This rule looks for past decision making
episodes stored in memory and chooses one with the highest
activation value. The activation value is determined by how
recently and frequently the previous instances have been re-
trieved. ACT-R’s partial matching is enabled so that chunks
matching the current situation to the greatest degree will have
higher activation values. Additionally, spreading activation is
used to represent the effect of context on the retrieval process.
Here, the attentional weight of the entertainment attribute is a
parameter that models how much attention is being given to
the biased factor. The equations used to calculate the activa-
tion value with partial matching and spreading activation are
well documented in ACT-R and IBLT literature (Anderson et
al., 2004; Gonzalez et al., 2003).

The ACT-R agent completed 120 trials in the same order
presented to human subjects. First, the agent completed 30
trials of a Baseline phase to establish that the heuristic rules
successfully modeled a preference for making matches based
on entertainment. After completing the Baseline phase, the
agent proceeded to the Learning phase, which consisted of 60
trials. During this phase, the agent received feedback about
about the match outcome that was incorrect 25% of the time.
As soon as the model received feedback, the utilities of pro-
duction rules updated so that the instance based learning rule
had a higher utility than the heuristic rules. Upon completing
the Learning phase, the agent advanced to the Testing phase,
where no feedback was provided and the final decision mak-
ing strategy was evaluated.

Model parameters
We completed a grid search to obtain values for the four pa-
rameters listed in Table 2 that best fit the behavioral data. Re-
maining ACT-R parameters were fixed at their default values.
Noise (ans) was added to model the stochastic nature of the
retrieval process. The mismatch penalty constant (mp) was
adjusted to represent the degree of similarity that must exist
between a chunk in the buffer and one retrieved from declar-
ative memory. The retrieval threshold parameter (rt) repre-
sents how high the activation value must be for a chunk to be
retrieved (Anderson et al., 2004). Finally, a parameter (bw)

was adjusted to represent the amount of attentional weight ap-
plied to the entertainment attribute from spreading activation.
For each combination of parameter values, the model was run
100 times to simulate 100 agents completing the behavioral
task. The R2 value was calculated between the model’s aver-
age performance and the average performance of both groups
of human subjects over all trials.

Results & Future Directions
The model fit the behavioral data relatively well, with the
R2 values summarized in Table 2. Our results showed the
Warned group was best modeled when a higher attentional
weight was applied to the irrelevant feature, whereas using
a lower attentional weight resulted in a better fit for the Un-
warned group. This seems to indicate that the Warned group
had a more difficult time overcoming their bias towards the
irrelevant feature. We hypothesize that since this group was
warned that some feedback would be incorrect, they were less
likely to trust feedback that contradicted their bias.

Model ans mp rt bw R2

Unwarned 0.75 2.25 2 1 0.9317
Warned 1.25 1.75 1 10 0.9470

Table 2: Best parameters and resulting R2 values.

Further work must be done to understand how the modeled
cognitive mechanisms can account for the increased accuracy
observed in a small proportion of high performing subjects.
It is expected that the attentional weight of the entertainment
attribute should decrease over time to simulate mitigating bias
and increased decision making accuracy. Future work will
also explore how trust affects the sensitivity to feedback in
overcoming bias.

Acknowledgments
The design of the agent was performed at the Naval Research
Laboratory under funding number N0001417WX00111 from
the Office of Naval Research to Noelle Brown of the Naval
Research Laboratory.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S. A.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review, 111(4), 1036–1060.

Fum, D., Missier, D. M., & Stocco, A. (2007). The cognitive
modeling of human behavior: Why a model is (sometimes)
better than 10,000 words. Cognitive Systems Research, 8,
135–142.

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-
based learning in dynamic decision making. Cognitive Sci-
ence, 27(4), 591–635.

Kahneman, D., & Tversky, A. (1972). Subjective Probabil-
ity: A Judgment of Representativeness. In The Concept of
Probability in Psychological Experiments (pp. 25–48).

ICCM2018

133

Towards a Physio-Cognitive Model of the Exploration Exploitation Trade-off

David M. Schwartz (dms061@bucknell.edu), Christopher L. Dancy (christopher.dancy@bucknell.edu)
Department of Computer Science, Bucknell University

701 Moore Avenue,

Lewisburg, PA 17837 USA

Keywords: exploration vs exploitation; utility, ACT-R/Φ,
Project Malmo, reinforcement learning.

Introduction

Managing the exploration vs exploitation trade-off is an

important part of our everyday lives. It occurs in minor

decisions such as choosing what music to listen to as well as

major decisions, such as picking a research direction to

pursue. The dilemma is the same despite the context: does

one exploit the environment, using current knowledge to

acquire a satisfactory solution, or explore other options and

potentially find a better answer. An accurate cognitive model

must be able to handle this trade-off because of the

importance it plays in our lives. We are developing physio-

cognitive models to better understand how physiological and

cognitive processes interact to mediate decisions to explore

or exploit. To accomplish this, we utilize the ACT-R/Φ

hybrid architecture (Dancy, 2013; Dancy et al., 2015) and the

Project Malmo AI platform (Johnson et al., 2016).

Modelling the Trade-off

ACT-R/Φ

ACT-R/Φ creates a representation of physio-cognitive

mediation of behavior by combining the ACT-R theory of

cognition, HumMod's physiological model (Hester et al.,

2011) and theory from affective neuroscience. This hybrid

architecture allows us to model how the management of the

exploration versus exploitation trade-off effects the body and

mind. Furthermore, the architecture provides a more concrete

and tractable method to interact with the model by utilizing

concentrations of hormones in the system to influence

behavior. Changes in arousal, utility, and decision making

can be seen through modifications of hormone concentration

and regulation, providing an in depth look at how and why

the trade-off is managed.

Model Assumptions

The model makes several assumptions to interact with the

task environment. First, the model assumes it is in a

diminishing return environment. Second, that cues are

present in the environment, which provide information about

the task. Lastly, that the agent is striving towards some goal.

Managing the Trade-off

The high-level model manages the exploration exploitation

trade-off according to the abstract rules in Figure 1.

Figure 1. The high-level decisions the model makes to

transition between exploring and exploiting.

The model decides to stop exploring via a local stopping

rule that integrates the Satisficing Model by Wai-Tat Fu

(2006). The model assesses the utility of information, that is,

how useful the new information gained from exploring is,

against the cost of further exploration. Since the model

assumes it's in a diminishing return environment, the cost of

searching will be lower at the start and increase as time goes

on. Thus, exploration will tend to occur early. Once the cost

of search outweighs the benefit of information gained the

model will decide how to exploit its knowledge and will

continue to exploit until it deems the current method is no

longer adequate.

The decision to return to exploration is controlled by

assessments of expected and unexpected uncertainty. When

unexpected uncertainty is higher than expected, the current

method of solving the problem is no longer reliable, thus

exploration should start. Yu and Dayan (2005) related these

concepts to the neuromodulators acetylcholine (ACh) and

norepinephrine (NE). In their formulation, ACh represents

expected uncertainty and NE represents unexpected

uncertainty. They also developed an equation that relates the

concentration of the modulators to the choice to explore

(Equation 1).

𝑵𝑬 >
𝑨𝑪𝒉

𝟎. 𝟓 + 𝑨𝑪𝒉

(1)

The equation represents low level self-assessment and

triggers the transition between exploiting and exploring.

ICCM2018

134

mailto:dms061@bucknell.edu
mailto:cld028@bucknell.edu

When it is satisfied, subsequent drops in utility and arousal

are observed, denoting a loss of faith in the current strategy

and need to discover a new one.

The decision making transition is reflected in the model by

dynamically modifying the utility noise parameter, also

referred to as temperature, in ACT-R. ACT-R selects which

production to fire by its utility value. However, those values

contain noise. The parameter controls the standard deviation

of noise within the system. As noise increases, the probability

that the production with the highest reinforcement will be

selected decreases. Therefore, the likelihood of the model

selecting another, less reinforced, production that satisfies

that same scenario increases, leading to exploratory behavior.

As the model receives rewards, the temperature decreases,

making production selection more deterministic. This results

in the model switching back to the exploiting state. While the

model runs, temperature is adjusted, becoming lower when

search costs outweigh the value of current information, and

larger when self-assessments reveal poor performance.

Testing the Model

We are using a symbolic maze, similar to the one used by Fu

and Anderson (2006), to test the model. The structure of the

maze is depicted in figure 2.

Figure 2. Structure of the symbolic maze. X represents a

dead end whereas C depicts the exit. Picture based on an

image from Fu and Anderson (2006).

The player is placed in a room and presented with stimuli

and a set of options. They move into a different room

depending on which option they select. Upon reaching a dead

end the player is reset to the point where they diverged from

the correct path. Furthermore, the configuration of the room

is changed; different stimuli and options are shown upon their

return. Thus, the player is only informed of correct stimuli

option associations upon completing the maze or reaching a

dead end.

The maze is implemented in Microsoft’s Project Malmo

environment. Project Malmo is a modification to the game

Minecraft that allows artificial agents to be tested. The world

is represented as a series of semantically defined blocks. This

works well with ACT-R based models as the representations

in the perceptual modules are semantic attentional chunks.

Thus, transforming the blocks to chunks is straightforward.

For our experiment, stimuli is represented by special blocks

in a wall. Decisions are made by standing on one of two

sections of ore in the floor. After a decision is made, the

player or agent is teleported to another room and the

experiment continues as previously described.

Another benefit of using Project Malmo is its

expandability. The tool can be used to construct varied

environments with differing complexities from the same

primitives. Using this platform allows us to modify the task

to study different aspects of physio-cognitive mediation of

human behavior in future work.

Conclusion

Managing the trade-off between exploration and exploitation

is a critical part of our everyday lives. Our goal is to develop

a model that manages the problem like a human does. We

manage the transition from exploration to exploitation by

assessing the cost of searching with the utility of information

gained. The model handles the inverse transition by low level

self-assessments of uncertainty, both expected and

unexpected, within the problem. In addition, by using Project

Malmo, we have created a useful, modifiable, task

environment for future cognitive models. By improving our

model to tackle more complex domains within Project

Malmo we will be one step closer to developing human-like

autonomous artificial agents.

References

 Dancy, C.L (2013) ACT-RΦ; A cognitive architecture with

physiology and affect. Biologically Inspired Cognitive

Architectures, 6(1), 40-45.

Dancy, C. L., Ritter, F. E., Berry, K. A., & Klein, L. C.

(2015). Using a cognitive architecture with a physiological

substrate to represent effects of a psychological stressor on

cognition. Computational and Mathematical Organization

Theory, 21(1), 90-114.

Fu, W. (2007). A Rational-Ecological Approach to the

Exploration/Exploitation Trade-offs. In W.D. Gray (ed.),

Integrated Models of Cognitive Systems (Vol. 1, pp 165-

179). New York, NY: OUP.

Fu, W., & Anderson J. R. (2006). From recurrent choice to

skill learning: A reinforcement-learning model. Journal of

Experimental Psychology: General, 135(2), 184-206.

Hester, R. L., Brown, A. J., Husband, L., Iliescu, R., Pruett,

D., Summers, R., & Coleman, T. G. (2011). HumMod: A

modeling environment for the simulation of integrative

human physiology. Frontiers in physiology, 2(12).

Johnson, M., Hofmann, K., Hutton, T., & Bignell, D. (2016).

The Malmo platform for artificial intelligence

experimentation. In proceedings of Twenty-Fifth

International joint conference on artificial intelligence

(IJCAI), New York, NY, 4246-4247.

Yu, A. J, & Dayan, P. (2005). Uncertainty, Neuromodulation,

and Attention. Neuron, 46(4), 681-692.

ICCM2018

135

Deploying a Model-based Adaptive Fact-Learning System in University Courses

Florian Sense (f.sense@rug.nl), Maarten van der Velde (m.a.van.der.velde@rug.nl),
 & Hedderik van Rijn (d.h.van.rijn@rug.nl)

Department of Experimental Psychology & Behavioral and Cognitive Neuroscience
University of Groningen, Groningen, The Netherlands

Abstract
Effective adaptive learning systems are based on
computational models of learning and forgetting in human
memory. These are often developed and validated in laboratory
settings. Recently, the ACT-R-based model developed in our
lab (Sense, Behrens, Meijer, & van Rijn, 2016) was made
available to students enrolled in two Cognitive Psychology
courses at the University of Groningen as an optional tool to
study and rehearse material. Here, we provide an overview of
data recorded throughout the course (including exam
performance), as well as a preview of explorations and analyses
made possible by the data. Specifically, such data allow
exploration of two questions: (1) How do students use the
system?, and (2) How does the system perform “in the wild”?
Findings pertaining to (1) will be interesting to compare with
survey responses, while findings pertaining to (2) can shed
light on ways to improve the system in realistic educational
settings.

Keywords: Model-based adaptive learning; real-world
application; fact-learning; memory models; ACT-R.

Introduction
Individuals differ in their ability to acquire new knowledge.
A theoretical understanding of human memory facilitates
quantifying and understanding the individual differences in
the temporal dynamics of learning and forgetting. ACT-R’s
declarative memory, for example, is based on formalizing
regularities in behavioral data of learning and forgetting.
Once formalized, such a system can be used to make
predictions about which learner is going to forget what and
when, which constitutes the basis for an adaptive learning
system (Pavlik & Anderson, 2008).

The development and validation of adaptive fact-learning
systems is an active area of research. The majority of the
scientific literature on this topic is based on using such
systems to test specific assumptions about human memory
(e.g., Mettler, Massey, & Kellman, 2016), how these systems
compare to various control conditions (e.g., Lindsey, Mozer,
Cepeda, & Pashler, 2009), or the mechanics of the systems
themselves (e.g., Mettler, Massey, & Kellman, 2011). The
model developed in our lab is no exception (e.g., Sense et al.,
2016; van Rijn, van Maanen, & van Woudenberg, 2009).
Studying the memory mechanisms underlying human
learning processes is obviously important, since it provides
the foundation upon which such systems are built.

1 In the course taught at AI, students also generated multiple-

choice questions themselves as part of homework assignments.

Most studies present participants with relatively arbitrary
learning materials in a controlled lab-based setup. Herein we
present a different testbed for an adaptive system: We let
students use the system in unconstrained, realistic conditions.
The system was made available to students enrolled in
Cognitive Psychology courses at two departments
(Psychology and Artificial Intelligence) at the University of
Groningen in the academic year 2017/2018. The same
textbook is used in both courses and material is grouped by
chapter and made available in the week that each chapter is
discussed in the course1. Using the adaptive system is
optional and we ask students to give informed consent for
their data to be used. Specifically, consent is asked to link the
data recorded while using the adaptive system to their
performance on the exam administered at the end of the
course. Importantly, the exams of both courses will include a
subset of questions that are taken from the material that was
available for students to study with the adaptive system
throughout the course. The data thus obtained provide a
unique possibility to test an adaptive fact-learning system “in
the wild”. Details about the recorded data and proposed
analyses and explorations are outlined below.

The Recorded Data
The adaptive system is available to students in the
Blackboard environment through any web browser and as an
app for both iOS and Android, which means that students can
study when- and wherever they choose. Data will be available
from two cohorts:

Cognitive Psychology is a third-year elective course in the
Psychology undergraduate program. A total of 285 students
took the exam (first attempt) and of those, 147 gave informed
consent for their data to be used (51.6%). The grades are
linked with the data generated while using the adaptive fact-
learning system, which was used at least once by 137 students
(52.5% of all recorded users). Together, they contribute
317,779 individual trials (65.2% of all recorded trials).

In the Artificial Intelligence undergraduate program,
Cognitive Psychology is a mandatory first-year course.
Currently, 162 students are enrolled in the program and
roughly 90% of them are expected to take the exam, which is
scheduled for early April. How many will consent for their
data to be used is unknown at this point.

These questions were gathered and made available to all students for
rehearsal/study with the adaptive system.

ICCM2018

136

Proposed Analyses and Explorations
On the poster, we will present data from two cohorts. The
presentation will focus on two overarching questions, which
we will discuss below2.

How do students use the system?
In both cohorts, study material for the adaptive system is
made available progressively throughout the course. Ideally,
students would start rehearsing this material as soon as
possible to space out their repetitions as much as possible but
survey data suggests that students cram their study time
shortly before the exam (Dunlosky, Rawson, Marsh, Nathan,
& Willingham, 2013). The collected data allows us to see
when students chose to engage with the adaptive system and
whether their behavior matches previously reported survey
data. Additionally, we can determine whether students that
start learning early (or: have wider spacing) obtain higher
grades, which is an outcome measure more directly relevant
to most students than the potential for increased long-term
retention.

Students can pick the desired duration at the beginning of
each study session. It will be interesting to see the distribution
of study session durations and how those sessions are
distributed within a day.

How does the system perform “in the wild”?
There are a number of ways to evaluate the system’s
performance. Importantly, all of the factors discussed here
will necessarily be confounded with students’ general
motivation2. Nevertheless, it will be interesting to see which
aspect of using the adaptive system are predictive of exam
performance (if any). Importantly, ways in which the model
fails and can be improved can be identified regardless of
students’ motivation.

Studying with the system is entirely optional. Testing
whether students that choose to use the system score higher
grades on the exam is a logical first step. More interesting,
however, will be an analysis of the items on the exams that
were available as study material prior to the exam (see above
for details): Even if a student used the system, they might not
have seen all the items. And even if they did, there will be
variation in how often each item has been repeated and in the
estimated model parameters, for example. Using
performance measures of this kind obtained while studying
with the system and testing whether they predict item-level
exam performance will be very interesting.

An additional line of exploration will be devoted to
comparing the recorded behavior with the predictions made
by the system. Using the response history for a given item,
the model generates trial-by-trial predictions for retrieval
accuracy and latency (see Sense et al., 2016 for details).
These can be compared with the recorded responses, which

2 A general disclaimer for all ideas outlined in this section is that

performance measures and usage statistics will be confounded with
motivation: Using the system more might be linked to higher grades,
for example, either because motivated students use the system more

are expected to differ drastically from responses collected
during controlled lab experiments conducted previously.
Students can use the app to study anytime and anywhere,
which is expected to result in much “messier” data.
Ultimately, however, adaptive systems like this should
function in such realistic settings so this data will be an
excellent benchmark and reveal ways in which the system
needs to be improved further to make it more useful to
students.

Acknowledgments
We would like to thank Tom Doesburg for programming
help, and Fokie Cnossen and Maximillian Velich for helping
collect the data from the Artificial Intelligence sample. This
work was supported by an E-Learning Grant provided by the
University of Groningen, awarded to Van Rijn.

References
Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., &

Willingham, D. T. (2013). Improving Students’
Learning With Effective Learning Techniques:
Promising Directions From Cognitive and Educational
Psychology. Psychological Science in the Public
Interest, 14(1), 4–58.

Lindsey, R., Mozer, M., Cepeda, N. J., & Pashler, H. (2009).
Optimizing Memory Retention with Cognitive Models.
In Proceedings of the Ninth International Conference
on Cognitive Modeling (ICCM 2009) (pp. 74–79).
Manchester, UK: ICCM.

Mettler, E., Massey, C. M., & Kellman, P. J. (2011).
Improving Adaptive Learning Technology through the
Use of Response Times. In L. Carlson, C. Hoelscher,
& T. F. Shipley (Eds.), Proceedings of the 33nd Annual
Conference of the Cognitive Science Society (pp. 2532–
2537). Boston, MA: Cognitive Science Society.

Mettler, E., Massey, C. M., & Kellman, P. J. (2016). A
comparison of adaptive and fixed schedules of practice.
Journal of Experimental Psychology: General, 145(7),
897–917.

Pavlik, P. I., & Anderson, J. R. (2008). Using a Model to
Compute the Optimal Schedule of Practice. Journal of
Experimental Psychology. Applied, 14(2), 101–117.

Sense, F., Behrens, F., Meijer, R. R., & van Rijn, H. (2016).
An Individual’s Rate of Forgetting Is Stable Over Time
but Differs Across Materials. Topics in Cognitive
Science, 8(1), 305–321.

van Rijn, H., van Maanen, L., & van Woudenberg, M. (2009).
Passing the Test: Improving Learning Gains by
Balancing Spacing and Testing Effects. Proceedings of
the 9th International Conference on Cognitive
Modeling, 110–115.

or because using the system results in higher grades. The options for
correcting for motivation as a confound are – unfortunately –
limited, and causal claims are categorically impossible to make.

ICCM2018

137

Toward a Theory of Timing Effects in Self-Organized Sentence Processing
Garrett Smith (garrett.smith@uconn.edu)

Department of Psychological Sciences, 406 Babbidge Road, Unit 1020
Storrs, CT 06269 USA

Whitney Tabor (whitney.tabor@uconn.edu)
Department of Psychological Sciences, 406 Babbidge Road, Unit 1020

Storrs, CT 06269 USA

Abstract

Many theories of sentence processing are based on the idea
that a discrete, symbolic grammar defines all of the structures
relevant for parsing, effectively supervising the parser as it
selects from those structures the one that best fits the input.
However, local coherence effects, where people’s parsing be-
havior suggests they are entertaining locally viable but glob-
ally impossible structures, suggest that this may not always be
the case. We introduce a self-organized sentence processing
(SOSP) model of local coherence effects and use it to demon-
strate how predictions about timing effects (a major source of
psycholinguistic data and a shortcoming of many previous dy-
namical parsers) can be derived directly from a harmony (well-
formedness) function covering both grammatical and ungram-
matical structures. This framework allows us to simulate the
processing of any set of lexical features and attachment links,
making it widely applicable to psycholinguistic phenomena.

Keywords: sentence processing, local coherence effects, dy-
namical systems models, self-organization

Introduction
The current, most fully-developed models of online sentence
processing adopt an assumption which may be called gram-
mar supervision. With grammar supervision, a symbolic
grammar specifies the universe of structures possible for lan-
guage comprehension and production, and the parser only
considers those grammatical structures. An example is sur-
prisal theory (Hale, 2001; Levy, 2008), in which the parser
distributes probability over all grammatical structures com-
patible with the current input at each word. The process-
ing time for each word is proportional to how much change
in the probability distribution is needed after incorporating
a new word (the Kullback-Leibler divergence between prior
and posterior distributions estimated from a large corpus).
This kind of theory has been massively successful in mod-
eling reading times in both experimentally designed stimuli
and natural corpora (Levy, 2008; N. J. Smith & Levy, 2013).

However, empirical studies over the past several decades
have identified a number of phenomena that challenge the
grammar-supervision hypothesis. We focus on local coher-
ence effects (Ex. (1); Bicknell, Levy, & Demberg, 2009;
Konieczny, Müller, Hachmann, Schwarzkopf, & Wolfer,
2009; Kukona, Cho, Magnuson, & Tabor, 2014; Levy, Bick-
nell, Slattery, & Rayner, 2009; Paape & Vasishth, 2015; Ta-
bor, Galantucci, & Richardson, 2004). Early-arriving words
make it so that, if the grammar were supervising, only one
parse would be possible, but when later words are perceived,
people show evidence of entertaining a second, conflicting

parse motivated by the later-arriving words. For example, the
reduced forms in of Ex. (1) (i.e., without who was) showed
slowed reading at tossed/thrown relative to the unreduced
form, but this effect was significantly larger for (1-a) than for
(1-b) (Tabor et al., 2004).

(1) a. The coach smiled at the player (who was) tossed
the Frisbee by the opposing team.

b. The coach smiled at the player (who was) thrown
the Frisbee by the opposing team.

We can make sense of this result if we assume that the
words the player tossed. . . (but not thrown) cause the parser
to construct an active clause with the player as its subject,
even though English grammar mandates that, in this con-
text, tossed be a passive verb heading a reduced relative
clause modifying the player. This process is inconsistent with
grammar-supervision theories, but it is naturally predicted if
parsing is governed by principles of self-organization.1

Self-organized sentence processing (SOSP; Kempen &
Vosse, 1989; Stevenson, 1994; Tabor & Hutchins, 2004; van
der Velde & de Kamps, 2006; Vosse & Kempen, 2000, 2009;
Cho et al., 2017; G. Smith, Franck, & Tabor, 2018; Gerth
& beim Graben, 2009)) is an approach to modeling sentence
processing which does not assume grammar supervision. In-
stead, in analogy to many physical chemical and biological
processes (see, e.g., Haken, 1983), parses self-organize (with-
out any controller or external supervision) via continuous, lo-
cal, bottom-up interaction among small pieces of syntactic
tree structure (treelets) activated by the words that have been
perceived or are being produced. In SOSP, feedback inter-
actions among the treelets generally drive the formation of
structure consistent with the grammar, but when two or more
incompatible structures receive bottom-up support, the sys-
tem can stabilize in an ungrammatical state of conflict, caus-
ing processing difficulty. Such models have produced plausi-
ble accounts of center embedding vs. right branching, garden
path effects, lexical ambiguity processing (Vosse & Kempen,
2000), length effects (Tabor & Hutchins, 2004), and agree-
ment attraction (G. Smith et al., 2018), among others.

1Levy et al. (2009) argue that surprisal can account for Tabor et
al. (2004) with a noisy channel assumption—words may be misper-
ceived (e.g., at was actually and in Ex. (1-a)). Cho, Goldrick, and
Smolensky (2017) present a similar approach in a dynamical model.
However, not all local coherence effects are plausibly amenable to
this explanation (Kukona et al., 2014; Paape & Vasishth, 2015).

ICCM2018

138

Root
(S)

(S)
(NP) smiled (PP)

(PP)
at (NP)

(NP)
player (RelC)

(RelC)
thrown (NP)

(S|RelC)
(NP) tossed (NP)

Figure 1: A snap-shot of SOSP-TH parsing a fragment of
Ex. (1) showing a subset of competitive treelet interactions.
Circles represent features (in order: Nominal, Verbal, Prepo-
sitional, Matrix-Clause, Agent, Patient) on attachment sites
(labeled in parentheses); phonological forms are unmarked;
and the dotted lines are attachment links. Note that even ill-
formed structures are included, e.g., tossed attaching to Root
as the matrix verb instead of the relative clause (RelC) head.

Oddly, there are relatively few SOSP results on timing data,
even though timing data are the most common kind of psy-
cholinguistic data, and even though self-organization is gen-
erally understood via dynamical systems theory, the mathe-
matics of variables interacting in time. Our main contribution
here is a novel SOSP framework that addresses this shortcom-
ing by making the relationship between well-formedness and
processing times transparent. Influenced by Cho et al. (2017),
Smolensky (1986), and Haken (1983), we define a harmony
function (also known as a potential or energy function) that
specifies the global well-formedness of system states (config-
urations of features on attachment sites and attachment links,
Fig. 1). We employ a systematic method of deriving the har-
mony function from lexical features in parsed sentences, cre-
ating a hilly landscape with peaks corresponding to both fully
grammatical structures and conflict states (Fig. 2). The sen-
tence processing dynamics noisily push the system uphill on
this landscape to find local harmony maxima. This leads to a
theory of timing effects in which, all other things being equal,
a higher-harmony parse is built faster than a lower-harmony
one. This is because higher peaks have steeper gradients,
causing the system to move faster toward the peak. In am-
biguous sentences, the system stochastically selects among
different peaks, and its path will be more curved if compet-
ing peaks are more equally well-formed. Therefore, average
processing times over many trials depend on which peaks are
selected and how curved the trajectories are.

Below, we present our SOSP framework (called SOSP-TH
(“treelet harmony”) to distinguish it from other SOSP mod-
els), show how it makes timing predictions, report an imple-

...[at [N [Det the] player]]

...[at] [Root [S [Subj [Det the] player] tossed]]

...[at [N [Det the] player [RelCl tossed]]]

Figure 2: A partial harmony surface illustrating a sample pro-
cessing path. The vertical axis is harmony, and the other di-
mensions code feature/link configurations. After reading the
coach smiled at the player, the noisy dynamics push the sys-
tem toward a partial parse with the player attached as the
nominal dependent of at at the peak labeled [at [N [Det
the] player]]. After stabilizing there, tossed is read, jump-
ing the system (red arrow) to a point intermediate between
the grammatical [at [N [Det the] player [RelCl tossed]]] and
the locally coherent, low-harmony [at] [Root [S [Subj [Det
the] player] tossed]] (with at not attached to the subsequent
words). From there, the system settles again, in this case se-
lecting the grammatical peak.

mented SOSP-TH model of local coherence, and finally dis-
cuss SOSP-TH in relation to other psycholinguistic theories.

The SOSP-TH framework
In SOSP-TH, linguistic structures are built out of lexically
anchored syntactic treelets that connect with each other via
graded attachment links (Fig. 1). We assume for simplic-
ity a dependency grammar formalism (e.g., McDonald et al.,
2013), so the only attachment sites are ones linking a word
as the dependent of another word (head attachment sites) and
ones linking other words as dependents (dependent attach-
ment sites). The head and dependent attachment sites are
feature vectors encoding syntactic and semantic properties
of a word and its expected dependents, respectively. Some
features can change (e.g., the determiner the gets its number
marking from its licensor), while others are fixed in the lex-
icon. The only constraints on link formation are that 1) no
links can form within a single treelet (e.g., a determiner de-
pendent site on a noun cannot link to the head of that same
noun) and 2) links can only form between head attachment
sites and dependent attachment sites, i.e., no head-head or
dependent-dependent links.2. All other links, grammatical
and ungrammatical, are allowed to form. Finally, a special

2Links may to fail to form, making fragmentary, low-harmony
parses.

ICCM2018

139

root node is available to anchor the whole sentence.
Features and links that are fully “on” and “off” are coded

as 1 and 0, respectively. In order to allow multiple tokens
of the same treelet in one sentence (e.g., the in the dog saw
the cat), all of a treelet’s dimensions are repeated for every
position in a sentence. Thus, there is a set of dimensions
corresponding to the as the first word of a sentence, a differ-
ent set of dimensions for the as the second word, etc. Links
(additional dimensions of the system) are between sentence-
position-specific instances of treelets.3

Not all attachment links make equally well-formed struc-
tures, though. Structures in which all linked feature vec-
tors are perfectly matched receive the maximum harmony of
1. Any feature mismatch lowers the harmony for that struc-
ture. In this way, SOSP implements a graded notion of well-
formedness. We quantify the local harmony hi of a (partial)
linguistic structure i, i.e., degree of well-formedness for i’s
configuration of features and links, using Eq. 1:

hi = ∏
l∈links

(
1− dist(fl,head , fl,dependent)

n f eat

)
(1)

The local harmony hi of a structure is the product of one
minus the normalized Hamming distances dist(·) between
the head feature vectors fl,head and dependent feature vectors
fl,dependent for each link l. n f eat is the number of elements
in the feature vectors. This definition of local harmony is
valid for any combination of features and links, even those
that strongly violate rules of a symbolic grammar, e.g., the
fragmentary, locally coherent structure [at] [Root [S [Subj
[Det the] player]] tossed]. In the simulations below, we will
see that including these lower-harmony structures in the men-
tal representation of possible structures plays a key role in
explaining observed timing effects.

Eq. 1 allows us to calculate the harmony of any linguistic
configuration, but on their own, the his do not tell us how to
choose a structure given the input. To that end, we define a
global harmony function and derive the dynamics from it.

Defining the harmony landscape and dynamics
We can define where the peaks in our harmony function are by
using a sum of radial basis functions (RBFs) φi (Han, Sayeh,
& Zhang, 1989; Muezzinoglu & Zurada, 2006):

φi(x) = exp
(
− (x−ci)

ᵀ(x−ci)
γ

)
Here, x (a column vector) is the d-dimensional state of the
system encoding values of all features and links in Rd , each
ci is the location of the ith (partial) parse (encoding desired
feature values and link strengths), ᵀ denotes the vector trans-
pose4, and γ (a free parameter) sets the width of the RBFs.

3This parallels the TRACE model of word perception
(McClelland & Elman, 1986), where every position of every word
is a node in the model. We agree with the critique that this is neu-
rally implausible and may miss important generalizations. However,
TRACE has been very successful at capturing phonological effects
in word processing, so we feel this is a reasonable place to start.

4(x− ci)
ᵀ(x− ci) is the squared Euclidean distance between x

and ci.

We then define the harmony function H(x) as the sum of n
RBFs, where n is the number of partial and full parses (har-
mony peaks) we wish to encode:

H(x) =
n

∑
i

hiφi(x) (2)

where the hi give the local harmony of a (partial) parse, com-
puted using Eq. 1. This equation creates a hilly harmony land-
scape analogous to Fig. 2, assigning harmony values both to
the ci and to all states intermediate between them.

In SOSP-TH, treelets are interacting subsystems that at-
tempt to assemble themselves through local interactions that
locally maximize harmony. Since the gradient of a scalar-
valued function like H(x) points in the direction of steepest
ascent, we make the system change in time so that it follows
this gradient uphill in a noisy way:

dx
dt

= ∇xH(x) =− 2
γ

n

∑
i

hi(x− ci)φi(x)+
√

2D dW (3)

(D scales the magnitude of the Gaussian noise process dW).
For D = 0, gradient dynamical systems like this simply settle
from an initial condition to an attractor (points to which the
system will return after a small perturbation; Strogatz, 1994).
For D > 0, the noise helps determine which attractor the sys-
tem converges on.

Any parsed corpus can be represented as a set of vectors
(the ci) of lexical features at particular sentence positions and
links between attachment sites, making SOSP-TH a general
theory of sentence processing. Note that once the ci are spec-
ified, the harmony landscape does not change, unlike in the
Gradient Symbolic Computation framework (Cho & Smolen-
sky, 2016; Cho et al., 2017; Cho, Goldrick, Lewis, & Smolen-
sky, 2018), in which the harmony function changes with the
input. Since the parsing dynamics are derived directly from
the harmony function, the SOSP-TH parser is derived directly
from a parsed corpus of sentences. We now show how we can
derive processing time predictions from these equations.

Predicting processing times
To derive predictions about processing times, we first con-
sider the simplest possible case, a one-dimensional system
with a single harmony peak at x = 0. The harmony function
is H(x) = h φ(x) = h exp

(
− x2

γ

)
and the dynamics are given

by ẋ = − 2h
γ

x φ(x). From this equation, we can already see
that the higher the harmony of the attractor, the faster system
moves toward it: Well-formed structures are faster to build
than ill-formed structures.5

In general, though, an SOSP-TH parser will have many
dimensions coding multiple features and link strengths, and

5There are other ways to show how settling times in a single trial
depend on the harmony of the parse that forms. One is to consider
the time dt it takes to travel an infinitesimal distance dx, dt = dx/ẋ,
since time equals distance divided by velocity. Integrating both sides
shows the settling time t ∝ (2h)−1. A third option, linear stability
analysis (Strogatz, 1994) provides a similar result.

ICCM2018

140

there will be many attractors corresponding to different struc-
tural alternatives. To see that higher harmony still means
faster processing, we can approximate Eq. 3 near an attrac-
tor i by neglecting all terms j 6= i in the sum in Eq. 3,
as the effect of all other attractors drops off exponentially:
ẋ ≈ −2hi

γ
(x− ci)φi(x). It is clear that the same relation be-

tween settling time and harmony holds. However, the effects
of other attractors are, in general, not completely negligible.
Fig. 3 shows how the presence of a relatively high-harmony
competitor can bow trajectories away from an attractor by
warping the harmony landscape, even though the system is
not in the basin of attraction of the competitor.

Thus, the overall theory of timing effects in SOSP-TH is
this: Within a basin of attraction of a structure, the settling
time scales approximately inversely proportional to the har-
mony of that parse, modulo the noise and the bowing. Over
repeated trials, noise will bump the system toward attractors
of different harmony heights, so the average settling time at
a word is the average of the settling times to each selected
attractor weighted by how often the attractor is selected. We
now illustrate this in a simple model of local coherence.

An SOSP-TH model of local coherence effects
A full model of the incremental processing of the sentences in
(1) would involve incrementally turning on features of words
in their sentence positions, letting the system settle to an at-
tractor associated with a partial parse, and repeating until the
sentence ends (see Fig. 1). We can model the main local co-
herence finding from Tabor et al. (2004) in a focused way by
assuming that the parser has already read up to The coach
smiled at the player tossed/thrown. . . and that it must now
choose how to attach player and tossed/thrown. We need only
two dimensions, one for the grammatical player-tossed link
and one for the locally coherent tossed-Root link. There is
thus an attractor at [1, 0] (local harmony h0 = 1.0) and one
at [0, 1], which will have different sub-maximal harmonies
(h1) depending on whether tossed or thrown has been read
(see Fig. 3). Player is a good feature match to be the subject
of tossed, and tossed can function as a main verb attaching
to the root node, so the attractor at [0, 1] is penalized only
for leaving the coach smiled at unattached to the rest of the
structure. For thrown, though, [0, 1] is additionally penalized
because thrown cannot function as a main verb, so its features
do not match Root’s main-verb dependent features. We start
the system at [0, 0], not biased toward either attractor.

SOSP-TH predicts that the noise should bump the system
toward the grammatical parse in most cases because its high
harmony dominates the harmony landscape. When the noise
does push the state toward the locally coherent attractor, it
will approach it more slowly in the thrown condition than
in the tossed condition because of thrown’s especially low
harmony. But because this happens so rarely, the average
time will be dominated by fast approaches to the grammat-
ical attractor. The locally coherent parse for tossed will be
selected more often due to its higher harmony, so it will in-

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

2

Gr

LC

0.050

0.050

0.200

0.200

0.350
0.350

0.500

0.5
00

0.650

0.6
50

0.8
00

0.9
50

Condition: tossed

0.0 0.2 0.4 0.6 0.8 1.0
Link 1

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

2

Gr

LC

0.050

0.050

0.200 0.200
0.350

0.3
50

0.500

0.650

0.8
00

0.9
50

Condition: thrown

Figure 3: Contour plots of the harmony landscapes used in the
local coherence simulations. Contour labels give the harmony
at that level. Red lines show noiseless trajectories starting at
[0, 0] and approaching the grammatical parse (Gr) at [1, 0].
Note the extra bowing toward the locally coherent attractor
(LC) for tossed, causing extra slowing compared to thrown.

crease the average settling time more than thrown. There
is also more trajectory bowing for tossed, which also slows
processing (Fig 3). Thus, a relatively high-harmony com-
petitor for the grammatical parse will, on average, cause a
competition-based slowdown.

We simulated both conditions 2000 times using Euler for-
ward discretization with a time step of 0.01, D = 0.001, and
γ = 0.25. The system ran until it got within a small radius of
an attractor. The local harmony h1 of the locally coherent at-
tractor ([0, 1]) was set to 0.8 in the tossed condition, and in the
thrown condition to 0.5. As predicted, the system settled to
the ungrammatical attractor in both cases, and it did so more
frequently in the tossed condition (about 14% of runs) than in
the thrown condition (<1% of runs). This increased the aver-
age settling time for tossed (M = 159.073 time steps, SD =
27.692) more than for thrown (M = 149.794,SD = 24.698),
modeling Tabor et al. (2004)’s effect.

These simulations show local coherence effects for one pa-
rameter setting, but Fig. 4 shows how the same pattern holds

ICCM2018

141

over a wide range of parameter settings. Where it does not
hold, there is possibly empirical evidence for a phenomenon
that corresponds to the model, different from local coherence.
Fig. 4 shows mean settling times as a function of the harmony
h1 of the ungrammatical parse. We used γ = 0.25 here, but
the pattern holds for a wide range of γ values. This figure
shows that we will observe local coherence effects as long as
0 <= h1,thrown < h1,tossed < 0.85. This predicts that local co-
herence effects should be widespread, a result supported by a
large-scale eye-tracking corpus study (Bicknell et al., 2009).

For h1 greater than about 0.85, the pattern changes: As
the ungrammatical parse increases in harmony, the time its
settling time approaches that of the grammatical parse, so
it no longer pushes the overall average settling time up as
much and the average settling time starts to drop (Fig. 4, bot-
tom panel). The competition still causes a slowdown, but
not as strongly as for somewhat lower-harmony competitors.
Thus, the model predicts the strongest competition-induced
slowdowns when the competing structure is of moderate har-
mony and smaller-magnitude slowdowns for both very low
harmony competitors and (to a lesser extent) higher harmony
competitors. This is, to our knowledge, unique among mod-
els of sentence processing. We speculate that this property
of SOSP-TH might provide a new explanation for ambiguity
advantage effects (e.g. Traxler, Pickering, & Clifton, 1998),
where certain ambiguous relative clause and adjunct attach-
ments are read more quickly than comparable unambiguous
structures. If the harmonies of the two competing parses are
close to 1.0 in the ambiguous condition but one is appreciably
less than 1.0 in the unambiguous conditions, the competition-
based SOSP-TH might be able to explain this puzzling effect
that has been argued to rule out competition-based theories.

Discussion
In this paper, we presented a theory of timing effects in a self-
organizing sentence processing (SOSP) framework, demon-
strated how it can explain local coherence effects, and spec-
ulated on a possible new approach to ambiguity advantage
effects. In our SOSP-TH framework, the amount of time
it takes to build a structure depends on how well-formed
the structure is, and the average structure-building time over
many trials is the weighted average of settling times to each
parse chosen.6

The local coherence model highlights the crucial role that
lower-harmony structures play in SOSP-TH: A relatively
well-formed but ungrammatical competitor slows processing
more than a very ill-formed competitor because the higher-
harmony competitor is built more often. This account differs
from the grammar-supervised noisy channel approach to local
coherence (Levy et al., 2009), which explains some (but not
all; Kukona et al., 2014; Paape & Vasishth, 2015) local co-
herence effects by allowing the parser to edit its input to pre-

6This is similar to recent cue-based retrieval approaches (e.g.,
Lewis & Vasishth, 2005) that model reading times with statistical
hierarchical mixture models (e.g., Nicenboim & Vasishth, 2018).

142.5

145.0

147.5

150.0

152.5

155.0

157.5

160.0

M
ea

n
se

ttl
in

g
tim

e

Settling time
Prop. gramm.

0.2 0.4 0.6 0.8 1.0

h1

150

175

200

225

250

275

300

325

M
ea

n
se

ttl
in

g
tim

e

Grammatical attractor
Locally coherent attractor

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
tio

n
gr

am
m

at
ica

l

Figure 4: Top: Mean settling times for the local coherence
model as a function of the ungrammatical parse h1 (solid line,
left y-axis) and the proportion of runs in which the the gram-
matical parse was selected (dotted line, right y-axis). Bot-
tom: Mean settling time by selected parse (solid line, circles =
grammatical; dashed line, triangles = locally coherent parse).
For h1 < 0.4, the system never settled on the ungrammatical
attractor. Note the different y-axis ranges.

serve grammaticality. By comparison, ACT-R for sentence
processing (Lewis & Vasishth, 2005) might be thought of as
partially grammar-supervised: Ungrammatical structures can
affect processing via noisy memory retrieval that sometimes
retrieves incorrect structures, but the cues used for retrieval
are set by the grammar, preventing it from explaining local
coherence effects via incorrect retrieval. By allowing both
grammatical and ungrammatical structures to always influ-
ence processing, SOSP-TH occupies a unique and parsimo-
nious place among theories of sentence processing.

Acknowledgments
This project was supported in part by NSF IGERT grant
DGE-1144399.

References
Bicknell, K., Levy, R., & Demberg, V. (2009). Correcting

the incorrect: Local coherence effects modeled with prior
belief update. In Proceedings of the 35th annual meeting
of the Berkeley Linguistics Society (pp. 13–24).

ICCM2018

142

Cho, P. W., Goldrick, M., Lewis, R. L., & Smolensky, P.
(2018). Dynamic encoding of structural uncertainty in gra-
dient symbols. In Proceedings of the 8th workshop on cog-
nitive modeling and computational linguistics.

Cho, P. W., Goldrick, M., & Smolensky, P. (2017). Incremen-
tal parsing in a continuous dynamical system: Sentence
procesing in Gradient Symbolic Computation. Linguistics
Vanguard.

Cho, P. W., & Smolensky, P. (2016). Bifurcation analysis
of a gradient symbolic computation model of incremental
processing. In A. Papafragou, D. Grodner, D. Mirman, &
J. C. Trueswell (Eds.), Proceedings of the 38th annual con-
ference of the cognititve science society (pp. 1487–1492).

Gerth, S., & beim Graben, P. (2009). Unifying syntactic the-
ory and sentence processing difficulty through a connec-
tionist minimalist parser. Cognitive neurodynamics, 3(4),
297–316.

Haken, H. (1983). Synergetics: An introduction (3rd ed.).
Springer-Verlag.

Hale, J. T. (2001). A probabilistic Earley parser as a psy-
cholinguistic model. In Proceedings of the second meet-
ing of the North American chapter of the Association for
Computational Linguistics on language technologies (pp.
1–8). Association for Computational Linguistics. doi:
10.3115/1073336.1073357

Han, J. Y., Sayeh, M. R., & Zhang, J. (1989). Convergence
and limit points of neural network and its application to
pattern recognition. IEEE Transactions on Systems, Man,
and Cybernetics, 19(5), 1217–1222.

Kempen, G., & Vosse, T. (1989). Incremental syntactic tree
formation in human sentence processing: A cognitive ar-
chitecture based on activation decay and simulated anneal-
ing. Connection Science, 1(3), 273–290.

Konieczny, L., Müller, D., Hachmann, W., Schwarzkopf, S.,
& Wolfer, S. (2009). Local syntactic coherence interpre-
tation. evidence from a visual world study. In Proceedings
of the 31st annual conference of the Cognitive Science So-
ciety.

Kukona, A., Cho, P. W., Magnuson, J. S., & Tabor, W.
(2014). Lexical interference effects in sentence process-
ing: Evidence from the visual world paradigm and self-
organizing models. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 40(2), 326–347. doi:
10.1037/a0034903

Levy, R. (2008). Expectation-based syntactic comprehen-
sion. Cognition, 106(3), 1126–1177.

Levy, R., Bicknell, K., Slattery, T., & Rayner, K. (2009).
Eye movement evidence that readers maintain and act on
uncertainty about past linguistic input. Proceedings of the
National Academy of Sciences, 106(50), 21086–21090.

Lewis, R. L., & Vasishth, S. (2005). An activation-based
model of sentence processing as skilled memory retrieval.
Cognitive Science, 29, 375–419.

McClelland, J. L., & Elman, J. L. (1986). The TRACE model
of speech perception. Cognitive psychology, 18, 1–86.

McDonald, R., Nivre, J., Quirmbach-Brundage, Y., Goldberg,
Y., Das, D., Ganchev, K., . . . Lee, J. (2013). Universal
dependency annotation for multilingual parsing. In Pro-
ceedings of the 51st annual meeting of the association for
computational linguistics (pp. 92–97).

Muezzinoglu, M. K., & Zurada, J. M. (2006). RBF-based
neurodynamic nearest neighbor classification in real pat-
tern space. Pattern Recognition, 39, 747–760.

Nicenboim, B., & Vasishth, S. (2018). Models of retrieval in
sentence comprehension: A computational evaluation us-
ing bayesian hierarchical modeling. Journal of Memory
and Language, 99, 1–34.

Paape, D., & Vasishth, S. (2015). Local coherence and
preemptive digging-in effects in German. Language and
Speech, 1–17. doi: 10.1177/0023830915608410

Smith, G., Franck, J., & Tabor, W. (2018). A self-organizing
approach to subject-verb number agreement. Cognitive Sci-
ence. doi: 10.1111/cogs.12591

Smith, N. J., & Levy, R. (2013). The effect of word pre-
dictability on reading time is logarithmic. Cognition, 128,
302–319. doi: 10.1016/j.cognition.2013.02.013

Smolensky, P. (1986). Information processing in dynamical
systems: Foundations of harmony theory. In D. E. Rumel-
hart, J. L. McClelland, & the PDP Research Group (Eds.),
Parallel distributed processing: Explorations in the mi-
crostructure of cognition (Vol. I: Foundations, pp. 194–
281). MIT Press.

Stevenson, S. (1994). Competition and recency in a hybrid
network model of syntactic disambiguation. Journal of psy-
cholinguistic research, 23(4), 295–322.

Strogatz, S. H. (1994). Nonlinear dynamics and chaos: With
applications to physics, biology and chemistry. Addison-
Wesley.

Tabor, W., Galantucci, B., & Richardson, D. (2004). Effects
of merely local syntactic coherence on sentence processing.
Journal of Memory and Language, 50(4), 355–370.

Tabor, W., & Hutchins, S. (2004). Evidence for self-
organized sentence processing: digging-in effects. Jour-
nal of Experimental Psychology: Learning, Memory, and
Cognition, 30(2), 431.

Traxler, M. J., Pickering, M. J., & Clifton, C. J. (1998). Ad-
junct attachment is not a form of lexical ambiguity resolu-
tion. Journal of Memory and Language, 39, 558–592.

van der Velde, F., & de Kamps, M. (2006). Neural blackboard
architectures of combinatorial structures in cognition. Be-
havioral and Brain Sciences, 29, 37–108.

Vosse, T., & Kempen, G. (2000). Syntactic structure as-
sembly in human parsing: a computational model based on
competitive inhibition and a lexicalist grammar. Cognition,
75, 105–143.

Vosse, T., & Kempen, G. (2009). The Unification Space
implemented as a localist neural net: predictions and error-
tolerance in a constraint-based parser. Cognitive neurody-
namics, 3(4), 331-346.

ICCM2018

143

Explaining Decisions of a Deep Reinforcement Learner with a Cognitive
Architecture

Sterling Somers (sterling@sterlingsomers.com)
Constantinos Mitsopoulos, Christian Lebiere ([cmitsopoulos, cl]@cmu.edu)

Department of Psychology, Carnegie Mellon University, 5000 Forbes Ave
Pittsburgh, PA 15213 USA

Robert Thomson (robert.thomson@usma.edu)
Army Cyber Institute, United States Military Academy, 2101 New South Post Road

West Point, NY, 10996 USA

Abstract
The work presented is an evaluation of a method for devel-
oping a hybrid system, consisting of a Deep Reinforcement
Learning (RL) agent and a cognitive model, capable of provid-
ing explanations of its action decisions. The methodology uses
a symbolic/sub-symbolic cognitive architecture to introspect
on the activity of the network to understand its representation.
The entropy in the system’s behavioral predictions could be
used as a signal to affirm or deny ascribing a representation to
the network.
Keywords: deep reinforcement learning; cognitive modeling;
introspection

Introduction
Deep Neural Networks (DNNs) have demonstrated an in-
creasing success in various scenarios where they are used
as function approximators. Their success is based in pass-
ing low-level sensory information through their structure, and
creating higher-level abstractions of that information. The
output of the network can be used either to classify inputs,
predict, or in the case of RL, which is a learning paradigm
for decision-making processes, to make decisions. As DNNs
proliferate in both academic and private sectors, there will
be an increased value to developing Deep RL agents that
can be introspected upon. Being able to understand the con-
cepts abstracted by the DNNs and how those concepts are
factored into action decisions will allow us to develop spe-
cialized agents trusted to achieve their purpose.

The aim of this work is to develop a methodology for pro-
viding symbolic-level explanations for the action decisions
of a Deep Reinforcement Learning (RL) agent. Our approach
uses a cognitive architecture to model the internal represen-
tations of an RL agent at a symbolic level. In the long-term
we envision a system that can inform a human observer why
the RL agent made the decisions it made. This is particularly
important whenever there is a mismatch between the knowl-
edge of the observer and the knowledge of the RL agent. A
mismatch could occur: a) when the RL agent produces an
optimal but atypical solution, or b) when the RL agent fails
to find a solution known to a subject matter expert (SME),
or c) when the feature and action space are too complex for
an SME to determine efficiently why a RL agent has made
certain decisions. We envision that in a) and c), our system
would be able to identify the most salient features of the en-
vironment attended by the RL agent, thereby explaining what

features it is responding to. In b) our system would be able
to identify representations available to an SME that are not
shared by the RL agent. In this work we attempt to address b)
by outputting symbolic state/action combinations consistent
with the terminology used by an SME.

We believe that such a system should be generative and/or
adaptive. While state and action category names should come
from the SME, the system should be able to learn the mapping
between states and actions for some subset of the RL agent’s
behavior.

The explanations produced by the system should also be
constrained by human cognitive capacities. A deep RL agent
is not limited with respect to the number of features it can
attend to. An explanation system that fails to reduce the cog-
nitive load on the observer is not useful as an explanation
because the onus of determining the most salient features re-
mains with the human observer.

In this work we evaluate a methodology where we create
an adaptive cognitive model of an RL agent trained to play
a simple mission in the real-time strategy game, StarCraft 2
(SC2). Our approach involves introspecting into the RL agent
by mapping the activity of neural layers, as it makes action
decisions, to symbolic output that can be used to generate
explanations. This approach is reminiscent of Vinokurov et
al. (2011), where they combined the hybrid cognitive archi-
tecture, ACT-R, with the neural-network-based architecture,
Leabra (O’Reilly & Munakata, 2000) in an image classifica-
tion task. We believe the computational cognitive architec-
ture, ACT-R, is well suited for such a task because it is con-
strained by cognitive capacities that, in turn, will constrain
explanations; it creates a symbolic model trace that can be
tractably transformed into explanations; and it operates on
sub-symbolic equations that are compatible with distributed
representations in DNNs.

The cognitive model is initialized with knowledge consis-
tent with an SME and evaluated against an RL agent with a
sub-optimal policy. A sub-optimal policy represents knowl-
edge mismatch situation b), described above, where the RL
agent has failed to find a solution readily available to an SME.
Although it may be possible to create an RL agent that per-
forms the task optimally, our aim is primarily focused on ex-
planation. Our explanation system is tasked with identify-

ICCM2018

144

ing and reporting to a human user when the representations
provided by the SME are not appropriate for describing the
internal representations used by the network and to provide
instead a representation that better describes the RL agent’s
internal state.

Our cognitive model attempts to adapt its internal represen-
tations to better match the action decisions of the RL agent.
The cognitive model provides a model trace that can be used
to infer an explanation. We use this trace in this investigation
to determine if the RL agent has made an inference consis-
tent with an inference made by an SME. High entropy in the
model, in categories related to the inference, indicate that the
RL does not make the inference. We confirm the accuracy
of the model trace using t-SNE (Maaten & Hinton, 2008)
to cluster the activity of the network. The t-SNE clustering
confirms that the network makes three distinct abstract rep-
resentations from the input space, which correspond to three
state/action categories instead of the four that would result
from making the same inference as the SME.

Task and Environment
StarCraft 2 is a real-time strategy game where players control
units from a third-person perspective with the aim of elimi-
nating opponents. In the screen-shot depicted in Figure 1, a
military unit is selected and two beacons are present on the
map.

Figure 1: Screenshot of a StarCraft 2 beacon mission.

SC2 provides a rich and complex environment for exper-
imenting on various types of agents. The specific domain
presents multiple challenges: imperfect information, macro
and micro management of resources, strategic acting and
multi-agent interactions. In addition, the SC2 Editor provides
complete freedom to the mission’s design, although anything
beyond very basic missions provides a significant learning
challenge for Deep RL agents (Vinyals et al., 2017).

The mini game we present here is straight forward. The
goal of the game is to get the agent to one of two beacons:
either the green beacon or the orange beacon. The green bea-
con presents a low-value target while the orange beacon rep-
resents a high-value target.

Despite the simplicity of the mission, the network learned a
sub-optimal strategy. The agent clicks the highest rewarding
beacon presented in every case. This strategy is successful
in every case but one: where the green beacon is in the di-

rect path between the agent and the orange beacon (blocking
scenario). Clicking directly on the highest rewarding beacon
makes the agent move in a direct line between its location
and the beacon. In the blocking scenario, the agent moves to-
wards the orange beacon, hits the green beacon, receives the
low-value reward, and the game is reset.

Deep Reinforcement Learning Agent
The core of the agent consists of a deep neural network that
attempts to solve a Markov Decision Process (MDP) defined
as a tuple (S ,A ,T ,γ,R) where S is a finite set of states, A a
finite set of actions, T is the transition probability for arriving
in state s′ when executing action a from state s, R is the re-
ward function that defines the reward received for performing
the aforementioned transition, and γ a reward discount fac-
tor. The goal of the agent is to maximize the expected return
Gt = ∑

∞
k=0 γkrt+k+1 from each state st . The solution of the

MDP consists of a function, named policy π(.|st), that maps
a state st to a distribution over actions that lead the agent to
higher sums of rewards. The probability of performing action
at in state st is denoted as π(at |st).

The network parametrizes the policy πθ with parameters
θ. In this paper, we utilize the Advantage Actor Critic (A2C)
algorithm which is the synchronous version of the A3C (Mnih
et al., 2016). We adopt the same architecture (Figure 2) and
implementation details as in Vinyals et al. (2017).

We consider the standard interaction between agent and en-
vironment. At each time step t the agent receives an obser-
vation st from the Starcraft II API and selects an action at
according to its policy π(.|st):

• Observations: consist of a set of image-like feature layers
that represent the existence of a specific feature at a specific
location on a screen. For example, in a 32×32 resolution
map a feature that corresponds to enemy units type will be
represented as a matrix with the same dimensions as the
map. This feature matrix will have zero values apart from
the elements that correspond to the pixels that are occupied
by the enemy units. The value of these elements will be
equal to the unit type identification number provided by
the API. Generally, there are three main types of features:
map features (entire map), screen features (part of map)
and non-pixel information (e.g. player resources).

• Actions: There are two action categories: the action type
and the action arguments. For example click on (action
type), and x,y location (action arguments). In our exam-
ples, the action arguments will be the spatial location for
performing the particular action type.

We trained the agent in the beacon task until it reached a
steady performance relative to a human optimal score. We
observed that the agent clicked on the highest value target in
all cases. The RL agent exhibited no avoidance behavior in
the blocking scenario.

ICCM2018

145

Figure 2: The Hybrid architecture: From observations, image-like features are generated for screen and map information. These
are passed through two convolution layers and are concatenated with the non-spatial features. The value prediction, which
represents the expected reward from the current observation, and the action type are determined by the concatenated feature
representation passed through a fully connected (fc) layer with 256 units. The activities of this layer are sent to the ACT-R
module for further processing. The spatial action is sampled from the probability distribution formed by a 1×1 convolved
representation of the feature concatenation.

Cognitive Model
Our model is introspective in that it uses the activity of the
network as the basis for ascribing representations. The RL
agent and the model share a common ground: both play the
game at the same time, the RL agent receiving numerical
values describing the ground truth of the game state, while
the model receives a symbolic version. Symbolic content
comes from both interpreting signals from the game (pres-
ence of beacons) and an ontology created by SMEs. The
ontology represents the kind of knowledge that a competent
player should have. In the missions presented in this paper,
the ontology is sparse: click on the green-beacon in green-
only scenarios, click on the orange in orange-only scenarios,
click on the orange in non-blocking scenarios, and go around
the green beacon in blocking scenarios. Our cognitive model
is developed in the ACT-R cognitive architecture.

ACT-R

ACT-R is a computational implementation of a unified theory
of cognition (Anderson et al., 2004). It accounts for infor-
mation processing in the mind via task-invariant mechanisms
constrained by the biological limitations of the brain (see An-
derson 2007 for an overview). The ACT-R architecture is
organized as a set of modules, each devoted to processing a
particular kind of information, which are integrated and coor-
dinated through a centralized production system module.

The declarative memory (DM) and production system
modules, respectively, store and retrieve information that cor-
responds to declarative knowledge and procedural knowl-
edge. Declarative knowledge is knowledge that a person can
attend to, reflect upon, and usually articulate in some way.
Procedural knowledge consists of the skills we display in our

behavior, generally without conscious awareness. Declara-
tive knowledge in ACT-R is represented formally in terms
of chunks. The information in the declarative memory mod-
ule corresponds to personal episodic and semantic knowledge
that promotes long-term coherence in behavior. In this sense,
a chunk is like a data frame, integrating information available
in a common context at a particular point in time in a single
representational structure.

Each chunk has a base-level activation that reflects its past
recency and frequency of occurrence. When a retrieval re-
quest is made, the most active matching chunk is returned
from long-term declarative memory by an activation process.
This process is computed as the sum of base-level activation,
spreading activation, mismatch penalty and stochastic noise.
Activation spreads from the current focus of attention, includ-
ing goals, through associations among chunks in declarative
memory. These associations are built up from experience,
and they reflect how chunks co-occur in cognitive process-
ing. The spread of activation from one cognitive structure to
another is determined by weighting values on the associations
among chunks.

Chunks are also compared to the desired retrieval pattern
using a partial matching mechanism that subtracts from the
activation of a chunk its degree of mismatch to the desired
pattern, additively for each component of the pattern and cor-
responding chunk value. Finally, noise is added to chunk ac-
tivations to make retrieval probabilistic, governed by a Boltz-
mann distribution.

While the most active chunk is usually retrieved, a blend-
ing process (Lebiere, 1999) can also be applied that returns a
derived output reflecting the similarity between the values of
the content of all chunks, weighted by their retrieval probabil-

ICCM2018

146

ities reflecting their activations and partial-matching scores.
The flow of information is controlled in ACT-R by a pro-

duction system, which operates on the contents of the buffers.
Each production consists of if-then condition-action pairs.
Conditions are typically criteria for buffer matches, while the
actions are typically changes to the contents of buffers that
might trigger operations in the associated modules. The pro-
duction with the highest utility is selected to fire from among
the eligible productions.

Mental Model
Our model is instance-based (Gonzalez et al., 2003). When-
ever the model makes an action decision, it does so based on
the similarity of the current situation to situations that it has
stored in declarative memory. Instances are represented in
the model as a chunk with the following five slots: green, or-
ange, blocking, vector, and action. The slots green, orange,
and blocking are binary True/False, the vector slot is pop-
ulated with a chunk holding a 256-dimension vector, repre-
senting activity in the network (described below), and values
for the action slot can be either: select-green, select-orange,
or select-around.

Unlike many previous instance-based models in ACT-R,
this instance-based model does not use ACT-R’s blending
mechanism since the output action is categorical in nature. In-
stead of blending a value estimate of the action category, our
model simply selects the action from the stored instance that
most closely matches the network activity of the RL agent.

Instances
We populated the model instances by tracing the RL agent
while it plays different scenarios. In total, the RL agent
played 50 games. Each game consists of a two-minute time
period where a configuration of beacons is presented. The
number of configurations presented varies based on the time
it takes for the RL agent to reach a beacon. Once the agent
reaches a beacon, a new configuration is presented, until the
two minutes elapsed. Symbolic terms describing the scenario
were stored in the instance (green-only, orange-only, green-
and-orange). We populated the action slot of the model’s
declarative memory with the action an expert would choose:
select-green in a green-only scenario, select-orange in both
orange-only and non-blocking scenarios, and select-around
(as an abstract action) in the blocking scenario. Importantly,
given these instances, the model would never predict that the
RL agent would select the orange beacon in a blocking sce-
nario. Finally, stored for every instance in declarative mem-
ory, was a chunk containing a vector representing the network
activity at that instant of game-play (introspection).

Introspection We augmented the symbolic context repre-
sentation in the instance chunks with a vector that represents
the network activity from the fc layer (top right, Figure 2).
We chose this layer for two reasons. First, we wanted a layer
that would be abstract enough to represent scenarios (as op-
posed to features in the scenarios). Second, we wanted a layer

that was spatially invariant. The fc layer corresponds to the
non-spatial action selection and chooses which action type to
take but does not choose the screen location of that action to
be executed. For example, it might be responsible for choos-
ing a click-action but is not responsible for choosing where to
click.

For efficiency, we follow Sanner et al. (2000), and limit
the number of instances that are stored. In our case, new
instances are limited to 10 items per category such that the
distance of the new vector must be greater than the minimum
distance between vectors across all categories. After initial
testing, we limited the total number of instances per category
to ten. Since each instance also stores a vector of network ac-
tivity and the vectors drive the similarity measure in ACT-R,
we attempted to capture a large space of vectors in each cat-
egory. We chose to filter the creation of categories by maxi-
mizing the euclidean distance between vectors.

Instance-Based Learning and Instance Retrieval
Once we populated the initial set of instances in ACT-R’s
declarative memory, it tries to classify new game states. We
use ACT-R’s partial matching mechanism such that it tries to
retrieve from memory instances that are most similar based
upon a vector representing network activity. The similarity
metric we used was euclidean distance between vectors, nor-
malized to a scale of 0 to -1, for all vectors in the category. All
other slots are not matched upon. The result of this process is
that the instance with the closest vector is recalled, regardless
of the symbolic content of that memory. It is possible, there-
fore, that symbolic content of the recalled instance does not
match the symbolic content of the current game state. In fact,
we are expecting that in blocking cases, the model will re-
trieve a non-blocking category. Once an instance is retrieved,
a production that matches the action stored in the instance
will fire. The production that fires is recorded for evaluation.
A side effect of the production is to combine the data from the
current game state and the instance retrieved from memory to
create a new memory.

Memory Creation for Model Adaptation The process of
creating new memories is the central feature that makes the
model adaptive. As we allow for a mismatch between the
symbolic content of the game state and the symbolic content
of the recalled instance, the model is capable of creating new
state/action categories. The new state/action categories can
then be used by the model as it continues to play the game.
The new memories store the vector for the current activity
of the RL agent network, the current game state (green, or-
ange, blocking), and the action from the retrieved instance,
combined as a new chunk.

Evaluation
The goal of our system is to provide symbolic terms, and a
model trace that can be used to infer an explanation. Our
models introspects on the network and ascribes plausible rep-
resentations to it.

ICCM2018

147

Although it is typical to assess a model on how well it pre-
dicts behavior, our interest is not how well the model fits the
network but what the performance might tell us about the
appropriateness of an ascribed mental state or explanation.
Since we conducted an evaluation of the network’s compe-
tency, we know ahead of time that the network does not ap-
pear to represent a spatial relationship between the agent and
the beacons. We inferred from this behavior that the net-
work does not make a spatial inference. We hypothesized
that by using partial matching on the vector slot only, the
model would conflate blocking and non-blocking scenarios,
occasionally retrieving the select-orange action (appropriate
in non-blocking scenarios) and create a new instance cate-
gory: green, orange, blocking, select-orange.

Analysis

Since each prediction that the model makes is categorical (an
action), we treat each guess as binary (correct/incorrect).

We ran the model 100 times. Each run consisted
of 10 episodes of the game, and each episode consists
of roughly 25 randomly generated scenarios: green-only,
orange-only, green-and-orange-non-blocking, and green-and-
orange-blocking. It was difficult to estimate a number of sim-
ulation runs that would be practical and provide a reason-
able estimation of the model’s performance. Variance was
observed to be stable at 100 runs. Importantly, since we are
not overly concerned about model fit, finding a true mean was
not absolutely essential.

Percent Correct The model correctly predicted the actions
of the RL 70.09 % of the time across all runs. In green-
only scenarios, the model predicts 99.95 % of the actions.
In orange-only scenarios, the model predicts 89.39 % of the
actions. In green-and-orange (Blocking and Non-Blocking)
scenarios, the model predicts 44.85 % of the actions. This
can be broken down further into two sub-categories: block-
ing and non-blocking scenarios. In blocking scenarios, the
model predicts 36.04 % of the actions. In non-blocking sce-
narios, the model predicts 49.04 % of the actions.

New Categories As previously mentioned, the model has
knowledge of what action to choose in a green-only scenario,
an orange-only scenario, non-blocking scenarios, and block-
ing scenarios. The model attempts to make new categories
based upon the RL network activity.

Table 1 summarizes what scenario/action pairs were used
and created by the model. The top of the table are the
state/action categories that the model was initialized with and
the bottom of the table are the state/action categories cre-
ated by the model, during game play. The left most column
is the scenario categories. Column 2 (Action) is the asso-
ciated action taken by the network in that scenario. Col-
umn 3 (Cat./Run) represents the average frequency the sce-
nario/action category was created per model run. Column 4
is measure of how often the associated action was chosen in
the given scenario. Note that the symbolic content in the table

(e.g. blocking, select orange) are the categorical output of the
cognitive model, that can be used to infer explanations.

Table 1: Category Creation and Use

Scenario Action Cat./Run Chosen (%)
Green-Only Select-Green default 99.95
Orange-Only Select-Orange default 88.39
Non-Blocking Select-Orange default 49.04
Blocking Select-Around default 63.88
Blocking* Select-Orange 9.98 36.04
Green-Only Select-Orange <0.01 0.03
Orange-Only Select-Green 3.03 3.63
Non-Blocking Select-Green 0.40 0.18
Blocking Select-Green 0.30 0.17
Green-Only Select-Around 0.01 0.02
Orange-Only Select-Around 5.48 7.98
Non-Blocking* Select-Around 10.00 50.80

* indicates expected categories.

Clustering We performed t-SNE clustering (Maaten &
Hinton, 2008) on the activity of the fc layer of the RL network
in order to investigate the network’s representations. The re-
sults of the clustering are illustrated in Figure 3. As illus-
trated, the network has distinct categories for both the green-
only and orange-only scenarios. Also illustrated in the fig-
ure, green-and-orange (non-blocking) and blocking scenarios
show a complete overlap.

Figure 3: The RL network’s representations formed at the
fully connected layer are naturally clustered depending on the
scenario that the agent is facing. The t-SNE process identifies
3 clusters, coloring is the result of semantic labelling.

Discussion
We know from evaluating the RL agent that it does not per-
form an action consistent with Select-Around. There are two
ways to interpret this behavior: first, that the RL agent does
not know how to go around; or second, that the RL agent
does not have the concept, ‘blocking’, and therefore does not
distinguish blocking scenarios from non-blocking scenarios.

ICCM2018

148

The results of our model suggest that the latter is the case.
Our model attempts to use the concept ‘blocking’ and creates
a new state/action category: Blocking/Select-Orange, con-
sistent with the behavior of the RL agent. Although this
state/action category reflects the action of the agent, the cog-
nitive model only approaches 50 % success in its predictions.
This is a first indication in the trace that the model does not
create the ‘blocking’ category (as opposed to an inability to
go around).

Although we had not originally expected it, the
cognitive model creates the state/action category Non-
Blocking/Select-Around. The creation (and high usage) of
the Non-Blocking/Select-Around in combination with the
Blocking/Select-Orange category suggests that the RL agent
cannot distinguish between green-and-orange-non-blocking
and green-and-orange-blocking: that is, it suggests the RL
agent does not have the category ‘blocking’.

These findings are confirmed in the t-SNE clustering. In
particular, the overlap between the pink and red dots in Figure
3 suggest that RL agent conflates blocking and non-blocking
categories. Just as in the model, the clustering algorithm re-
veals only three main categories: green-only, orange-only,
and green-and-orange.

Other categories created by the cognitive model (e.g.
Orange-Only/Select-Around), although unexpected, are
likely due to noise in either our similarity measure (not sensi-
tive enough) or the RL’s distributed representation. For the
most part, those categories have both a low category cre-
ation rate and low usage percentage. It is worth pointing out
that the Orange-Only/Select-Green and Orange-Only/Select-
Around have a high-category creation per run (3.03, 5.48 re-
spectively) and percent chosen (3.63 percent and 7.98 per-
cent of the time) compared to the other unexpected categories.
Overall, their usage remains quite low.

Conclusion
The work presented in this paper is an initial evaluation of a
methodology for generating explanations for the behavior of
Deep Reinforcement Learners. We use a computational cog-
nitive model to introspect upon the activity of the network.
Given an initial set of classifications, defined by categories
present in an ontology, the model either uses existing cate-
gories to choose an action (a prediction of the network’s ac-
tion) or creates a new instance by combining content from
the current game-state and the retrieved declarative memory
instance.

We believe the output of the model can be used to generate
explanations and, in particular, our system is able to detect
when concepts from the ontology (the concepts humans use)
are not realized in the RL agent. The model presented only
begins to scratch the surface of what can be accomplished in
the overall methodology.

We are currently pursuing three lines of research to expand
our approach. We have developed a method for leveraging
the blending mechanism in ACT-R to determine which fea-

tures are most salient in an action decision. Providing the
key features that were used in an action decision helps make
the explanation more tractable for a naive observer. We are
developing top-down interaction such that the ACT-R model
can influence the training of the Deep RL agent. We do this to
try and influence the agent to learn a concept that it has had
trouble learning or that appears in the ontology but not the
RL agent. There may be times when we want a more natural
mapping between a human observer and an RL agent so that
explanations are more straightforward. Finally, we are in the
process of developing an ACT-R model that learns the task in
a human-constrained manner.

Acknowledgments
This work was funded by a subcontract from PARC under
DARPA contract FA8650-17-C-7710.

References
Anderson, J. R. (2007). How Can The Human Mind Occur In

The Physical Universe? New York, NY: Oxford University
Press.

Anderson, J. R., Bothell, D. J., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004, oct). An integrated theory
of the mind. Psychological review, 111(4), 1036–60. doi:
10.1037/0033-295X.111.4.1036

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-
based learning in dynamic decision making. Cogni-
tive Science, 27(4), 591–635. doi: 10.1016/S0364-
0213(03)00031-4

Lebiere, C. (1999). The dynamics of cognition: An ACT-
R model of cognitive arithmetic. Kognitionswissenschaft,
8(1), 5–19. doi: 10.1007/s001970050071

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data us-
ing t-sne. Journal of machine learning research, 9(Nov),
2579–2605.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T.,
Harley, T., . . . Kavukcuoglu, K. (2016). Asynchronous
methods for deep reinforcement learning. In International
conference on machine learning (pp. 1928–1937).

O’Reilly, R. C., & Munakata, Y. (2000). Computational
Explorations in Cognitive Neuroscience (Vol. 46). MIT
Press.

Sanner, S., Andrew, S., Edu, C. M. U., Anderson, J. R.,
Lebiere, C., Andrew, C. L., . . . Lovett, M. (2000).
Achieving Efficient and Cognitively Plausible Learning in
Backgammon. In Seventeenth international conference on
machine learning (pp. 823–830). Stanford, California.

Vinokurov, Y., Lebiere, C., Herd, S., & O’Reilly, R. (2011).
A Metacognitive Classifier Using a Hybrid ACT-R/Leabra
Architecture. In Proceedings of the 15th aaai conference
on lifelong learning (pp. 50–55).

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhn-
evets, A. S., Yeo, M., . . . others (2017). Starcraft ii: a
new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782.

ICCM2018

149

Modeling prototype effects in a binary classification task

Robert St. Amant (robert.a.stamant2.civ@mail.mil),
MaryAnne Fields (mary.a.fields22.civ@mail.mil),

Craig Lennon (craig.t.lennon.civ@mail.mil)

U.S. Army Research Laboratory, 28000 Powder Mill Rd. Adelphi, MD

Abstract

This paper analyzes the results of two experiments in the early
classification literature. A Naive Bayes model provides a good
account of human performance, as expected, though category-
level differences remain unresolved. An ACT-R cognitive
model is described that reproduces some but not all of observed
patterns in human performance; directions for further research
are identified.

Keywords: Classification, categorization

Introduction

Categorization is a topic of longstanding interest in psychol-
ogy, cognitive science, and artificial intelligence. Plato fa-
mously captured our fascination in his metaphor of “carving
Nature at its joints”—how we divide things into categories
can reveal important insights about how we conceive of the
world. Our ability to categorize is plausibly a form of cog-
nitive economy; if we can identify a stimulus with a known
category, we can make inferences about information we can-
not directly observe. Further, to the extent that our categories
map to structure in the world, categories can help us identify
the possible actions we can take (Rosch & Lloyd,1978).

Categories are a basic part of our rationality. Ander-
son has applied rational analysis to categorization, provid-
ing a Bayesian framework in which the incremental, itera-
tive process of categorization that people follow can be un-
derstood (Anderson,1991). This work has led to computa-
tional models of categorization, such as the hybrid model
of Anderson and Betz (2001), which included separate rule-
based and exemplar-based strategies for categorization.

We have adopted the ACT-R cognitive architec-
ture (Anderson,2009) for research on mobile robotics
in our laboratory. We would like to take advantage of
architectural capabilities that support categorization and
classification, for such tasks as scene and object recognition,
and even facial expression categorization (Fields, Lennon,
Martin, & Lebiere,2017). Our interest is in problems that a
robot encounters in making sense of patterns of features in its
environment. For example, imagine an assemblage of a table
and chairs: Is this a classroom? An office? A dining room?
A public cafe? A judgment may depend on geometry and
other factors, but we would also like to depend on a cognitive
model’s categorization as having the same basic properties
as that of a human.

In a seminal paper, Rosch and Mervis (1975) elucidated
some of those properties through a series of experiments.
They established several findings: Categories have internal
graded structure; items with a higher family resemblance

within the category are judged as being being more repre-
sentative than other items. The degree of prototypicality of
an item in a category depends on other items in the category.
Prototypicality of an item in one category can be induced by
overlap with items in a contrasting category.

This paper revisits two of Rosch and Mervis’s experiments
in an attempt to explain their findings in terms of a uni-
fied cognitive architecture. One motivation for this paper is
that Anderson’s extensive work on applying rational analy-
sis to categorization has not intersected only indirection with
Rosch’s work; we saw this as a gap we might fill. In the next
section, we summarize Rosch and Mervis’s experiments, in-
cluding their results. The experimental tasks are amenable to
modeling in part because they are based on artificial, con-
structed data. This means that contextual effects of prior
knowledge were negligible (e.g., in comparison with natu-
ral categories), which significantly reduces the challenge of
building a computational model. The section that follows
gives a probabilistic analysis that accounts for most of the
findings discussed. Computational modeling issues are then
are addressed.

This paper makes a set of incremental contributions to the
literature. First is a new analysis of historically important
experiment results; this required problem formalization and
some reconstruction of the original data. Second is a demon-
stration that Anderson’s rational analysis applies well to these
classification tasks, and that a specific Naive Bayes classifi-
cation method predicts experiment observations. Third is the
identification of challenges raised for modeling classification
tasks, with suggested directions for future work.

Related Work

Probabilistic and information processing models of catego-
rization and classification have become sophisticated, able to
capture fine performance distinctions and to give insight into
cognitive processing (Kruschke,2008;Pothos & Wills,2011).
As suggested in the introduction, our interest in classification
is relatively narrow, focusing on processes that are, ideally,
consistent with the rational analysis and the ACT-R architec-
ture.

The most obvious related work is Anderson (1991)’s ratio-
nal analysis, plus follow-on work with ACT-R (e.g., Ander-
son & Matessa,1992;Petrov & Anderson,2000;Anderson &
Betz,2001); this will figure in our discussion below. For now,
we note that early work by Rosch and others tended to fo-
cus on classification tasks, where experiment participants are
asked to assign items to pre-defined or well-understood ex-
isting categories. Categorization tasks now commonly allow

ICCM2018

150

participants to form new categories to account for the items
they see, but categorization is beyond the scope of this paper.

Two experiments described by Rosch and Mervis (1975)
involve learning categories of artificial data. Briefly, their
Experiment 5 had one control category and two contrast cat-
egories, as shown in Table 1.1 The focus of this experiment
was on family resemblance, here denoted Rc of an item in a
category. An item consists of some number of distinct terms;
e.g., KT3YR has five terms: K, T, 3, Y, and R. A term can
occur in multiple items in a category; e.g., K occurs 3 times
over all the control items (the first column of Table 1). Rc for
a given item in category c is computed by summing the occur-
rences of each of its terms; e.g., Rc = 3+3+3+1+2 = 12
for the control category—K appears 3 times across all control
items, T also 3 times, and so forth. The intuition behind this
computation is that we consider items to be more similar to
each other the greater the number of features, or terms, they
share in common. Over a fixed set of items that form a cate-
gory, the commonality of a term is equivalent to the count of
its appearances.

Rosch and Mervis defined two contrast categories, one
“symmetric” and the other “asymmetric”. The symmetric cat-
egory is so-called because it contains paired terms with low
(Rc = 15), medium (Rc = 19), and high (Rc = 21) family re-
semblance values. An additional experiment factor could thus
be used to test for differences within a family resemblance
level. All Rc values for terms in the asymmetric category are
distinct. The details of item construction for the different cat-
egories are not relevant here, but one ramification is: in the
symmetric category the mean family resemblance of items is
higher (and in the asymmetric category, lower) than that of
the control category.

Variations on these items were presented to experiment
participants: the characters in each string were shuffled (re-
maining constant afterwards), and they were presented in a
randomized order. Each participant saw the control items and
one set of contrast items, each with its association to its cat-
egory. After the initial presentation, participants were tested

1Ideally, the items in Table 1 would match those in Table 3 of
Rosch and Mervis (1975), but the latter contain errors: the control
group for the “nonoverlap contrast category” is described as contain-
ing items that all have a family resemblance of 12, but their actual
values range from 11 to 14. We could not easily identify the prob-
lem and (after contacting the authors of the original paper) opted to
construct new strings to reflect the relevant criteria.

Table 1: Experiment 5 categories

Control Rc Symmetric Rc Asymmetric Rc
KT3YR 12 PXWLC 21 8LP4M 16
KT301 12 XWLCV 21 8LP4S 15
7U3Z1 12 SPXWL 19 8LPXW 14
HUBZ7 12 WLCV2 19 8LCV2 12
HUBQR 12 4SPXW 15 8DNGE 10
KTBQA 12 LCV28 15 M9N56 7

on the items, each shown without its category, in random or-
der; correct and incorrect answers were marked as such to the
participants. Once the items had been learned, indicated by
a successful run twice through all items in both categories, a
testing phase collected response times for the items and other
judgments about them.

Rosch and Mervis hypothesized that family resemblance of
an item to its category would affect performance in classifi-
cation. Higher family resemblance items would be classified
with fewer Errors and a lower Response Time; experiment
participants would also judge such items to have higher Pro-
totypicality with respect to their category. These measures
showed no significant differences between the items in the
Control category, where resemblance was constant. With the
categories for comparison divided into low, medium, and high
resemblance items (those divisions shown as gray lines in Ta-
ble 1), all of the predictions held.

For Experiment 6, Rosch and Mervis defined new cate-
gories for comparison, two of which are shown in Table 2.
Note that Experiment 5 is a very easy binary categorization
task: the categories being compared have no terms in com-
mon. Experiment 6 categories were different. The items in
the contrast category were constructed so as to provide a dif-
ferent degree of overlap with the category for comparison.
The overlap of an item with its contrast category is computed
as the number of its items that appear in the contrast category.
For example, JXPHM has zero overlap: none of its characters
appear in any item in the contrast category. HMQBL has an
overlap of 3, because Q, B, and L appear one or more times.
Resemblance (Rc) and overlap (Lc) are shown for each item.

Rosch and Mervis hypothesized that, for the same cate-
gory structures in Experiment 5, overlap with the contrast
categories would produce different results: higher overlap
would lead to greater error rates, longer response times, and
lower judgments of prototypicality. In brief, overlap (or lack
thereof) can induce prototypicality. All of these predictions
held, for low, medium, and high overlap.

A Naive Bayes model

Naive Bayes classifiers have a long history in machine learn-
ing and information retrieval. In this section we outline a sim-
ple classifier and connect its structure with the data described
in the previous section. This section follows the exposition
and adapts the formal notation of Manning, Raghavan, and

Table 2: Experiment 6 categories

Symmetric Rc Lc Contrast Rc Lc
JXPHM 15 0 GVRTC 15 0
QBLFS 15 5 SFLBQ 15 5
XPHMQ 19 1 VRTCS 19 1
MQBLF 19 4 CSFLB 19 4
PHMQB 21 2 RTCSF 21 2
HMQBL 21 3 TCSFL 21 3

ICCM2018

151

Schütze (2008). Our discussion is to some extent a reiter-
ation of Anderson (1991)’s classic rational analysis of cate-
gorization, much simplified because it does not involve the
formation of new categories.

In Rosch and Mervis’s experiments we have a classification
task, with a set of disjoint categories that partition a set of
items. An item is a set consisting of a fixed number of terms.
For example, as mentioned above, the first column in Table 1
shows a category, and each row in that column is a different
item, a set of terms; the first is {K,T,3,Y,R}. Every item x
has a category c, a distinguished feature that we will express
as xcat = c. Because exactly two categories are involved, we
use c to represent one category and c̄ the other.

We assume a maximum a posteriori (MAP) decision rule,
in which the category chosen for an item is the most probable.

P(c|x) = sP(c)’
t2x

P(t|c), (1)

where P(t|c) is the probability that some term t appears in an
item in category c; s is a scaling factor. Note the indepen-
dence assumption: the product stands in for P(x|c), assuming
conditional independence between the component terms of x
given c.

We can estimate P(c) in Equation 1 by counting:

P̂(c) =
|{x : xcat = c}|

|{x : xcat = c}|+ |{x : xcat = c̄}| ; (2)

P(t|c) can also be estimated in a straightforward way:

P̂(t|c) = |{x : t 2 x}\{x : xcat = c}|
|x| |c| , (3)

where the numerator is the count of items in category c that
contain term t, and the deonominator is the product of the
count of all items in c and the size of each item x, assumed
constant. (For conciseness in later formulas, we will write
count(t,c) for the numerator.) For example, for the specific
term K and the Control category of Experiment 5,

P̂(K|Control) =
|{KT3YR,KT301,KTBQA}|

5 ·6 =
3

30
= .10,

which can easily be verified in Table 1.
We expand Equation 1 as follows, using a Bayesian likeli-

hood formulation and taking logarithms:

log


sP(c)
sP(c̄)

’t2x P(t|c)
’t2x P(t|c̄)

�
(4a)

= log
P(c)
P(c̄)

+ log’
t2x

P(t|c)
P(t|c̄) (4b)

= log
P(c)
P(c̄)

+Â
t2x

logP(t|c)�Â
t2x

logP(t|c̄) (4c)

ACT-R modelers will find this expansion familiar.2
Anderson (1996) described 4b as the activation equation:

log(posterior odds) = (5)
log(prior odds)+ log(likelihood ratio)

We will thus refer to Equation 4c as the “posterior odds” for-
mula (or simply odds, in the caption of Figure 1). We can
approximate it by substituting Equations 2 and 3 as estimates
of P(c) and P(t|c).

Returning to Rosch and Mervis, family resemblance (Rc),
for an item x and its category c, is the sum of the appearances
of each term of x over all items in c. For overlap (Lc), each
term in x is counted if it also appears in some item of c̄ (with
the minimum function ensuring that a term is counted only
once, if it appears at all). Rc and Lc are plausible proxies for
the second and third terms of Equation 4c, respectively.3

Rc(x,c) = Â
t2x

count(t,c) (6a)

Lc(x,c) = Â
t2x

min(count(t, c̄),1) (6b)

The posterior odds formula can be used to predict the Er-
rors, Response Time, and Prototypicality measures of the pre-
vious section. Figure 1 shows a scatter plot for each measure.
Data points are the low, medium, and high resemblance sub-
sets of items in the Symmetric and Asymmetric categories
from Experiment 5; the Control category items from Exper-
iment 5; and the low, medium, and high overlap subsets in
the Symmetric category from Experiment 6.4 The horizontal
axis in each plot gives the range of log posterior odds values,
as produced by Equation 4c, using Equations 2 and 3 for es-
timation. The vertical axis shows the range of the relevant
performance measure. We note a strong linearity in the Er-
rors and Response Time plots. Linear least squares fits are
given in the caption of Figure 1. Our interpretation is that the
posterior odds formula provides a reasonable explanation for
patterns in the data.

The subsets within the plots of Figure 1 are informative.
Within each experiment condition, low/medium/high rela-
tionships are correctly predicted over all three measures. For

2Equation 4b could be simplified further (the first term drops

out because |c|= |c̄|) and approximated as log’t2x
count(t,c)
count(t, c̄)

. We

leave it in the form of Equation 4c to emphasize that the posterior
odds are increased by family resemblance, decreased by overlap.

3As a philosophical point, our description of the direction of
this relationship is intentional. The Bayesian account is not simply
an approximation of what people do. Rather, following Anderson
(1991)’s rational analysis of cognition, we would say that Rc and
Lc influence human performance in categorization (to the extent that
they do) because they contribute as approximations to rational be-
havior.

4 Rosch and Mervis (1975, p. 593): “Contrast strings in con-
trol. . . were not analyzed in Experiment 6.”

ICCM2018

152

21 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

14

0

2

4

6

8

10

12

log posterior odds

Er
ro

rs

21 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1,200

400

500

600

700

800

900

1000

1100

log posterior odds

R
es

p
on

se
 t

im
e

21 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

7

1

2

3

4

5

6

log posterior odds

Pr
ot

ot
yp

ic
al

it
y

Figure 1: Prediction of errors, response time, and prototypicality ratings. Experiment 5: Control (•); Symmetric (⇥); Asym-
metric (+); Experiment 6: Symmetric (�). Errors = 31.27�17.66odds, R2 = .877; Time = 2148.06�1017.96odds, R2 = .720;
Prototypicality =�2.52+4.33odds, n.s.

example, for Response Time, the posterior odds formula pre-
dicts lower times for higher family resemblances; this holds
for both the symmetric and asymmetric comparisons of Ex-
periment 5. The effect of overlap in Experiment 6 is also pre-
dicted: although the family resemblance values are the same
as for the symmetric category in Experiment 5, Experiment 6
performance is degraded significantly.

The model is too coarse to predict some inter-category rela-
tionships, however. Items with the same approximate family
resemblance value give different performance, depending on
the category. For example, in Experiment 5 the high Rc = 15
or 16 asymmetric items have a response time of 532 ms, while
the Rc = 15 symmetric items have a much longer duration of
692 ms. This difference is systematic, with the pattern hold-
ing for all three measures. This appears to be due to the dis-
tribution of items (or rather, their constituent terms) within
the categories: some distributional factor other than Rc or Lc
allows items in the asymmetric category to be handled more
efficiently.

Our analysis has obvious limitations, aside from using
sparse data to develop and evaluate a model. Ordering re-
lationships within an item, as well as an item’s identity as a
whole, are ignored. The sensitivity to possible interactions
between individual items and other items in the category is
also ignored.

These and other characteristics of our analysis are driven
in part by our choice of a classification method. We have
described a Naive Bayes classifier based on a multinomial
event generation model (Manning et al.,2008;McCallum &
Nigam,1998). The specifics of the domain allowed for sev-
eral constraints that are not part of the more general multino-
mial model, as mentioned above. In addition, the multinomial
model counts occurrences of terms in items, while in our clas-
sification problem terms can occur at most once in an item.

Consider the size of the aggregate vocabulary of the items
to be classified, in terms of binary features. Each item has
five explicit terms (e.g., |{K,T,3,Y,R}| = 5), but the fea-
ture structure of the entire classification problem is much
larger. The number of features for each pair of categories
in the experiments is the size of the union of all items in both
categories, |

S
({x : xcat = c}[{x : xcat = c̄})|, which ranges

from 20 in Experiment 6 to 32 for the asymmetric compari-
son in Experiment 5. Given the response times in the neigh-
borhood of 500 ms to 1200 ms, the explicit consideration of
the absence of terms does not seem cognitively plausible.

In sum, this analysis provides evidence that multinomial
Naive Bayes, a simple, well-understood model of classifica-
tion, can produce quantitative predictions of the prototype ef-
fects identified by Rosch and Mervis: response time, error
rates, and prototypicality judgments as influenced by family
resemblance and overlap with contrast categories. This is a
minor result, consistent with Anderson (1991)’s results, but
to our knowledge this specific formalization and analysis are
not part of the literature.

Cognitive modeling considerations

Given the analysis in the previous section, with the resulting
statistical model, the next step is to build a cognitive model
to carry out the classification tasks of Experiments 5 and 6.
For pragmatic reasons, we focused our modeling efforts on
explaining response time. We wanted to account for three
phenomena in models that replicate human performance in
Experiments 5 and 6:

• Family resemblance: Items with a higher Rc have lower
response times.

• Overlap: Items with higher Lc have higher response times.

• Category-level differences: Response times depend on cat-
egory properties; for example, items in an asymmetric cat-
egory have a lower response time than items in a symmetric
category, even if their Rc is the same.

We developed a modeling scenario as follows. In a train-
ing stage, items appear as strings of characters on the display,
each with a known category. The model attends each item,
breaking it down into component features in the imaginal
buffer, with further processing to update declarative memory,
as described below.5 The follow-on testing stage is similar

5Also, as a “mechanical” extension to facilitate model develop-
ment, we added the capability of treating the slots of a chunk as
representing an unordered set of items (rather than as a relation with
named places).

ICCM2018

153

in structure, except that after the decomposition of the item,
a memory retrieval is performed, with the item’s features in
the imaginal buffer to provide context: the category with the
highest activation is retrieved. The model presses a key cor-
responding to the category of the item.

Rosch and Mervis’s experiments provide a useful timing
constraint on the details of this model; response times as short
as 532 ms were observed for some experiment conditions. As
a comparison, the visual and motor processing for an ACT-
R model to acquire an item and press a key, using default
parameter values, takes 360 ms.

One implication is for the decomposition of a visual item
into its consitituent characters during the testing stage. If
a model were to sequentially focus attention on each char-
acter (185 ms per shift), the process would take close to a
second. Instead, we assume that the letters in each item are
acquired in parallel (McClelland & Rumelhart,1981) with an
imaginal buffer action, reusing parts of a model we developed
for transcription typing (St. Amant, Goodwin, Dominguez, &
Roberts,2015). The addition of this capability extends the re-
sponse time in the model to 495 ms.

The more critical conceptual issue is about the activation
of chunks representing categories, items, and terms in mem-
ory. Anderson (1996) explains how this works in ACT-R (the
contemporary version), in the context of categorization:

Various features in chunks spread activation to various
categories according to the likelihood of that feature
given the category. Categories have base-level activa-
tions to reflect their prior frequencies. The resulting ac-
tivations reflect the log posterior probability of the cate-
gory. The most active category is chosen to classify the
stimulus.

Consider a snapshot in time during the testing stage.
Chunks for both categories c and c̄ are present in declara-
tive memory, each with slots holding chunks that correspond
to the terms that have appeared in items learned for the cat-
egories.6 Each category chunk has been presented the same
number of times, and though differences in rehearsals dur-
ing the training period could produce different base activa-
tion levels, the simplest interpretation is that P(c) = P(c̄).
Differences in activation are thus produced by the posterior
probability, the second term in Equation 4b.

Unfortunately, spreading activation for a category chunk c,
which we will write Sc, doesn’t quite capture the posterior
probability, in ACT-R 7 (Bothell,n.d.).

6Given the conditions of Rosch and Mervis’s experiment, it’s in-
stead possible that participants were recalling specific items, each
with its category feature, rather than chunks representing the cate-
gories themselves. This does not change the analysis, however.

Sc = Â
t2x

WStc (7a)

= Â
t2x

W [S� ln(fantc)] (7b)

= Â
t2x

W [S� ln(1+ count(t,c)+ count(t, c̄))] (7c)

Equation 7c suggests that spreading activation could ac-
count for the results of Experiment 6. For our purposes, the
weight W is assumed constant. On retrieval of a category for
a set of terms x, activation will be reduced by the fan, a func-
tion of how many chunks in declarative memory reference
the terms in x. Because of overlap, the fan is greater than it
would be otherwise. Equation 7c is problematic for family
resemblance, however. Items with a high family resemblance
in a category, by definition, have a greater number of terms
that are contained in other items in the category. This reduces
Sc. To the extent that this factor influences activation, Rosch
and Mervis’s results imply that the opposite should be the
case. Finally, it is not obvious how the last phenomenon of
category-level differences can be addressed.

We experimented with alternatives that extended the ar-
chitecture to support the necessary computations in differ-
ent ways. At the core of the extensions was handling co-
occurrences of t and c during the training phase, to support
computation of the posterior probability during the test phase.
The models required careful tuning event to approximate the
results of Experiment 5 and 6—and then only of the fam-
ily resemblance and overlap phenomena, not the category-
level differences. Excluding data from Experiment 6, Fig-
ure 2 shows the best model we were able to develop. The
model’s predictions, unfortunately, are not very good, with
RMSE = 77.80, and a linear fit that is not significant.

One extension recorded frequencies explicitly, combining
them into similarities between t and c chunks, to enable the
partial matching mechanism to produce this computation.
A different extension automatically “distributed” activation
from an item chunk to its terms, during the training phase
when the item was added or merged into declarative mem-
ory; reconstructing an appropriate activation during the test
phase was problematic. Our efforts turned out to be mainly a-
theoretical software modifications that blurred the distinction

900600 650 700 750 800 850

800

500

550

600

650

700

750

Model Time

T
im

e

Figure 2: Model prediction of response time, Experiment 5:
Control (•); Symmetric (⇥); Asymmetric (+).

ICCM2018

154

between the contributions to activation of prior and posterior
probability.

More promising alternatives are in the literature (e.g.,
Van Maanen & Van Rijn,2006;Thomson, Harrison, Trafton,
& Hiatt,2017). We have begun to explore new directions,
in particular based on the work of Thomson et al. (2017),
who propose an alternative for spreading activation. Their ap-
proach is based on Hebbian associative learning, in which the
strength of associations between items in memory changes
over time due to temporal proximity. We have not yet built
new models, however.

The phenomenon of category-level differences also re-
mains to be addressed. Our characterization of the phe-
nomenon at the category level implies that properties of a cat-
egory (which is defined only by the presentation of its items)
influence its activation and thus its retrieval time. One chal-
lenge is theoretical justification. The addition of another de-
gree of freedom in a model (i.e., using a second factor aside
from log posterior odds) can only improve its fit to the data.
But which category feature? The space of such factors is un-
bounded in principle, but we lack good intuitions for choos-
ing between them. (For natural categories, plausible factors
do exist, based on semantic properties and relationships.)

Another challenge is operational: how would summary in-
formation about a category accumulate? Blending is one pos-
sibility. Blending is a mechanism for aggregate retrievals,
tested mainly on situations where continuous or ordered data
must be handled, such as magnitude estimation. There ap-
pears to be a natural connection, however, to information
about categories, such as their sizes, their compactness, and
so forth, as mentioned above. Adoption of this approach
would require further research, also work in progress.

Acknowledgments

The authors would like to thank Frank E. Ritter for help-
ful comments. We are also indebted to three knowledgeable
anonymous reviewers who pointed us to relevant literature
and helped us better understand the context of our research
and our results.

References

Anderson, J. R. (1991). The adaptive nature of human cate-
gorization. Psychological Review, 98(3), 409.

Anderson, J. R. (1996). ACT: A simple theory of complex
cognition. American Psychologist, 51(4), 355.

Anderson, J. R. (2009). How can the human mind occur in
the physical universe? Oxford University Press.

Anderson, J. R., & Betz, J. (2001). A hybrid model of catego-
rization. Psychonomic Bulletin & Review, 8(4), 629–647.

Anderson, J. R., & Matessa, M. (1992). Explorations of an in-
cremental, Bayesian algorithm for categorization. Machine
Learning, 9(4), 275–308.

Bothell, D. (n.d.). ACT-R 7 reference manual.
Fields, M. A., Lennon, C., Martin, M., & Lebiere, C. (2017).

Priming for autonomous cognitive systems. In Micro-and

nanotechnology sensors, systems, and applications IX (Vol.
10194, p. 1019421).

Kruschke, J. K. (2008). Models of categorization. The Cam-
bridge handbook of computational psychology, 267–301.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). In-
troduction to information retrieval. New York, NY: Cam-
bridge University Press.

McCallum, A., & Nigam, K. (1998). A comparison of event
models for Naive Bayes text classification. In AAAI-98
workshop on learning for text categorization (Vol. 752, pp.
41–48).

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive
activation model of context effects in letter perception: I.
an account of basic findings. Psychological Review, 88(5),
375.

Petrov, A. A., & Anderson, J. R. (2000). Anchor: A memory-
based model of category rating. In Proceedings of the an-
nual conference of the cognitive science society (pp. 369–
374).

Pothos, E. M., & Wills, A. J. (2011). Formal approaches in
categorization. Cambridge University Press.

Rosch, E., & Lloyd, B. B. (1978). Cognition and categoriza-
tion. Hillsdale, NJ: LEA.

Rosch, E., & Mervis, C. B. (1975). Family resemblances:
Studies in the internal structure of categories. Cognitive
Psychology, 7(4), 573–605.

St. Amant, R., Goodwin, P. R., Dominguez, I., & Roberts,
D. L. (2015). Toward expert typing in ACT-R. In Proceed-
ings of the international conference on cognitive modeling
(ICCM) (pp. 232–237). ICCM.

Thomson, R., Harrison, A. M., Trafton, J. G., & Hiatt, L. M.
(2017). An account of interference in associative memory:
Learning the fan effect. Topics in Cognitive Science, 9(1),
69–82.

Van Maanen, L., & Van Rijn, H. (2006). An accumula-
tor model account of semantic interference in memory re-
trieval. In Proceedings of the international conference on
cognitive modeling (ICCM) (pp. 322–327).

ICCM2018

155

Modeling Instruction Fetch in Procedural Learning
Bryan Stearns (stearns@umich.edu)

John Laird (laird@umich.edu)
University of Michigan, 2260 Hayward Street

Ann Arbor, MI 48109-2121 USA

Abstract
Cognitive architecture agents execute and compile known pro-
cedures to model how humans learn procedural skill knowl-
edge for a given task. It is often assumed that agents have fully
learned how to order and condition that execution before the
task begins. Is this assumption valid, or can it impair human
modeling efforts? We posit that the first of the classic three
phases of skills necessitates learning how to order task execu-
tion and that models should account for this process. We eval-
uate the effects of modeling this process using a general fetch
and execute learning agent in Soar and apply it to modeling
two different human studies. Our agent introduces a proce-
dural chunking method for autonomously learning declarative
memory structures by which spreading activation can guide
task-specific execution order. We demonstrate that modeling
the process of learning how to order task execution can signif-
icantly improve human model results.
Keywords: skill acquisition; control; phases; spreading acti-
vation; cognitive architecture; Soar; primitive elements; PROP.

Introduction
Procedural skill knowledge is considered a fundamental com-
ponent of human cognition. How the human mind learns and
organizes such knowledge has been of scientific interest for
many years. Cognitive architectures, such as Soar and ACT-
R, provide a means to improve our understanding of the mind
through computational simulation of the processes thought to
underly cognition. Some consensus has arisen in the commu-
nity regarding certain qualities of cognition that these systems
both reflect (Laird, Lebiere, & Rosenbloom, 2017).

One theory of skill learning that has been operationalized
in ACT-R is the classic three phases proposed by Fitts and
Posner (1967). In the cognitive phase, the mind learns how
to understand task execution by deliberately reasoning over
each cue, action, and desired outcome. Task responses might
be incorrect while the correct ordering of actions is learned.
The associative phase follows once practical task understand-
ing is achieved. Responses to task cues become increasingly
fluid with practice. In the final autonomous phase, those re-
sponses are automatic and occur by reflex, subject to little
cognitive control or interference, such that unrelated reason-
ing can occur in parallel.

In ACT-R, cognitive phase learning is modeled via proce-
dure compilation (Tenison & Anderson, 2016). Procedures
are represented as rules, and during practice new rules are
created by combining or specializing existing rules for more
efficient task operation. It models associative phase learn-
ing by strengthening declarative memories, such that they
are more readily available after practiced access. An ACT-R
agent reaches the autonomous phase when it has learned task-
specific rules that incorporate declarative knowledge, such
that declarative retrievals are not needed.

Primitive elements theory (Taatgen, 2013) describes how
architecturally primitive procedural knowledge can be com-
piled into useful, transferable skills through practice. This
learning can be applied to any task using a general fetch and
execute cycle. Knowledge of how to practice a skill is fetched
from long-term declarative memory, and the indicated skill is
then practiced and learned. When primitive elements theory
was implemented in the Actransfer architecture, a variant of
ACT-R, it produced good models of both human learning and
transfer in many specific domains (Taatgen, 2013).

Primitive elements theory has also been applied to the Soar
cognitive architecture, leading to the Soar PRimitive OPera-
tor (PROP) model of primitive learning and transfer (Stearns,
Assanie, & Laird, 2017). The PROP model includes an ad-
ditional process of generating working memory addresses as
a primitive skill necessary for instantiating general procedu-
ral knowledge. This inclusion improved power-law learning
behavior to better match human data.

However, all these methods assume that when to fetch
skills is learned before model behavior begins. This assump-
tion is common in cognitive modeling, and underlies designs
that hard-code task conditions into initial procedural knowl-
edge. When to fetch and how to execute are learned sepa-
rately, and fetching is abstracted away from models.

In this paper we consider whether that assumption neglects
an important aspect of cognitive phase learning: learning how
to arrange task execution correctly. How might models that
learn skill fetching alongside execution differ from those that
ignore fetching? Does this assumption impair human model-
ing? To shed light on these questions, we extend the origi-
nal PROP model to learn to fetch during skill execution. We
show that modeling how skills are fetched during task execu-
tion can significantly improve simulations of human behav-
ior. For simplicity, we will refer to the original PROP model
as PROP1, and our model that learns to fetch as PROP2.

Fetch and Execute
PROP2 is defined for Soar, in which procedural knowl-
edge is encoded as if-then rules, and describes how a task-
specific skill can be converted from declarative into proce-
dural knowledge through repeated practice of a task-general
fetch and execute cycle.

PROP2 progresses through the three phases of skill learn-
ing. In the cognitive phase, the agent knows rules for the
process of fetching and executing instructions, but does not
know rules for when specific instructions should be fetched
and applied. Until it learns to fetch, a process we describe
later, fetching is random and can retrieve non-applicable in-

ICCM2018

156

structions. After the agent gains enough experience to always
fetch applicable instructions, it is in the associative phase.
In this phase, it learns increasingly task-specific rules that
reduce instruction execution latency. Eventually the agent
learns rules to perform a task automatically without fetching,
and is then in the autonomous phase.

We assume that instructions are stored in long-term declar-
ative memory by some prior learning process. Interactive task
learning (Laird, Gluck, et al., 2017) is one means by which an
instructor can teach instructions to an agent.

Instructions include three components: conditions, actions,
and any literal values used within them. Conditions and ac-
tions describe primitive assembly-like operations supported
by the architecture, and these are uniquely identified by the
working memory elements they use. For example, instruc-
tions might load the string “hello” (a literal value) into mem-
ory element A, test equality of values in elements A and B (a
condition), and then copy the value from B to C (an action).

After fetching, the agent executes an instruction by first
evaluating the instruction conditions. Initially this is done
with innate primitive rules. One rule fires to test the first con-
dition, another tests the second condition, and so on. If all are
true, additional rules execute the actions. If any are false, the
agent returns to fetching to attempt different instructions.

When the agent executes a sequence of instructed opera-
tions, it automatically learns rules that combine those opera-
tions together, as pictured in Figure 1. This process drives the
bulk of learning during the associative phase.1 Sequentially
associated rules are combined into new rules, which fire to
execute instructions in fewer steps than required by primitive
rules. These rules are general and can transfer to execute any
instructions that invoke the same architectural operations, but
their structure is specific to experienced task operations.

Figure 1: Hierarchical clustering of primitive memory operations,
adapted from (Taatgen, 2013). The architecture iteratively combines
seven primitive task-general operations through practice into a sin-
gle task-specific rule. In this example, actions query for the next
item in a sequence, while printing the current value.

Taatgen (2013) showed that hierarchical learning of prim-
itive memory operations provides a good model for human
skill learning and transfer in many domains. For good trans-
fer, it is important that rules are built gradually over itera-

1In agreement with ACT-R, our model also considers declarative
strengthening to be associative phase learning.

Figure 2: Soar chunking. Goal 2 is created as a subgoal of Goal 1.
Goal 2 decision making eventually derives a result that allows Goal
1 to continue. Chunking learns this result as a rule that recreates the
solution (step3-4) the next time the scenario arises.

tions of execution. A new rule only takes effect after multiple
learning attempts so that only rule combinations that appear
often across instructions are used within the skill hierarchy.

Associative rule composition eventually builds a single
task-specific rule equivalent to the complete fetched instruc-
tion set. Once learned, this rule will execute the instructed
conditions and actions by reflex without the need for reason-
ing over fetched instructions. An agent that primarily per-
forms a task by using such rules is in the autonomous phase.

This process defines how task rules are learned, and ignores
how the agent knows what to fetch and execute at a given
moment. But, as we will show, the same methods can be used
for learning what to fetch. In the next section, we describe
gradual procedural learning in Soar, the mechanism we use
for hierarchical associative learning and for learning to fetch.

Gradual Procedural Learning in Soar
ACT-R learns procedural knowledge by a hierarchical com-
pilation process similar to Figure 1. In contrast, Soar learns
procedural knowledge by summarizing problem solving.

Soar manages a stack of agent goals and corresponding
working memory partitions. Newer subgoals in the stack rep-
resent subproblems of earlier goals. As shown in Figure 2,
whenever agent reasoning connects declarative knowledge
from a subgoal’s memory to a higher goal’s memory (“returns
a result”), the architecture summarizes subgoal decision mak-
ing by creating a new rule that recreates that result whenever
the situation that led to the subgoal arises again. This learn-
ing is called chunking in Soar, and learned skills are called
chunks.2 Chunking is normally one-shot, and once a result
is returned, the corresponding chunk will preempt future sub-
goal problem solving. To implement our model, we extended
Soar to include gradual chunking.

To chunk gradually, the architecture tracks the number of
times a specific chunk is submitted for creation and only adds
that chunk to procedural memory if that number passes a pa-
rameterized threshold.3 Setting the threshold to 1 is equiva-
lent to standard one-shot chunking. A threshold of 2 would

2Not to be confused with ACT-R declarative chunks.
3Other methods can easily be used in place of creation counts,

but this is sufficient for our purposes here.

ICCM2018

157

require a subgoal to be solved twice, and so on.
To build the skill hierarchy shown in Figure 1, the PROP2

model includes innate rules that explicitly combine pairs of
invoked operations together as results for chunking after they
are executed. These combined operations can then be used to
apply instructions in future iterations of execution.

Learning to Fetch in Soar
An agent might have many instructions in long-term declar-
ative memory that it could fetch at any time. When it needs
to execute and learn a new skill, how does it know what to
retrieve? Instructions will not be applicable unless their de-
scribed conditions are true, but how can the agent know if
the conditions for specific instructions are true until after it
fetches and evaluates them? Without a method for biasing
memory retrievals toward instructions that are likely to have
matching conditions, all of declarative memory might have
to be searched before usable instructions are found. While
the order of operations can be hard-coded into rules, we ar-
gue that learning what to retrieve is an important aspect of
cognitive phase learning.

The Actransfer architecture controls fetching by precalcu-
lating which conditions were true for each instruction that
might be retrieved, and boosting the activation for instruc-
tions with satisfied conditions (Taatgen, 2013). The agent
then fetches instructions with the highest activation value.

PROP1 implemented instruction fetching by deliberately
controlling the fetch sequence. Declarative knowledge of the
correct instruction sequence for a given task (e.g. “Skill1 →
Skill45 → Skill2 → Done”) was provided to an agent at the
same time as those instructions. The agent then iteratively
fetched each element of that sequence to perform a task. This
method required the agent to constantly track its current po-
sition in that sequence. A problem with that approach is that
the agent loses track of its position in the sequence if it en-
ters the autonomous phase. The task-specific rules that drive
behavior in that phase act by reflex outside fetching and the
agent lacks meta-knowledge of what rules it fires. Thus, the
agent will not know to update its sequence position. When
it does need to fetch, it will resume where it last left off in
the declarative sequence, and will sequentially fetch and un-
successfully evaluate all operations that were just performed
autonomously until it catches up to the actual state of the task.
Deliberate fetching becomes a performance bottleneck by re-
quiring cognitive control over selecting each task step, even
when that step has already been performed.

Neither of these approaches explains how skill fetching is
learned. Rather than assuming activation boosts as in Ac-
transfer or relying on a fixed fetching sequence as in PROP1,
we create a more comprehensive model that learns how to
fetch instructions. We implement this by using Soar chunk-
ing to learn connections for spreading activation.

Primitive elements theory proposed using spreading acti-
vation to guide instruction fetching, though this was not im-
plemented in Actransfer (Taatgen, 2013). By this method,

when a query to long-term declarative memory has multi-
ple possible results, the memory with the highest activation
is retrieved. Spreading activation increases the activations
of memories associated with the current working memory
context. Working memory elements connected to long-term
memory elements boost the activations of those memories
according to connection weights. If those long-term mem-
ories are connected to other long-term memories, that boost
spreads, with some decay, to also increase their activations,
and so on to other memories.

Inspired by primitive elements theory, and the recent addi-
tion of spreading activation in Soar (Jones, Wandzel, & Laird,
2016), we developed a novel model for learning to fetch. This
model follows three constraints of Soar theory: First, only
working memories that also exist in long-term memory can
be sources of spreading activation. Second, Soar models a
fan-effect by normalizing a memory’s spread over the num-
ber of its descendants in the long-term memory graph. Third,
such working memories are either created through long-term
memory retrievals or through chunks.4

To learn spreading, PROP2 learns to create or remove
long-term memory elements within working memory, caus-
ing spread according to the first constraint. Each spread
source corresponds to an individual condition described by an
instruction, and spreads to that instruction. The agent learns
to create a spread source whenever the corresponding condi-
tion is true and remove it when it is false. Thus, instructions
with the most true conditions are favored for retrieval.

Figure 3: Declarative structures for skill fetching in Soar. Nodes in
bold are present in working memory. Spread from these is normal-
ized over the number of a rule’s conditions. Since condition C4 is
false, I1 receives 3/4 spread while I2 receives 2/2. I2 is then fetched.

But the agent should ideally retrieve instructions with fully
satisfied conditions. If all else is equal, instructions with only
six of seven conditions met should receive less total activation
than those with two of two conditions met. Therefore, accord-
ing to the second constraint, we structure long-term memory
so that spread normalizes over the number of conditions in a
set of instructions, as shown in Figure 3. In the figure, three

4Creating such memories through chunks is a feature of Soar 9.6,
developed by Mazin Assanie.

ICCM2018

158

of four conditions are known to be satisfied for Skill1, and
two of two conditions for Skill2. The execution knowledge
for Skill1 thus receives 3/4 normalized spread while that for
Skill2 receives 2/2 spread. Skill2 is therefore fetched.

To satisfy the third constraint, we use chunking to learn
when to create knowledge of satisfied conditions. When eval-
uating the conditions from fetched instructions, if the agent
finds a true condition, it returns declarative knowledge of that
result. After instructions have been fetched and evaluated
enough times over the course of a task to satisfy the chunking
threshold, Soar automatically chunks a rule that recreates this
result whenever the condition is met. As soon as that condi-
tion is no longer met, the chunk no longer matches, and the
spread source is removed from working memory.

For simplicity, we provide long-term declarative knowl-
edge of conditions at the same time as instructions, struc-
tured in the format shown in Figure 3. Our evaluation is con-
cerned with learning to create knowledge of matched condi-
tions within working memory.

Our agent begins each fetch with an open query for instruc-
tions that can be biased by spreading. Results will be random
at first before conditions are learned. If our agent finds that
it retrieved non-applicable instructions, it reverts to cognitive
control for fetching by retrieving and following the explicit
declarative fetch sequence. As the agent learns conditions
through experience, spread provides sufficient bias such that
controlled fetching becomes unnecessary.

Parameters for Skill Fetching
We have described our task-general design for learning skill
fetching and execution. Our aim is to evaluate the importance
of modeling the fetch process. We define two boolean pa-
rameters for modeling fetching, which in the PROP2 model
determine what kinds of rules an agent learns.

The first parameter is either LEARNED or KNOWN, and
determines whether an agent learns fetch order during task
execution. If fetching is LEARNED, the PROP2 agent will
learn rules for spreading during execution. If fetching is
KNOWN, the agent will always fetch through cognitive con-
trol by following a declaratively known fetch sequence.

The second parameter is either AUTO or DELIBERATE.
If set to AUTO, the agent eventually learns a single rule that
will perform task operations by reflex (the top-most composi-
tion depicted in Figure 1), bypassing declarative instructions
and cognitive control. If set to DELIBERATE, this final com-
position step is prevented, so that execution must always be
deliberate and fetching cannot be bypassed.

Evaluation
We evaluate these parameters against human behavior using
two human domains: a text-editors task Singley and Ander-
son (1985) and a mental arithmetic task (Elio, 1986). The ed-
itors task examines transfer, while the arithmetic task focuses
on the learning curve. These have already been modeled in
Actransfer, allowing us to compare our PROP2 model results

with those from the alternate fetch/execute paradigm. Ac-
transfer is a KNOWN-AUTO model, since it assumes fetch-
ing order (by hard-coding activation behavior) and allows
task rules to be fully learned, so ideally our model should
be similar to Actransfer when using KNOWN-AUTO.

We implement the same Actransfer agent designs, using
supplementary materials from (Taatgen, 2013), including the
same declarative instructions and the same simulated timing
for memory retrievals and vision/motor latencies. We also
model time using the same 50 msec per decision as is com-
mon in Soar and ACT-R.5

To select the gradual chunking threshold, we performed a
threshold sweep (not shown) to find the value that provides
the closest fit to the Actransfer model for comparison. Match-
ing differences in Actransfer model learning rates, we use a
threshold of 48 for editors task models, and 10 for arithmetic
task models. We also match Actransfer by averaging perfor-
mance over 12 trials for the editors task and 8 trials for the
arithmetic task. These models are fairly deterministic, and
variance is low.

We compare our results with average human performance
rather than that of individuals. Taking the average abstracts
away any individual differences among humans that would
arise from lifelong learning experiences that preceded partic-
ipation in the studies. Modeling average human performance
is our first step, and modeling individual differences is be-
yond the scope of the current study, although we plan to study
it in the future.

Editors Task
In the editors task, typists modified documents according to
written edit directions. Example directions are to replace one
word with another or to delete a sentence. Three keyboard-
only editors were used with which participants had no prior
experience: ED, EDT, and EMACS. These use different key-
board commands, and ED and EDT also differ from EMACS
by being simpler single-line editors. The experiment took
place over six days, with some participants switching editors
after two days to test transfer. If a participant spent two days
each on ED, EDT, and EMACS in that order, we call this case
ED-EDT-EMACS. If initial performance in EDT was faster
after using ED than when using EDT on day one, this indi-
cated transfer to EDT. We focus on transfer of ED to EDT-
EMACS, but other editor permutations show similar results.

Figure 4a shows results from the human experiment. Per-
formance on EDT after two days of ED is almost as good
as after two days of EDT, indicating substantial transfer.
There is similarly significant transfer to EMACS on day five.
(EMACS users required about 80 sec on day 1, not shown).
Figure 4b shows the Actransfer model. Model performance is
fast during days 1-2, but transfer trends are the same. Figure 5
shows the parameterized PROP2 models. Transfer is similar
among all models in Figures 4 and 5.

5Soar uses decisions to carry out retrievals, and we replace the
50 msec from those decisions with retrieval time.

ICCM2018

159

(a) Human performance (b) Actransfer model

Figure 4: Human data from (Singley & Anderson, 1985) and the
Actransfer model from (Taatgen, 2013), demonstrating transfer be-
tween editors.

Figure 5: PROP2 models of editors, varying over LEARNED (left
column), KNOWN (right column), AUTO (top row), and DELIB-
ERATE (bottom row).

In Figure 5, observe that there is a significant difference
between LEARNED (left column) and KNOWN (right col-
umn) results, primarily in slower LEARNED performance on
days 1-3. These are cases when non-controlled fetching re-
trieves mostly random instructions. Interestingly, after fetch
learning, LEARNED models are not far behind the KNOWN
models in performance, demonstrating that LEARNED mod-
els learn fetching and execution simultaneously.

Also notice that AUTO models (top row) achieve super-
human performance by day 6, at under 20 sec. Human
and Actransfer models, by contrast, end near 30 sec, as
do our DELIBERATE models (bottom row). The Actrans-
fer KNOWN-AUTO model uses precalculated activation to
fetch, and does not exhibit this phenomenon. But we surmise
that Actransfer is slower than our AUTO on day 6 due to acti-
vation noise, a part of that model that can also cause incorrect
fetching.

Overall, we see that LEARNED-DELIBERATE (bottom
left) most closely matches humans by accounting for slower
performance during the first days (due to LEARNED), while
finishing at the correct performance on the last day (due to
DELIBERATE). Performance on days 1-3 is too fast for EDT
but slightly slow for ED, implying the instructions for EDT

should be more complex and those for ED slightly less so.

Arithmetic Task
In the arithmetic task, human subjects memorized a mental
arithmetic algorithm and applied it to provided inputs for 50
trials. For brevity we omit transfer details and focus on the
learning curve.

(a) Humans & Actransfer (b) DELIBERATE models

(c) AUTO models (d) Best human model

Figure 6: Models of the (Elio, 1986) arithmetic experiment.

Figure 6a shows results for humans and the Actransfer
model. Only the power-law fit to human performance was
available from the original study, and this is what is shown as
the human model.

Figure 6b shows our LEARNED- and KNOWN-
DELIBERATE models. We first note the power-law perfor-
mance of PROP2, which is from having to learn how to access
working memory for tasks, inherited from PROP1 (Stearns et
al., 2017). We also see clearly how the LEARNED model
catches up to the KNOWN model after 15 trials. It does not
catch up entirely, due to the fuzzy nature of using activation.

Figure 6c shows our LEARNED-AUTO and KNOWN-
AUTO models. As with the editors task, the AUTO pa-
rameter results in eventual super-human performance. The
KNOWN-AUTO learning curve is not smooth, due to times
when autonomous task-specific rules invalidate the controlled
fetch sequence, which must then be stepped through to catch
up to the task state. But we observe that after trial 20 the
LEARNED-AUTO agent acquires enough fetch experience
to not require further deliberate fetch control.

We also observed that while model time incorporates many
factors, such as retrievals and motor latency, the amount by

ICCM2018

160

which KNOWN-DELIBERATE behavior differs from human
performance is a multiple of decision cycle time. Setting de-
cision cycle time to 37 msec results in almost an exact fit to
the human curve, as shown in Figure 6d.6 While not a stan-
dard timing, this fits neural modeling that predicts cycle times
of approximately 40 msec for simple actions (Stewart, Choo,
& Eliasmith, 2010). Table 1 shows the mean-squared-errors
of various timing models compared with the human model.

Actransfer 50 msec 40 msec 37 msec
MSE 1.270 1.695 0.177 0.0382

Table 1: Mean Squared Errors for Actransfer and KNOWN-
DELIBERATE models with varying simulated times for decisions.

Discussion
The above parameters reflect Fitts and Posner’s (1967) three
stages of skill learning in our model. The cognitive phase is
represented when fetch LEARNING is enabled. Hierarchical
compilation of instruction execution demonstrates the asso-
ciative phase, and allowing AUTO task-rules to be compiled
leads to the autonomous phase.

We model cognitive phase learning with a novel use of
Soar chunking by which chunks create or retract sources of
spreading activation. This general learning method could be
applied whenever there is an occasion for learning context-
appropriate retrievals, not just fetch modeling.

In the editors task, LEARNED fetching accounts for initial
human behavior in ways KNOWN fetching could not. How-
ever, in the arithmetic task, KNOWN models were most accu-
rate. We believe this reflects the natures of the tasks. Human
subjects performed the arithmetic task after being trained in
the algorithms, while editors subjects memorized only an ed-
itor’s individual keyboard commands prior to experimenta-
tion. Subjects performing the arithmetic experiment should
therefore have already mostly completed the cognitive phase,
which is not the case for subjects in the editors experiment.

Though AUTO allows faster execution, we notice that DE-
LIBERATE achieves the closest human performance in both
experiments. Within our model this implies that humans do
not perform these tasks entirely by reflex after training, but
continue to reason over each step. This might imply that the
autonomous phase is more appropriate for modeling motor
skills, as Fitts and Posner were evaluating, rather than domi-
nantly cognitive skills.

Our arithmetic task model is almost identical to the human
model when decision cycle time is just under 40 msec. By
contrast, changing cycle times has little effect on the editors
model, since it performs at the scale of 100 sec, largely due to
memory retrieval times. Editors agents also employ a higher
chunking threshold than used by arithmetic agents, implying
that human processing is more complex for the editors task
than for the arithmetic task compared to our models, which

6This would not be achieved by changing the chunking threshold,
as that alters the learning curve shape in addition to scale.

also makes sense given the different time scales. The appro-
priate complexity of task models and the validity of 40 msec
cycles for primitive skills are beyond the scope of this paper.
However, they present intriguing avenues of study.

We therefore conclude that consideration for the stages of
learning and these fetching parameters is critical for human
modeling. Whether an agent learns fetching or assumes it to
be already learned should reflect the task being modeled. The
fetch process of choosing what to execute is one by which the
human mind controls its own behavior. Learning that con-
trol can be important for even simple modeling, as we have
demonstrated, but understanding the theory of that learning
could play an important role in unraveling the mysteries of
human cognition.

Acknowledgments
The work described here was supported in part by the Office
of Naval Research under Grant Number N00014-18-1-2010.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressly or implied, of
the ONR or the U.S. Government.

References
Elio, R. (1986). Representation of similar well-learned cog-

nitive procedures. Cognitive Science, 10(1), 41 - 73.
Fitts, P., & Posner, M. (1967). Human performance. Bel-

mont, CA: Brooks/Cole Pub. Co.
Jones, S. J. M., Wandzel, A. R., & Laird, J. E. (2016). Effi-

cient computation of spreading activation using lazy evalu-
ation. In International conference on cognitive modeling.

Laird, J. E., Gluck, K., Anderson, J., Forbus, K. D., Jenkins,
O. C., Lebiere, C., . . . Kirk, J. R. (2017). Interactive task
learning. IEEE Intelligent Systems, 32(4), 6-21.

Laird, J. E., Lebiere, C., & Rosenbloom, P. S. (2017). A stan-
dard model of the mind: Toward a common computational
framework across artificial intelligence, cognitive science,
neuroscience, and robotics. AI Magazine, 38(4), 13-26.

Singley, M. K., & Anderson, J. R. (1985). The transfer of
text-editing skill. International Journal of Man-Machine
Studies, 22(4), 403 - 423.

Stearns, B., Assanie, M., & Laird, J. E. (2017). Applying
primitive elements theory for procedural transfer in soar.
In International conference on cognitive modeling.

Stewart, T. C., Choo, X., & Eliasmith, C. (2010). Dy-
namic behaviour of a spiking model of action selection in
the basal ganglia. In International conference on cognitive
modeling (pp. 235–40).

Taatgen, N. A. (2013). The nature and transfer of cognitive
skills. Psychological Review, 120(3), 439–471.

Tenison, C., & Anderson, J. R. (2016). Modeling the distinct
phases of skill acquisition. Journal of experimental psy-
chology. Learning, memory, and cognition, 42 5, 749-67.

ICCM2018

161

Modeling Visual Search in Interactive Graphic Interfaces:

Adding Visual Pattern Matching Algorithms to ACT-R

Farnaz Tehranchi (farnaz.tehranchi@psu.edu)
Department of Computer Science and Engineering

Penn State, University Park, PA 16802 USA

Frank E. Ritter (frank.ritter@psu.edu)
College of Information Sciences and Technology

Penn State, University Park, PA 16802 USA

Abstract

We provide an update on JSegMan, an interactive system to
extend the ACT-R cognitive architecture to interact with
dynamic interfaces based on the screen contents and
generating input for the operating system directly. Current
ACT-R models typically interact with the world through
ACT-R's device interfacean abstract representation of the
world that is based on a simulated Lisp environment provided
with ACT-R, or by instrumenting interfaces. In JSegMan,
computer vision pattern matching algorithms and visual
patterns extend the ACT-R cognitive architecture. With
JSegMan, models directly move the cursor on the screen,
click on application GUI objects on PCs, and type through the
use of existing Java libraries. Implementing users' visual
search strategies and input abilities for different visual objects
enables the detailed modeling of interactive tasks on any
interface. The visual pattern matching algorithms serve two
goals: to simulate user behavior in interactive tasks and to
create representations of visual stimuli. We tested our visual
pattern matching approach by using it with an existing model
for a long spreadsheet task. We found that the revised model
more accurately predicted a 20-min task by entirely
performing the task on an uninstrumented and unmodified
interface.

Keywords: Cognitive model; Cognitive architecture; Human-
computer interface, interaction; Perception and motor output;
Computer vision; Simulated eyes and hands.

Introduction

Cognitive architectures are programming languages

specifically designed for modeling unified theory of all

human cognition, such as Soar (Laird, 2012; Newell, 1990)

and ACT-R (Anderson, 2007). Using models as users have

been envisioned before (e.g., Byrne, 1994; Lohse, 1997),

but has not yet been widely applied. These models require

simulating an interactive behavior.

ACT-R’s interactive behaviors include moving the cursor,

clicking, and typing. Although cognitive architectures such

as ACT-R provide powerful and flexible frameworks for

modeling general human behavior, only a portion of their

capabilities are often used to capture many complex real-

world behaviors (Fu et al., 2003), because the skills can only

be applied with unmodified ACT-R in specialized windows

provided with ACT-R. Additionally, cognitive models need

to interact with interfaces to be useful in human-computer

interaction (HCI) (Byrne & Kirlik, 2005; Kieras, 2009;

Ritter et al., 2000).

A Cognitive Model Interface Management System

(CMIMS), which is an extension of the User Interface

Management System (UIMS) concept (Ritter et al., 2001) is

an approach to provide models access to interfaces so that

cognitive models can be applied more routinely in HCI.

ACT-R/PM (Byrne & Anderson, 1998) is a CMIMS that

allows ACT-R models to interact with interfaces built

within a special Common Lisp window. Another successful

version of the interactive model is Salvucci’s (2006) driver

model. Salvucci also introduced an ACT-R system with an

implementation of the ACT-R cognitive architecture in the

Java programming language. It can be used as a library in

other ACT-R projects (Salvucci, 2009, 2013).

In all these approaches, it will be difficult to reuse these

models (their task knowledge) because of the nature of the

embedded task environment—the models can only interact

with their instrumented interfaces. The interfaces that have

been modified to provide the models access to information

on the display in that application. Also, the interfaces have

been adjusted to accept commands directly from the models.

Even in JSON ACT-R, which makes a general approach

available for these modifications (Hope, Schoelles, & Gray,

2014), reconfiguring the connection is challenging.

We take inspiration from SegMan, segmenting the screen

to different features (e.g., based on color) and manipulating

interface usage. SegMan was productive and was used to

interact with a wide range of interfaces (Ritter, Kukreja, &

St. Amant, 2007; St. Amant et al., 2005; St. Amant & Riedl,

2001). However, SegMan is hard to use and maintain at this

point. We have also explored providing a connection to any

task in Emacs, ESegMan, such as pressing a key, moving a

cursor, clicking a mouse, and moving attention (Tehranchi

& Ritter, 2017). ESegMan could only manipulate Emacs

window and is limited to Emacs.

These results have led us to design JSegMan, a system

written in Java that extends ACT-R to provide models with

interaction with any interface on a PC, and thus the world.

We report elsewhere its hands model that provides typing

and mouse interaction (Tehranchi & Ritter, 2018).

JSegMan creates a way to interact with all interfaces using

an extended Java library to input motor commands

(keystrokes, mouse moves, and mouse clicks).

ICCM2018

162

We report here the first vision system for cognitive

models to see objects on the screen using pattern recognition

and other computer vision algorithms.

As an example application, we use ACT-R and JSegMan

to perform the Dismal spreadsheet task using an existing

large (500 rule) ACT-R model (Paik, Kim, Ritter, & Reitter,

2015). The revised model with JSegMan predicted the

response time more accurately while, importantly, using the

same but unmodified interface that the human subjects used.

Finally, we provide conclusions, lessons, and insights.

Visual Attention and Environment

There are theoretical and empirical challenges in

understanding visual attention and implementing its

mechanism. Constructing a system to simulate attention

based on eye movement data such as fixation and saccade

can enhance our knowledge of perceptual-motor aspects of

the human system. Besides cognition, perception, and action

are also essential for resembling the models’ behavior closer

to the human behavior. The focus of cognitive analysis is

often on cognition and response time, rather than an analysis

of interaction and knowledge related to the interaction.

Given the visual nature of most current user interfaces, the

vision module is relatively central in modeling most HCI

tasks. The vision module is used to determine what ACT-

R/PM “sees” (Byrne, 2001).

Each object on display will be represented by one or more

features in the vision module's icon. The vision module

creates chunks from these features that provide declarative

memory representations of the visual scene. These chunks

are visual location and visual object types. Production rules’

constraints can match chunks. After the vision module

creates a chunk representing an object, visual attention must

be directed to the location of that object, through a visual

location chunk.

Anderson et al. (1998) introduced the visual hunt-feature

and found-target in which there are the equivalents of move

attention and move the cursor in current ACT-R. The vision

module move-attention operator shifts attention to a

location; ACT-R/PM must have representation for those

visual locations.

Salvucci (2001) distinguished eye movements and shifts

of attention. The ACT-R visual mechanism mainly

considers moving attention to be the same as a saccade and

reflects a top-down search without backtracking.

Furthermore, the visual mechanism skips items that do not

have the same features as the target features. Kieras and

Meyer (1997) in EPIC predicted that eye movement patterns

at least in their task, menu search, are 50% top to bottom

and 50% random (Hornof & Kieras, 1997). The EPIC

inspired visual mechanism looks for the target object under

the current location rather than starts at the top of the

display; current ACT-R does not implement this

mechanism.

Static Environment: In this kind of environment, the

interface displays the application semantics with which the

user interacts directly and immediately. No other processes

can modify the environment and there will be only one level

of commands. For example, we have gathered data by

showing users pictures in a PDF document and having them

click on a target object. The object does not change when

clicked upon.

Interactive Environment: In this kind of environment, the

interface content only changes when the user provides input.

For instance, in Emacs, the display typically only changes

based upon the user input.

Dynamic Environment: These user interfaces often have a

high degree of interaction and are complex, and may be

non-deterministic to the user. The boundary between

application and user interface is difficult or impossible to

control, and what the user can see may change without the

user’s input. The screen content changes based on both user

input and time. Therefore, it becomes problematic to decide

if this interaction should be handled by the model or in the

application level (Soegaard, 2013).

The JSegMan system is intended to allow modelers to

participate more directly in all of these environments,

particularly the interactive and dynamic environments to

study computer behavior.

In this paper, JSegMan has been examined in the Dismal

spreadsheet mode of Emacs, which requires a nested level

of commands (Ritter & Wood, 2005). Dismal is a

spreadsheet developed for Emacs that was designed to

gather and analyze behavioral data. Users can interact with

the spreadsheet similar to other Emacs windows and also

with Dismal function calls. Dismal is an interactive

environment that its interface components change by user

input and commands.

Visual patterns in JSegMan are small images, a

representation of an object in the visual scene. Figure 1

shows different patterns on the screen. Visual patterns in

JSegMan are equivalent to visual location and visual object

chunks in ACT-R. ACT-R can access all required objects of

the current visual scene by defining the patterns as

independent patterns or a logical mix of patterns. JSegMan

needs to use multi-part patterns to interact with more

complicated environments. Modelers create required visual

patterns for JSegMan.

In the Dismal model, to find a spreadsheet cell, as shown

in Figure 1, the user first finds the column and then looks

for the row. To implement this action in JSegMan, we have

to find the pattern, re-set the overlap region, and find the

new pattern (e.g., the row) inside a pattern. This nested

pattern finding will make the models more human-like by

requiring additional knowledge and steps that take

additional time and allow the opportunity for additional

errors. To add this functionality, the matching algorithm

needs some higher level of built-in logic.

In JSegMan, the target visual pattern is compared with all

the same size available frames in the screen. It moves the

comparison frame one pixel at a time, a constant distance in

each saccade, from left to right and top to bottom.

ICCM2018

163

This approach uses patterns instead of regular visual

objects. Therefore, visual object features in ACT-R such as

size and location are not practical for the model.

Consequently, any changes in the visual scene cannot affect

patterns such as changes in screen resolution and size. The

model can still find the target visual object because visual

attention does not change by screen-x and screen-y. Instead,

the model finds/re-finds the pattern in the visual scene.

From Java process, JSegMan can use these features and

update the visual representation in ACT-R. This approach is

independent of the task environment’s system because the

location of task environment on the screen does not change

the underlying patterns.

To support working with interaction interfaces, we

propose two methods: (a) The model always has a

knowledge of the dynamic environment because the model

has to respond appropriately to manipulation of said

environment (Anderson, Farrell, & Sauers, 1984; Soloway

& Johnson, 1984), and (b) The model uses pattern matching

logic. The next section explains these methods in details.

Visual Pattern Matching Algorithms

We used two Java packages: (a) Robot and (b) Sikuli (Yeh,

Chang, & Miller, 2009) to develop the JSegMan system.

JSegMan functions are divided into two primary sections.

The first, hand simulation, includes motor module methods,

move cursor to, get mouse coordinates, handle click, handle

keypress, and type word. The second section, the eye

simulation, includes move attention, process display, and

print visicon (a debugging command).

Java Robot is used to automate operating system actions

such as clicks and typing. The Robot package implements

actions from the ACT-R motor module, such as moving the

mouse as moving the attention pointer by ACT-R, clicking a

mouse, and pressing keystrokes.

The experimental environment is an application GUI that

contains the information of visible objects such as labels,

text fields, images, buttons, links, radio buttons, and toggle

buttons. With Sikuli, we have access to all these objects

through the screen bitmap and can define them as Java

objects (Kasper, Correll, & Yeh, 2014; Yeh, Chang, &

Miller, 2009).

With Sikuli, cognitive models can identify and control

GUI components, anything the end users could interact with

and see on the screen (not just from Java applications), and

also could support reading from text recognition (OCR).

More specifically, it uses GUI screenshots for searching

patterns to direct mouse and keyboard events in contrast

with seeking screen locations, which may change during the

experiment. Also, it utilizes Template Matching, a pattern-

matching algorithm in OpenCV, an open-source computer

vision library in which a pattern (small image) is compared

against the overlapped image regions (the computer screen).

Algorithm 1 summarizes the methods. Both the display and

the visual pattern pixels matrix are the input of

matchTemplate (Bradski, 2004). In the end, it returns the

location with a higher matching value. This algorithm has

been implemented in Sikuli.

Algorithm 1: Visual Pattern Matching

1 Input: Visual Pattern pixels matrix

 Display pixels matrix

Output: Result matrix in the size of the display,

 maximum value of the Result matrix

2 matchTemplate(Display, Visual Pattern, Result,

 CV_TM_CCOEFF_NORMED);

3 Return MaxLocation(Result);

First, JSegMan loads the visual patterns by processing the

display. Then, the model uses pattern-matching algorithms

Figure 1. Defining visual patterns in an interactive environment.

ICCM2018

164

to find the pattern on the screen and then move the visual

attention. The current visual scene is a screenshot of a

computer screen.

Patterns should be distinct enough for JSegMan to be

identified uniquely. The pattern-matching algorithm is color

sensitive. There are some suggested approaches to use

grayscale (e.g., Kuchhal, 2014). When JSegMan is looking

for a visual pattern on display, one or more locations may be

matched by the pattern matching process, depending on the

number of objects on the display, display complexity, and

the production rules’ constraints.

The JSegMan process will check the pattern existence.

When the JSegMan process is running, the ACT-R process

pauses and resumes when JSegMan finishes the eye and

hand simulation. Therefore, the JSegMan task completion

times will not affect the ACT-R theoretical response time,

but the system together does run modestly slower in real

time. Currently, JSegMan takes 195.5 ms for pressing a

keystroke (Burns, Ritter, & Zhang, 2016) and the eyes

simulation delay takes 500 ms to do search tasks; JSegMan

searches up to 1000 ms to find patterns in real time. If the

JSegMan process cannot find the pattern, it will return an

error message and pause the ACT-R process.

 Furthermore, ACT-R passes a Value slot of the vision

object, the name of the pattern, to the Java process. Finally,

the task environment responds successfully to each of the

requests made by the ACT-R model, and the model is able

to create and attend to objects within the

dynamically/interactively changing visual scene.

Figure 1 distinguishes logic pattern matching and regular

matching. For example, to shift attention to cell B6 in the

spreadsheet, we can either define a unique independent

pattern for B6, the B6 visual pattern or define two patterns:

one for its column and one for the row. Then, JSegMan

calculates the exact location of B6 and move there directly.

By collecting not only the reaction time data but also the

eye-tracking data, we can predict how humans find a cell in

the spreadsheet environment, and image recognition will

have a more natural approach. In the Dismal model, the

cell’s B7 visual pattern is dependent on the B6’s cell value.

The Sikuli screenshot search engine can match the B7 visual

pattern after the change in B6 is affected because the B7

visual pattern contains the B6’s cell value. Using a logic

pattern matching methods eliminates this dependency.

The Sikuli script operates only in the visible screen space

and does not work on invisible GUI elements, such as those

hidden beneath other windows, in another tab, or scrolled

out of view. For instance, moving the cursor can cause a

pop-up description which will block some patterns.

Additionally, any UI-specific interaction, such as clicking

the sidebar to scroll down the page, can be implemented by

Sikuli classes. Further details, installation documents and

instructions, and example models can be found on the

project’s website1.

1 https://sites.psu.edu/ftehranchi/projects/

Revising the Dismal Model

To demonstrate the application of JSegMan, we tested our

system with the Dismal model (Paik et al., 2015). In this

study, data from 30 participants were collected while

completing 14 subtasks of the Dismal spreadsheet task for

mouse users. The Dismal spreadsheet subtasks were related

to declarative and prosedueralize knowledge. The models’

performance and participants’ performance comparison was

not completely realistic because the detailed trace of hand,

fingers, and mouse movements were not modeled in much

detail.

In our first attempt using JSegMan hands simulation,

several missing keystrokes in the Paik et al.’s (2015) Dismal

model had to be added, and the hands and fingers position

on the virtual keyboard had to be adjusted. We were able to

implement all the motor actions related to the keyboard in

the original model. By redefining some of the keystrokes,

we made more realistic key press actions in the virtual

keyboard in ACT-R. For some keys that were not reachable

by either the left or right hands, there had to be a request to

the motor module to adjust the hand position. We added

these requests to the original model.

In our analysis of the output of the model the keystrokes

and mouse moves, we found missing actions such as

clicking, including of which increased the total task time

when compared to previous reports.

The Dismal spreadsheet environment is an interactive

environment that changes based on user input. For instance,

the B6 visual pattern in Figure 1 contains B5 cell’s value.

JSegMan simulates Dismal model eyes and hands correctly

with this modification. The structure of the original Dismal

model is based on pre-knowledge. Therefore, all individual

patterns should be defined in advance without using the

logic pattern matching strategy. The declarative chunks

have been defined to move attention directly to cells rather

than rows and columns. All patterns of cells are similar to

the B6 visual pattern in Figure 1. We adjusted 162

declarative chunks in the original Dismal Model by adding a

new slot for visual objects. In addition, to model eye

movements, we added 52 new visual objects and visual

locations. When JSegMan run with the Dismal model, we

noticed a few missing sub-tasks (because the model did not

produce a complete solution in the spreadsheet), so three

new declarative chunks were added to the original model.

The sequence of the subtasks for the visual module is not

correctly interpreted. Therefore, we added a new constraint

for the production rule that requests a new visual location be

placed in the visual-location buffer.

Table 1 shows how the response time has been affected

by our modification while the model learns over four trials.

Besides proving the functionality of the JSegMan Dismal

model, we were able to fit the Dismal model slightly better

to the human data. The correlation shifts from 0.997 to

0.998 and reduced the mean square error (MSE).

ICCM2018

165

Discussion and Conclusion

In this paper, we described our efforts to bridge the gap of

interaction between cognitive models and task

environments. This article focused on models written with

the ACT-R cognitive architecture, but other architectures

could use this approach and system.

We call our approach JSegMan because simulation eyes

and hands in ACT-R models require the original ACT-R

model, the Robot and Sikuli packages in Java, and currently

Emacs (as a connector). The JSegMan approach will

increase the usability, applicability, and accessibility of

cognitive architectures. Also, it can be used as a cognitive

model examinerto see if the knowledge can do the task.

Using the JSegMan eyes and hands simulation in place of

a user, questions about user interface designs such as

evaluating designs, changing the interface and examining

the effects on task performance can be answered more

efficiently. The proposed approach can prove the

advantages of CMIMS in HCI, and realize the use of user

models in system design (Pew & Mavor, 2007). JSegMan

can help implement this approach by testing user interfaces,

making this process more approachable and more practical.

Our results running the Dismal model and finding missing

knowledge illustrates that JSegMan also offers the ability to

understand a model more accurately.

The advantages of this approach are: (a) ACT-R code

does not change due to the JSegMan, (b) JSegMan does not

affect the ACT-R response time because JSegMan has

separate timing formula and runs along with ACT-R, and (c)

models are able to interact with any interface on a PC.

Further Research and Limitations

Further work remains. We still need to manually check if

the action takes place correctly in JSegMan and the eyes

follow the hands successfully, as well as exploring error

generation and correction. Furthermore, we plan to use an

object recognition algorithm to extract the visible objects

without pre-defining them for models, but this functionality

is beyond current ACT-R’s action execution.

JSegMan should use the OCR capability more directly as

it is likely more efficient and more comfortable to use.

Additionally, the nested pattern matching that follows the

EPIC visual search will be useful to implement. The current

screen scanning approach is a bit mechanistic. The scan

starts in the upper left every time. It is probably more

realistic to start either where the previous task left off or

based on other heuristics that people use (Hornof & Kieras,

1997).

In the future, we plan on offering an installation method

that includes bundled versions of all dependencies, allowing

near plug and play support with ACT-R. JSegMan

components could also be expanded so JSegMan can

observe the users, collect more realistic inputs, and thus

better predict human performance. Therefore, JSegMan can

be a substitute for humans in the software testing process

and can be considered as a software testing tool.

Acknowledgments

This work was funded partially by ONR (N00014-15-1-

2275). David Reitter provided useful comments on Emacs

and Aquamacs (the Emacs version for Mac). We wish to

thank Jong Kim who provided the idea for ESegMan and

Dan Bothell for his assistance with ACT-R.

References

Anderson, J. R. (2007). How can the human mind exist in

the physical universe? New York, NY: Oxford University

Press.

Anderson, J. R., Farrell, R., & Sauers, R. (1984). Learning

to program in LISP. Cognitive Science, 8, 87-129.

Anderson, J. R., Matessa, M., & Lebiere, C. (1998). The

visual interface. In J. R. Anderson & C. Lebiere (Eds.),

The atomic components of thought. Mahwah, NJ:

Erlbaum.

Bradski, G. B. (2004). Open source computer vision library:

Springer.

Burns, M., Ritter, F. E., & Zhang, X. (2016). Using

Naturalistic Typing to Update Architecture Typing

Constants. In Proceedings of ICCM - 2016-14th

International Conference on Cognitive Modeling.

University Park, PA: Penn State.

Byrne, M. D. (2001). ACT-R/PM and menu selection:

Applying a cognitive architecture to HCI. International

Journal of Human-Computer Studies, 55(1), 41-84.

Table 1: The mean task completion time in seconds for the four learning sessions for the Dismal mouse-interface task

(Paik et al., 2015) and correlation with the human data (N=30).

M SE M SE M SE M SE

1 1366 60.8 1326 12.078 1338 12.06 1339 11.72

2 894 26.6 891 6.175 893 5.144 894 6.498

3 727 25.5 693 4.496 700 6.207 704 5.019

4 659 22.7 594 5.775 603 4.35 614 4.381

MSE 1747.5 1162.5 820.75

Day
Human Original Model

JSegMan Correction

Hands

JSegMan Correction

Hands and Eyes

Correlation 0.997 0.9978 0.9984

ICCM2018

166

Byrne, M. D., & Anderson, J. R. (1998). Perception and

action. In J. R. Anderson & C. Lebiere (Eds.), The atomic

components of thought. Mahwah, NJ: Erlbaum.

Byrne, M. D., & Kirlik, A. (2005). Using computational

cognitive modeling to diagnose possible sources of

aviation error. International Journal of Aviation

Psychology, 15(2), 135-155.

Byrne, M. D., Wood, S. D., Sukaviriya, P., Foley, J. D., &

Kieras, D. E. (1994). Automating interface evaluation. In

Proceedings of the CHI‘94 Conference on Human

Factors in Computer Systems, 232-237. ACM: New

York, NY.

Fu, D., Houlette, R., Jensen, R., Bascara, O., & San Mateo,

C. (2003). A visual, object-oriented approach to

simulation behavior authoring. In Proceedings of the

Industry/Interservice, Training, Simulation & Education

Conference (I/ITSEC 2003).

Hope, R. M., Schoelles, M. J., & Gray, W. D. (2014).

Simplifying the interaction between cognitive models and

task environments with the JSON Network Interface.

Behavior Research Methods, 46(4), 1007-1012.

Hornof, A. J., & Kieras, D. E. (1997). Cognitive modeling

reveals menu search is both random and systematic. In

Proceedings of the CHI‘97 Conference on Human

Factors in Computer Systems, 107-114. ACM: New

York, NY.

Kasper, M., Correll, N., & Yeh, T. (2014). Abstracting

perception and manipulation in end-user robot

programming using Sikuli. In Technologies for Practical

Robot Applications (TePRA), 2014 IEEE International

Conference on, 1-6. IEEE.

Kieras, D. E. (2009). Model-based evaluation. The human-

computer interaction: Development process, 294-310.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the

EPIC architecture for cognition and performance with

application to human-computer interaction. Human-

Computer Interaction, 12, 391-438.

Kuchhal, P. (2014). Ameliorating the image matching

algorithm of Sikuli using Artificial Neural Networks.

International Journal of Computer Science &

Communication, 5(1), 1-4.

Laird, J. E. (2012). The Soar cognitive architecture.

Cambridge, MA: MIT Press.

Lohse, G. L. (1997). Models of graphical perception. In M.

Helander, T. K. Landauer & P. Prabhu (Eds.), Handbook

of Human-Computer Interaction (pp. 107-135).

Amsterdam: Elsevier Science B. V.

Newell, A. (1990). Unified Theories of Cognition.

Cambridge, MA: Harvard University Press.

Paik, J., Kim, J. W., Ritter, F. E., & Reitter, D. (2015).

Predicting user performance and learning in human-

computer interaction with the Herbal compiler. ACM

Transactions on Computer-Human Interaction, 22(5),

Article No.: 25.

Pew, R. W., & Mavor, A. S. (Eds.). (2007). Human-system

integration in the system development process: A new

look. Washington, DC: National Academy Press.

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M.

(2000). Supporting cognitive models as users. ACM

Transactions on Computer-Human Interaction, 7(2), 141-

173.

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M.

(2001). User interface evaluation: How cognitive models

can help. In J. Carroll (Ed.), Human-Computer

Interaction in the New Millenium (pp. 125-147). Reading,

MA: Addison-Wesley.

Ritter, F. E., Kukreja, U., & St. Amant, R. (2007). Including

a model of visual processing with a cognitive architecture

to model a simple teleoperation task. Journal of Cognitive

Engineering and Decision Making, 1(2), 121-147.

Ritter, F. E., & Wood, A. B. (2005). Dismal: A spreadsheet

for sequential data analysis and HCI experimentation.

Behavior Research Methods, 37(1), 71-81.

Salvucci, D. D. (2001). An integrated model of eye

movements and visual encoding. Cognitive Systems

Research, 1(4), 201-220.

Salvucci, D. D. (2006). Modeling driver behavior in a

cognitive architecture. Human Factors, 48(3), 362-380.

Salvucci, D. D. (2009). Rapid prototyping and evaluation of

in-vehicle interfaces. ACM Transactions on Computer-

Human Interaction, 16(2), Article 9, 33 pages.

Salvucci, D. D. (2013). Integration and reuse in cognitive

skill acquisition. Cognitive Science, 37(5), 829-860.

Soegaard, M. (2013). Interaction design foundation.

Interaction Design Foundation–Free educational

materials.

Soloway, W. L. J.-E., & Johnson, W. (1984). Intention-

based diagnosis of programming errors. In Proceedings of

the 5th National Conference on Artificial Intelligence,

Austin, TX, 162-168.

St. Amant, R., Riedel, M. O., Ritter, F. E., & Reifers, A.

(2005). Image processing in cognitive models with

SegMan. In Proceedings of HCI International '05,

Volume 4 - Theories Models and Processes in HCI. Paper

1869. Erlbaum: Mahwah, NJ.

St. Amant, R., & Riedl, M. O. (2001). A perception/action

substrate for cognitive modeling in HCI. International

Journal of Human-Computer Studies, 55(1), 15-39.

Tehranchi, F., & Ritter, F. E. (2017). An eyes and hands

model for cognitive architectures to interact with user

interfaces. In MAICS, The 28th Modern Artificial

Intelligence and Cognitive Science Conference, 15-20.

Fort Wayne, IN: Purdue University.

Tehranchi, F., & Ritter, F. E. (2018). Using Java to Provide

Cognitive Models with a Universal Way to Interact with

Graphic Interfaces. In International Conference on Social

Computing, Behavioral-Cultural Modeling and

Prediction and Behavior Representation in Modeling and

Simulation. Washington DC, USA.

Yeh, T., Chang, T.-H., & Miller, R. C. (2009). Sikuli: Using

GUI screenshots for search and automation. In

Proceedings of the 22nd Annual ACM symposium on User

interface software and technology, 183-192. ACM.

ICCM2018

167

Modelling the Effect of Time-on-Task Fatigue in Prolonged Driving

Leong-Hwee Teo (tleonghw@dso.org.sg)
DSO National Laboratories, 12 Science Park Drive, Singapore 118225

Grace W.-Y. Ang (awanyu@dso.org.sg)
DSO National Laboratories, 12 Science Park Drive, Singapore 118225

Abstract

Integrated models of psychomotor vigilance test (PVT) and
driver behavior with fatigue mechanism were used to model,
at an individual level, the effect of time-on-task fatigue on
driving performance over a 4-hour driving duration. PVT data
collected from 25 participants in a first driving trial was used
to fit model parameters to individuals’ PVT performance over
time. The individualized parameters were then used in the
driver behavior model to predict driving performance over
time in a second driving trial.

Keywords: Fatigue; Time-on-Task; Driving; Individual
Differences; Computational Model; ACT-R

Introduction

The effect of fatigue on task performance is of concern to

organizations and individuals who may be routinely

required to perform their work for prolong periods of time.

Such sustained operations, often compounded with sleep

deprivation, is a challenge faced by military personnel, fire-

fighters and other emergency services responders.

While current ways to manage fatigue may involve pre-

work screening for signs of fatigue, or real-time monitoring

of eye-closure to detect the onset of a sleep attack, we

believe improving the planning and assignment of

individuals to more precisely meet the nature and duration

of upcoming work sessions, will contribute to a more

comprehensive solution. In transport operations, it is

convenient to assign the driver with the most amount of rest

or the least amount of hours worked. However, if the pool

of drivers become constrained, it may be better to assign a

less rested driver that is still expected to stay alert enough to

drive safely for the duration of the upcoming trip, and keep

a fresher driver in reserve to meet a potential demand from a

longer duration trip.

This paper reports our research towards such a predictive

tool. Our modelling and evaluation extended the work by

Khosroshahi et al. (2016) by modelling the effect of fatigue

on task performance at the individual level, focusing on

time-on-task fatigue over a 4-hour driving duration and

providing further validation of Khosroshahi’s models

against another human dataset from a previously completed

study on prolonged driving.

Models of PVT and Driving Under Fatigue

We used the integrated models of psychomotor vigilance

test (PVT) and driver behavior with fatigue mechanism

developed by Khosroshahi at al. (2016), which were based

on the fatigue mechanism and PVT model developed by

Gunzelmann and colleagues (Walsh, Gunzelmann and Van

Dongen, 2017; Veksler and Gunzelmann, 2017) and the

model of driver behavior by Salvucci (2006), which were all

implemented in the ACT-R cognitive architecture

(Anderson, 2007). Here, we briefly describe the integrated

models.

In ACT-R, the procedural knowledge to perform PVT,

driving, or any modelled task, is represented by action-

selection rules that specify conditions about the current

cognitive state that must be satisfied for the rule to execute

its actions. In each cognitive cycle, from amongst all

matching action-selection rules, the rule with the highest

utility value and that exceeds the utility threshold, will be

selected and executed. Gunzelmann’s fatigue mechanism

attenuates the utility values of action-selection rules by

incorporating a multiplier FP, based on prior sleep, time

awake, time-of-day and time-on-task, to the initial utility

IU, of the action-selection rule:

Utility = IU * FP + noise

FP = FPpercent * (1 – FPBMC * biomath)

* (1 + time-on-task)FPMC

The influence of prior sleep, time awake and time-of-day is

captured in biomath, an alertness index computed by a

biomathematical model of fatigue (McCauley et al., 2013).

FPpercent captures the cumulative effect of microlapses,

where if in a cognitive cycle no action-selection rule

exceeds the utility threshold, the model in effect delays for

the duration of that cognitive cycle and “does nothing”.

Every time a microlapse happens, FPpercent is

decremented by a small value, which not only attenuates

utility values, it also increases the likelihood of a subsequent

microlapse. FPBMC and FPMC are regression coefficients

that scale the fatigue effects arising from biomath and time-

on-task respectively.

The fatigue mechanism also attenuates the utility

threshold UT, to increase the likelihood that utility values of

matching action-selection rules exceed the threshold and

avoid the occurrence of a microlapse:

UT = UT0 * (1 – UTBMC * biomath)

* (1 + time-on-task)UTMC

UT0 is the initial utility threshold value, while UTBMC and

UTMC are regression coefficients that scale the fatigue

effects arising from biomath and time-on-task respectively.

ICCM2018

168

Attenuating the utility threshold represents a compensatory

mechanism to offset the increasing influence of fatigue, but

this also makes rule selection less stringent.

The PVT and driver behavior models contain their

respective action-selection rules that perform simulated

PVTs and driver behavior in a driving simulation. When

these models are executed in an ACT-R environment with

the fatigue mechanism enabled, attenuations to utility values

and the utility threshold result in the occurrence of

microlapses, which lead to increasing momentary delays in

task execution, as a manifestation of the negative impact

from fatigue on task performance.

Human Data from Driving Study

To fit model parameters and test model predictions, we used

data from a previous unpublished study on prolonged

driving in an actual driving circuit done in 2011. Each

participant underwent two different driving protocols,

counterbalanced and separated by 6 days. In protocol A,

participants drove for 45 minutes, then stopped and

performed a 15-minute cognitive test battery which included

a 5-minute Psychomotor Vigilance Test (PVT), and

resumed driving, repeating this cycle 4 times. In protocol B,

participants drove continuously for 4 hours and performed

the test battery after driving. In both protocols, participants

performed the same 15-minute test battery before the start of

each protocol. Participants drove on road at 30km/h in a

quadrilateral circuit of approximately 170m for each straight

stretch of road, with no other vehicles or obstacles present.

If the participant committed a lane deviation before the end

of the protocol, the participant would stop driving, perform

the test battery, and the driving trial ends.

Of the 40 participants in the driving study, 11 participants

successfully completed both protocols without committing

any lane deviations; they were classified as resilient drivers.

14 participants failed to complete both protocols having

committed a lane deviation in each trial before the end of

the protocol; they were classified as vulnerable drivers. The

rest of the 15 participants completed one of the protocols

but failed to complete the other. As the original study

suspected that these participants may had intentionally

committed the half-lane deviations, we decided to use only

the data from the resilient and vulnerable groups of drivers.

Psychomotor Vigilance Test (PVT)

The PVT is an established test of a person’s level of fatigue

(Basner et al., 2018). The test taker is to respond as quickly

as possible, by pressing a button, upon seeing the

appearance of a visual cue, which occurs at random inter-

stimulus intervals of 2 to 10 seconds.

Figure 1 plots the PVT median reaction times by each

driver over the course of the driving protocols. For the

vulnerable drivers, data points that lie between the

scheduled tests are for PVTs administered after a lane

deviation was committed, which ended the driving trial. We

can see there were individual differences in both baseline

performance and susceptibility to time-on-task fatigue.

Figure 1: PVT median reaction times in the study

protocols. PVTs administered between the 4th to 9th hour

(both inclusive) were part of the driving protocol.

Vulnerable drivers committed a lane deviation that ended

their driving trial. “MDG” was a driving simulation game.

ICCM2018

169

Driving Performance

We also used two measures of driving performance from the

driving study data. First, was the time-point the driver

committed a lane deviation, or none for the resilient drivers.

The second measure was standard deviation of lateral

position (Verster and Roth, 2011), which we extracted

through automated processing of videos taken from a

forward-facing camera mounted behind the vehicle’s

windscreen. The gray lines in Figure 3 plot the standard

deviation of lateral position (SDLP) by resilient drivers,

where a higher SDLP indicated poorer driving performance:

more “weaving” as the driver tried to drive straight and stay

in lane. The SDLP for vulnerable drivers are not shown due

to constraint of space.

Modelling Results

In protocol A, participants did 4 rounds of 45-minute

driving, interspaced with 3 PVTs, and a PVT each before

and after the driving protocol. We made a simplifying

assumption that changes in PVT performance across these 5

PVTs were due to the time-on-task fatigue effect arising

from the main driving activity. There was also the fatigue

effect arising from prior sleep, time awake and time-of-day,

although all participants had similar amount of rest based on

7 days of Actiwatch data and similar driving start times

based on the study protocol.

We first used the PVT model with fatigue mechanism set

to perform a 4-hour PVT session. By varying model

parameters to match the predictions of PVT performance at

the above 5 time segments to the actual PVT performance in

the corresponding 5 PVTs administered in the driving

protocol, we got time-on-task fatigue mechanism

parameters FPMC and UTMC, to reflect the time-on-task

fatigue effect arising from the driving activity. We also

varied IU, UT0, and the ACT-R cognitive cycle time dat, to

reflect individual differences. The cognitive cycle time was

used by Gunzelmann et al. (2009) to capture individual

differences in PVT performance.

To obtain an individualized set of fatigue mechanism

parameters and cognitive cycle time, we repeated the model

fitting for each participant’s data. We then used each

individualized set of fatigue mechanism parameters and

cognitive cycle time in the driver behavior model with

fatigue mechanism, to generate predictions of driving

performance following the continuous 4 hours of driving in

protocol B. This transfer of model parameters from the PVT

model to the driving behavior model was used in

Khosroshahi at al. (2016). Here, we applied this approach to

time-on-task fatigue over a 4-hour driving duration, and at

the individual level.

Resilient Drivers

Figure 2 plots the median response time (MRT) by drivers

at each of the five PVTs in driving protocol A and the

predicted MRT given the fatigue mechanism parameters and

cognitive cycle time for that particular driver. The

combination of these fatigue mechanism parameters and

cognitive cycle time was able to capture the difference in

individual susceptibility to the effects of time-on-task

fatigue due to the driving activity.

Figure 2: Individualized fits of PVT for resilient drivers.

Asterisks are the median response time (MRT) by drivers at

each of the five PVTs in driving protocol A. The lines plot

the predicted MRT given the model parameters for that

particular driver.

ICCM2018

170

We then used the same individualized fatigue mechanism

parameters and cognitive cycle time in the driver behavior

model with fatigue mechanism, to predict how each driver

would perform in 4 hours of continuous driving in protocol

B. Figure 3 plots the predictions of standard deviation of

lateral position (SDLP) for each resilient driver.

Figure 3: Individualized predictions of standard deviation

of lateral position (SDLP) for resilient drivers. The gray

plots are the actual performance in driving protocol B; gaps

in the gray plots are due to failure to extract lane position

because of poor visibility of lane markers in the videos. The

blue plots are predicted SDLP given the individualized

model parameters for each driver.

To achieve these fits between predicted and actual SDLP,

another parameter in the driver behavior model (parameter

kl in Salvucci, 2006; coded as variable na in the model) was

varied for each driver to scale the predicted SDLP values to

align with the SDLP values exhibited by each driver in the

driving trials. Salvucci (2006) explained that the driver

behavior model “involves a number of domain-specific

parameters, some of which may vary among individual

drivers”, and “these parameters were estimated by setting

them to reasonable values, observing the resulting

qualitative and quantitative fits given these values, and

revising the values accordingly”. In particular, the variable

na was described by Salvucci (2004) to affect how “the

model continually adjust steering to maintain a near point

centered on the roadway”, which may reflect individual

differences in driving style and how aggressively each

driver tried to continuously minimize the distance between

the center of the vehicle and the center of the driving lane.

Figure 4 plots the proportion of simulated driving trials

which the driver behavior model committed a lane deviation

in each 1-minute interval of driving duration. Since resilient

drivers completed the full 4-hour driving duration, the

desired prediction would be zero or low probability of lane

deviation for the entire 4-hour duration. If we used <=20%

as the criteria for low probability of predicted lane

deviation, the driver behavior model with fatigue

mechanism would advise that 7 of the 11 resilient drivers

would be able to complete driving protocol B.

Figure 4: Individualized predictions of probability of lane

deviation for each 1-minute interval of driving by resilient

drivers. The model predicted 5 out of the 11 resilient drivers

have zero probability of lane deviation. Shown here are the

6 resilient drivers with non-zero probabilities.

ICCM2018

171

Figure 5: Individualized fits of PVT for vulnerable drivers. Asterisks are the median response time (MRT)

by drivers in the PVTs in driving protocol A, where the last PVT administered was after they committed a

lane deviation. The lines plot the predicted MRT given the model parameters for that particular driver.

Figure 6: Individualized predictions of probability of lane deviation for vulnerable drivers. The solid lines

plot the predicted probability of lane deviation for each 1-minute interval of driving duration, given the

specific model parameters for the individual driver. The dotted vertical lines mark when each driver

committed a lane deviation in protocol B.

ICCM2018

172

Vulnerable Drivers

We performed the same fitting of fatigue mechanism

parameters and cognitive cycle time for the vulnerable

drivers. Figure 5 plots the median response time (MRT) by

vulnerable drivers for the PVTs they performed in driving

protocol A, before and after they committed the lane

deviation, and the predicted MRT given the fatigue

mechanism parameters and cognitive cycle time for that

particular driver. We then used the same individualized

fatigue mechanism parameters and cognitive cycle time in

the driver behavior model with fatigue mechanism, to

predict how each driver would perform in 4 hours of

continuous driving in protocol B.

Figure 6 plots the proportion of simulated driving trials

which the driver model committed a lane deviation in each

1-minute interval of driving duration. Since vulnerable

drivers did commit a lane deviation in the driving trials, the

desired prediction would be an elevated probability of lane

deviation at when the driver actually committed a lane

deviation in protocol B. If we used >20% as the criteria for

elevated probability of predicted lane deviation, then the

driver behavior model with fatigue mechanism would

advise that 5 of the 14 vulnerable drivers (S524, S534,

S553, S558 and S565) would have elevated probability of

lane deviation in the same hour-segment as when the driver

actually committed a lane deviation in driving protocol B.

The model would also conservatively advise that 6 other

vulnerable drivers (S527, S548, S550, S551, S560 and

S563) would have elevated probability of lane deviation in

an hour-segment before when the driver actually committed

a lane deviation in driving protocol B. However, the model

will advise that 2 other vulnerable drivers (S523 and S557)

would have elevated probability of lane deviation in an

hour-segment after when the driver actually committed a

lane deviation, and the other 1 vulnerable driver (S539) to

have zero probability of lane deviation in 4 hours of

continuous driving in protocol B.

Discussion

We had two possible explanations for the difference

between model predictions and actual driving performance.

The first was there was only moderate correlation between

PVT performance and driving performance (as measured by

SDLP in the last 15 minutes of driving just before the PVT)

by study participants in both protocol A (r=0.513) and

protocol B (r=0.583). This meant that for this dataset, PVT

was not particularly predictive of driving performance. For

example, vulnerable driver S539’s PVT performance would

had suggested good resilience to fatigue, but nonetheless

committed a lane deviation within the first hour of driving.

Another possible reason might be that some resilient drivers

had IU and UT0 parameters values that were too close to

each other. For example in resilient driver S525, with noise

in the utility values computation, the close IU and UT0

values would had resulted in more occurrences of

microlapses that impacted predicted driving performance.

The dataset we used in this study was limited in both the

number of participants (n=25) and the number of PVT

sessions (as few as 2 for vulnerable drivers and 5 for

resilient drivers) to fit model parameters. For future work,

we hope to collect or obtain datasets that have more data

points for each participant, to see if that will lead to more

predictive model parameters for each participant. We also

hope to collect or obtain more datasets on prolonged driving

performance with different driving protocols, to evaluate

and refine the method of fitting model parameters.

Acknowledgments

The authors will like to thank Dr. Frederick Tey and his

team for sharing the driving study data, Dr. Glenn

Gunzelmann and Dr. Bella Veksler for sharing the ACT-R

fatigue mechanism and PVT model, and Professor Dario

Salvucci and Ehsan Khosroshahi for sharing the integrated

fatigue, PVT and driver behavior models in Java ACT-R.

References

Anderson, J. R. (2007). How Can the Human Mind Occur in

the Physical Universe? Oxford University Press.

Basner, M., Hermosillo, E, Nasrini, J., McGuire, S., Saxena,

S., Moore, T. M., Gur, R. C., & Dinges D. F. (2018).

Repeated Administration Effects on Psychomotor

Vigilance Test Performance. Sleep, 41(1), zsx187.

Gunzelmann, G., Moore, L. R., Gluck, K. A., Van Dongen,

H. P. A., & Dinges, D. F. (2009). Examining sources of

individual variation in sustained attention. In Proceedings

of the 31st Annual Meeting of the Cognitive Science

Society (pp. 608–613). Austin, TX: Cognitive Science

Society.

Khosroshahi, E. B., Salvucci, D. D., Veksler, B. Z., &

Gunzelmann, G. (2016). Capturing the Effects of

Moderate Fatigue on Driver Performance. In Proceedings

of the 14th International Conference on Cognitive

Modeling (pp.163-168).

McCauley, P., Kalachev, L. V., Mollicone, D. J., Banks, S.,

Dinges, D. F., & Van Dongen, H. P. A. (2013). Dynamic

Circadian Modulation in a Biomathematical Model for the

Effects of Sleep and Sleep Loss on Waking

Neurobehavioral Performance. Sleep, 36(12), 1987–1997.

Salvucci, D. D. (2006). Modeling driver behavior in a

cognitive architecture. Human Factors, 48, 362-380.

Veksler, B. Z. & Gunzelmann, G. (2018). Functional

Equivalence of Sleep Loss and Time on Task Effects in

Sustained Attention. Cognitive Science, 42, 600-632.

Verster, J. C., & Roth, T. (2011). Standard operation

procedures for conducting the on-the-road driving test,

and measurement of the standard deviation of lateral

position (SDLP). International Journal of General

Medicine, 4, 359–371.

Walsh, M. M., Gunzelmann, G. & Van Dongen, H. P. A.

(2017). Computational cognitive modeling of the

temporal dynamics of fatigue from sleep loss.

Psychonomic Bulletin & Review, 24, 1785–1807.

ICCM2018

173

https://www.ncbi.nlm.nih.gov/pubmed/?term=Basner%20M%5BAuthor%5D&cauthor=true&cauthor_uid=29126328
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hermosillo%20E%5BAuthor%5D&cauthor=true&cauthor_uid=29126328
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nasrini%20J%5BAuthor%5D&cauthor=true&cauthor_uid=29126328
https://www.ncbi.nlm.nih.gov/pubmed/?term=McGuire%20S%5BAuthor%5D&cauthor=true&cauthor_uid=29126328
https://www.ncbi.nlm.nih.gov/pubmed/?term=Saxena%20S%5BAuthor%5D&cauthor=true&cauthor_uid=29126328
https://www.ncbi.nlm.nih.gov/pubmed/?term=Saxena%20S%5BAuthor%5D&cauthor=true&cauthor_uid=29126328
https://www.ncbi.nlm.nih.gov/pubmed/?term=Moore%20TM%5BAuthor%5D&cauthor=true&cauthor_uid=29126328
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gur%20RC%5BAuthor%5D&cauthor=true&cauthor_uid=29126328
https://www.ncbi.nlm.nih.gov/pubmed/?term=Dinges%20DF%5BAuthor%5D&cauthor=true&cauthor_uid=29126328

Analysis of Learning Action Selection Parameters in a Neural Cognitive Model
Sverrir Thorgeirsson (sverrir.thorgeirsson@uwaterloo.ca)

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Chris Eliasmith (celiasmith@uwaterloo.ca)

Centre for Theoretical Neuroscience, University of Waterloo 200 University Avenue West,
Waterloo, ON, Canada, N2L 3G1

Abstract

In our previous work, we have implemented a biologically re-
alistic action selection system that can perform complex tasks
such as sentence parsing, the n-Back task and the Tower of
Hanoi. Although our models have successfully performed
those tasks, they have so far required human researchers to
tune multiple parameters before the models can be expected
to exhibit good performance. In this paper, we show that an
improved, parameter-sparse learning rule can be applied to a
cognitive sequencing task.
Keywords: neural engineering framework; spiking neurons;
computational neuroscience; neural production systems; basal
ganglia

Introduction
Our previous research has been centred on the construction of
spiking neural models that can perform diverse and complex
cognitive tasks. In recent years, we have introduced models
of the Tower of Hanoi (Stewart & Eliasmith, 2011), bandit
tasks (Stewart, Bekolay, & Eliasmith, 2012), command pars-
ing (Stewart & Eliasmith, 2013), sentence parsing (Stewart,
Choo, & Eliasmith, 2014), the n-Back task (Gosmann & Elia-
smith, 2015), action planning (Blouw, Eliasmith, & Tripp,
2016), speech production (Kröger, Bekolay, & Blouw, 2016)
and the effects of reduction of dopamine on speech produc-
tion (Senft et al., 2016), hierarchical reinforcement learning
of navigation and abstract action rules (Rasmussen, Voelker,
& Eliasmith, 2017), and semantic memory search (Kajic et
al., 2017).

Our work uses the Neural Engineering Framework (NEF;
Eliasmith & Anderson, 2003) and the Semantic Pointer Ar-
chitecture (SPA; Eliasmith, 2013) which are general meth-
ods that can be used to investigate cognitive theories using
detailed models of spiking neurons. Our intent is to apply
knowledge of higher-level cognitive behaviour to explore and
test theories and make predictions of low-level phenomena
in the brain such as neural spiking patterns and connectiv-
ity. In this way, our research should serve as a connection
between cognitive science and neuroscience (Stewart & Elia-
smith, 2011; Eliasmith, 2013). It is for this reason that we
use biologically realistic methods (i.e., the SPA) which can
be thought of as neural approximations of cognitive produc-
tion systems.

However, this approach comes with the cost of lower algo-
rithmic expressibility, as crucial programming rules such as
IF-ELSE statements are difficult to express without the time-
consuming process of parameter tuning. In a recent work
(Stewart, Thorgeirsson, & Eliasmith, in press), we introduced
a solution to this problem with an automatic learning rule so

that our models can learn their parameters autonomously. In
this paper, we apply this rule on alphabetical sequencing tasks
of varying sizes and complexities. Our results show that the
new approach works successfully for any task size that we
tested, with the time that the model spends learning growing
proportionally with the size and scope of the task.

The Neural Engineering Framework
The NEF provides us a way to represent and transform in-
formation encoded in neurons. That way, we can generate
biologically realistic models such as the one presented in this
paper.

The three principles of the NEF are those of representation,
transformation and dynamics (Eliasmith & Anderson, 2003):

1. Representation: To determine how a group of neurons can
represent a high-dimensional vector, the NEF uses dis-
tributed representations. Every neuron in the group has
a direction in space in which it will fire mostly strongly.
This direction is called its preferred direction vector e. Un-
der the NEF, we claim that the input current to a neuron is
a linear function of the value to be represented, x. So, for
a function G, gain parameter α, and constant background
bias b, we can compute the neural activity given x with this
equation:

a = G(αe · x+b)

The NEF assumes that this encoding of x can be decoded
linearly to specify the neural representation of x.

For the model presented in this paper, we use spiking
Leaky-Integrate-and-Fire (LIF) neurons for the function G,
which has the advantage of both capturing a high level
of biological detail while also being computationally ef-
ficient.

2. Transformation: The NEF can be used to solve the synap-
tic connection weights between populations analytically.
Computations can be performed on represented vectors
through various choices of decoders. This means that
for two neuron populations A and B, the connection be-
tween those populations can approximate the function
f (x), where x is some vector that is represented by A.

3. Dynamics: The NEF is capable of solving equations of the
form dx/dt = A(x)+B(u) where x is a value that is being
represented by a neural population, u is any input and A and
B are arbitrary functions. In this paper, we use a special

ICCM2018

174

case of this equation where B(u) = u and A(x) = 0 (i.e.,
when there is no input to the system it preserves the current
state of the visual system of our model).

For many models, including the one introduced in this pa-
per, it is important to compute the similarity between the cur-
rent state x and some other state s. To that end, we will simply
compute the dot product of x and s neurally which gives us a
single number that represents that similarity.

Neural Action Selection
Figure 1 illustrates the core action selection system in SPA
which we will use in this paper. This model approximates
the anatomy, connectivity and neural properties of the basal
ganglia, thalamus and cortex (Stewart & Eliasmith, 2011)
and can be used in a general-purpose way to model different
action selection systems. The overall model consists of ap-
proximately 6000 leaky integrate-and-fire (LIF) spiking neu-
rons. For further details of the construction of this model, see
(Stewart, Thorgeirsson, & Eliasmith, in press).

The cortex represents cognitive state in our model. In our
case, it contains of the contents of the visual system and the
working memory. The connections between the cortex and
the striatum in the basal ganglia determine the utility of each
action. The basal ganglia determines the largest of those util-
ity values. The connections via the thalamus execute the ac-
tion that updates the cortical state.

To skip the time-consuming and potentially unreliable
stage of optimizing the scaling factors in the utility functions,
we previously proposed the use of a simple online learn-
ing rule that constantly updates the scaling factors while the
model is running:

∆ωi, j = αxi(t j− y j)

(Widrow & Hoff, 1960). This is meant for situations where
the adjustable parameters ωi j are weights on xi that produce
a weighted sum y j (i.e. y j = ∑i(xiωi j)). In our case, xi repre-
sents the neural activity in the cortical neurons that compute
the utility of action i, yi gives the represented output of the
neural system and t j is a training signal.

Learning Task
We chose to test our approach on a cognitive task in which
the goal is for the working memory to recite the letters in n
lists with m letters each. We call those lists alphabets. The
name of the alphabet that should be recited is given in the
visual system, which cycles through all available alphabets
periodically.

For n = m = 5, our alphabets are shown in Table 1.
This means that if the visual system contains ALPHA, then

the working memory should cycle through P→ K → U →
J → M → P→ For n,m < 5, we consider the first m
letters in the first n alphabets.

The model can be implemented as a production system
with the production rules

Figure 1: The cortex-basal ganglia-thalamus loop that forms
the neural action selection and execution system. Neurons
(dark circles) and connections are shown only for the inputs to
the action selection system. These connections compute the
utility (Ui) of each of the actions i, given the current cortex
state. The basal ganglia selects the action with the highest
utility, and the thalamus executes that action.

IF VISION = A
AND STATE = L
THEN STATE = N

for each pair (L, N) in each alphabet A where N is the letter
that follows L.

As it is difficult to express IF-ELSE statements using the
SPA, we need to convert the production model to a neural
model with utility functions. For example, in the case where
n = 4, m = 3, we will use the set of equations shown in Table
2, where argmaxi(Ui) is the action that we will take in any
given state after its value has been found by the basal-ganglia-
thalamus model. For this relatively simple case, we have 24
free parameters (xi and yi for 1≤ i≤ 6) which would be time-
consuming to optimize before the model is initialized.

Table 1: Alphabets to be learned

Alphabet name Contents
ALPHA P, K, U, J, M
GAMMA L, N, T, B, H
DELTA V, G, I , R, F
EPSILON W, Q, A, Z, X
ZETA D, E, O, S, Y

The core idea here is to use the learning equation to grad-
ually learn the connection weights between cortex and the
basal ganglia, rather than using the NEF to create optimized
connection weights based on the equations listed in Table 2.
This avoids the problem of manually finding these param-

ICCM2018

175

Table 2: Utility equations for the case n = 4, m = 3 with v as
the visual system and m the working memory.

U1 = v · x1 ·ALPHA+m · y1 ·P
U2 = v · x2 ·ALPHA+m · y2 ·K
U3 = v · x3 ·ALPHA+m · y3 ·U
U4 = v · x4 ·GAMMA+m · y4 ·L
U5 = v · x5 ·GAMMA+m · y5 ·N
U6 = v · x6 ·GAMMA+m · y6 ·T
U7 = v · x7 ·DELTA+m · y7 ·V
U8 = v · x8 ·DELTA+m · y8 ·G
U9 = v · x9 ·DELTA+m · y9 · I
U10 = v · x10 ·EPSILON+m · y10 ·W
U11 = v · x11 ·EPSILON+m · y11 ·Q
U12 = v · x12 ·EPSILON+m · y12 ·A

eters. Furthermore, neurons are capable of approximating
much more complicated functions than the ones given in Ta-
ble 2, and it may be that these more complex functions will
do a better job at performing the task than the ones in Table
2, even after finding the best parameter values.

However, in order to use this learning rule, we need a su-
pervisory training signal. That is, the learning rule requires,
at each point in time, an indication as to which action should
have been selected. In order to create this learning signal,
we implemented the classic production-system model of the
task, and used this symbolic model to create the training sig-
nal for the neural model. That is, the neural network learns-
by-example from the symbolic system.

For the moment, we remain noncommittal as to where this
learning signal would come from in a real biological system.
Conservatively speaking, we are merely using this symbolic
system as a construction tool to generate the final neuron
model. That is, we are modelling the endpoint of learning,
rather than the learning process itself. However, it may also
be possible for a more complex neural implementation to pro-
duce a similar training signal. This is a topic for future work.

Evaluation
To assess the performance of the model, we record how many
cycles it takes until the model learns each transition in every
alphabet in a cycle.1 For example, for n = m = 2, we find the
first cycle in which the model manages to

1. complete the sequence P→ K → P or K → P→ K when
the visual system contains the alphabet ALPHA

2. complete the sequence L→ N → L or N → L→ N when
the visual system contains the alphabet BETA.

Our evaluation metric is therefore a single integer which
captures information about how well the model responds to

1By a cycle, we mean the time period that it takes the visual
system to display the name of each alphabet exactly once.

changes in the visual system and whether the model manages
to learn each transition in each alphabet.

During our simulation, we have the learning turned on ev-
ery other cycle. For the other cycles, the learning is off. As
we are only interested in how the model performs when it is
acting by itself rather than responding to a training signal, we
only record the cycles when the learning is turned off. This
means that if the model correctly learns the task once the vi-
sual system has gone through 86 cycles, we will record the
number 43.

There exist other reasonable evaluation metrics, such as
checking the total number of correct transitions over a time
period or the total time that the working memory is reciting
letters from the alphabet that is contained in the visual sys-
tem. In comparison, our chosen metric does have one disad-
vantage; sometimes it takes a very long time for the model
to learn the correct transitions, making it necessary to termi-
nate the simulation before the model has learned the task. In
that case, we report the value −1 and move on with the next
simulation.

For every task, we chose to terminate the simulation when
the visual system has gone through 100 cycles to limit the
computational cost of running our simulations. This means
that the aggregated results of the evaluation metrics are right-
censored at 50 (100 divided by half since we are only care
about the non-supervised cycles). This makes it non-trivial
to report averages over n simulation runs or other statistical
properties of the underlying distribution. To do so, we use the
Kaplan-Meier estimator (Kaplan & Meier, 1958) from sur-
vival analysis in order to report the mean values.

Results
We simulated the model for 16 different versions of the task
with two to five alphabets containing two to five symbols
each. Our results for the learning rate 1e-10 are in Figure
2. Each data point represents the average of 30 experiments
after fitting the resulting curve with an intercept-only Weibull
model. We have no upper bound on the averages, but we use
the 25th percentile as a lower bound. The shaded areas in Fig-
ure 2 represent the area from the lower bound to our estimate
of the true average.

We collected the same results in Table 3 where the data is
sorted by the total number of symbols in the model. Unsur-
prisingly, the number of cycles until the model learns the task
increases with the number of symbols, but the number of al-
phabets plays a larger role than the number of letters in each
alphabet; for instance, the model takes significantly longer to
learn two alphabets with five letters each than five alphabets
with two letters each.

We hypothesized that the dimensionality of the state rep-
resentations of the letters in the alphabets could affect the re-
sults as the model might confuse two distinct letters if their
neural representation is too similar. Therefore, we increased
the number of dimensions from 16 to 32 and performed the
same simulations. These results are shown in Figure 4. In-

ICCM2018

176

Figure 2: The evaluation metric generated with the learning
rate 1e-10 and 16 dimensions for representing each symbol.

Figure 3: A scatter plot of the data from Table 3 with a linear
regression model. The shaded areas represent a 95% confi-
dence interval.

Table 3: The data from Figure 2 in tabular format, sorted by
the number of symbols

Total n. of symbols Avg. time until task learned n,m
4 6.2 2, 2
6 7.9 3, 2
6 10.2 2, 3
8 8.4 4, 2
8 14.4 2, 4
9 11.4 3, 3
10 8.3 5, 2
10 21.7 2, 5
12 12.7 4, 3
12 21.1 3, 4
15 12.8 5, 3
15 28.5 3, 5
16 18.3 4, 4
20 25.6 5, 4
20 32.3 4, 5
25 42.5 5, 5

creasing the dimensionality resulted in much more time con-
suming simulations with worse results for most tasks, as can
be seen by comparing Figure 2 and Figure 4.

Last, we used a different learning rate, 1e-9, to see if a
higher value would lead to a faster convergence. The results
of this can be seen in Table 4. The table shows that although
this learning rate works well for the smaller sequencing tasks,
it is much worse for the larger ones. We also tried the learning
rate 1e-11, which gave worse results than shown in Table 4 for
every version of the task.

Table 4: The median of the evaluation metric for 15 simula-
tions of each learning task. Here, we used the learning rate
1e-9 and 16 dimensions.

n,m Median of the evaluation metric
2, 2 5
2, 3 6
2, 4 10
2, 5 3
3, 2 6
3, 3 8
3, 4 22
3, 5 38
4, 2 7
4, 3 8
4, 4 24
4, 5 50+
5, 2 7
5, 3 10
5, 4 50+
5, 5 50+

ICCM2018

177

Figure 4: The evaluation metric generated with the learning
rate 1e-10 and 32 dimensions for representing each symbol.

Conclusion and Further Work

The results affirm that the learning rule works well for learn-
ing utility functions for cognitive models that use neural ac-
tion selection, including those constructed with the SPA. The
rule appears to be scalable, as Figure 3 indicates that the time
spent learning the parameters grows linearly with the scope
of the task.

The results show that the value of the learning rate is im-
portant since the model fails to perform the task when the
rate is too high or too low. This is a well-known phenomenon
in many other learning systems, including the original cogni-
tive model in (Stewart, Thorgeirsson, and Eliasmith, in press),
which we generalized in this paper. In the future, we intend
to use techniques from machine learning literature so that the
system can automatically adjust the learning rate (e.g., an
adaptive learning rate based on performance), thus making
our model almost entirely parameter-free.

The results show that the dimensionality of the state repre-
sentation of the letters used in the model also matters, but not
as much as the learning rate. More investigation is needed to
determine why the model is slower to learn with 32 dimen-
sions compared to 16.

Finally, we would like to raise the question of whether the
supervised learning system that we used in this paper should
be considered a useful, technical tool for constructing neural
models or whether it should be treated in its own right as a
model of how people learn cognitive tasks. There is some
evidence in favour of the latter point of view; first, the learn-
ing rule applies directly to the connections between the cortex
and striatum that are used in models of reinforcement learn-
ing and second, the learning rule that we used is local and
biologically plausible. In future work, we intend to explore
this possibility further.

Acknowledgments
This work was supported by AFOSR grant FA9550-17-1-
0026, NSERC Discovery grant 261453, and the Canada Re-
search Chairs program.

References
Blouw, P., Eliasmith, C, and Tripp, B. (2016). A scaleable

spiking neural model of action planning. 38th Annual
Conference of the Cognitive Science Society

Eliasmith, C. & Anderson, C. (2003). Neural Engineering:
Computation, representation, and dynamics in neurobio-
logical systems. Cambridge: MIT Press.

Eliasmith, C. (2013). How to build a brain. Oxford: Oxford
University Press.

Gosmann, J. and Eliasmith, C. (2015). A spiking neural
model of the n-back task. 37th Annual Meeting of the Cog-
nitive Science Society.

Kajic, I., Gosmann, J., Komer, B., Orr, R., Stewart, T.C., and
Eliasmith, C. (2017). A Biologically Constrained Model
of Semantic Memory Search. Annual Meeting of the Cog-
nitive Science Society.

Kaplan, E. L., Meier, P. (1958). Nonparametric estimation
from incomplete observations. Journal of the American
Statistical Association, Vol. 53, No. 282.

Kröger, B.J., Bekolay, T., and Blouw, P. (2016). Modeling
motor planning in speech production using the neural en-
gineering framework. Electronic Speech Signal Process-
ing (ESSV), 1522.

Rasmussen, D., Voelker, A.R., and Eliasmith, C. (2017). A
neural model of hierarchical reinforcement learning. PLoS
ONE, 12:7, 139.

Senft, V., Stewart, T.C., Bekolay, T., Eliasmith, C., and
Krger, B.J. (2015). Reduction of dopamine in basal gan-
glia and its effects on syllable sequencing in speech: a
computer simulation study. Basal Ganglia 6:1, 7-17.

Stewart, T.C., Bekolay, T., and Eliasmith, C. (2012) Learn-
ing to select actions with spiking neurons in the basal gan-
glia. Frontiers in Neuroscience, 6:2, 1-14.

Stewart, T.C., Choo, X., and Eliasmith, C. (2010). Symbolic
reasoning in spiking neurons: A model of the cortex/basal
ganglia/thalamus loop. Annual Meeting of the Cognitive
Science Society.

Stewart, T.C. and Eliasmith, C. (2011) Neural cognitive
modelling: A biologically constrained spiking neuron
model of the Tower of Hanoi task. 33rd Annual Meeting
of the Cognitive Science Society.

Stewart, T.C. and Eliasmith, C. (2013). Parsing Sequentially
Presented Commands in a Large-Scale Biologically Real-
istic Brain Model. 35th Meeting of the Cognitive Science
Society.

Stewart, T.C., Thorgeirsson, S., and Eliasmith, C. (in press).
Supervised learning of action selection in cognitive spik-
ing neuron models. Proceedings of the 40th annual con-
ference of the cognitive science society.

ICCM2018

178

The Search Space in the Eyes of the Tracker
New Indices for the cognitive load of planning

David A. Tobinski (David.Tobinski@uni-due.de)
Department of Psychology, Universitätsstr. 4

North Rhine-Westphalia, 45117-Essen Germany

Oliver Kraft (Oliver.Kraft@uni-due.de)
Department of Psychology, Universitätsstr. 4

North Rhine-Westphalia, 45117-Essen Germany

Abstract

Planning is a crucial cognitive process in many situations.
The drosophila of cognitive science, the Tower of Hanoi, has
been beneficial for a lot of insights. Still today it is a treasure
for research around complex processes. In a quasi-
experimental eye tracking study with 31 participants stable
eye movement sequences have been identified in a sub-
sample. Those 13 participants solved a cognitive load
reducing two-discs version of the TOH. This initial study
motivates for further studies and modeling methods around
eye tracking data in planning scenarios.

Keywords: Tower of Hanoi, Eye Tracking, Cognitive Load
of Planning

Introduction

Planning processes (PLP) are an essential part of our

everyday life. We are planning on very different time-

scales, like the next meal or the upcoming summer holidays,

and in very different spaces, for example within our current

surrounding or in very far vacation destinies. If planning is

not available, a problem is on the horizon. And even the

solution of the problem dependents deeply on PLP. In our

perspective PLP takes place in working memory (WM;

Baddeley, 2000). The information within the planning task

leads to a potential cognitive load of planning (CLP). CLP

can be reduced by a subgoaling strategy, which is described

by Simon (1975) in the Tower of Hanoi (TOH) research

paradigm. Gunzelmann and Anderson (2003) describe

different planning and learning strategies within isomorphs

of the Tower of Hanoi (TOH), where learning strategies are

identified as decoding processes between WM and long-

term memory (LTM). Our question is whether the process

of subgoaling is only represented in internal states between

WM and LTM or is it possible to identify subgoaling on the

surface? Therefor an eye tracking study has been conducted.

The Tower of Hanoi
 The Tower of Hanoi (TOH) can be seen as the drosophila

of cognitive science. The task consists of three stacks

(A,B,C) and a defined amount of disks of different size.

Mostly three or four disks are used in experiments. These

discs have to be moved from an initial stack (A) to a

specific goal stack (C) under three rules: (1) only one disk

can be moved at a time, (2) a larger disks is not allowed to

be placed above a smaller disc (called the golden rule) and

(3) the fastest path has to be identified. If three disks have to

be moved a minimum of seven moves are necessary for the

optimal solution path regarding all conditions. Because of

the golden rule the path is completely determined. Thus all

moves depend on each other and even the first decision to

place the first disc on stack B or C depends on the complete

plan. Regarding this fact all moves have to be planned

before the first disc is placed on stack B or C. In case of

three discs the complete search space consists of 27 possible

states under the condition of the golden rule. Disregarding

this rule leads to 24 additional forbidden states and a

possible search state of 51 states at all.

Figure 1: The 27 allowed search space states of TOH-D3

are shown within the traditional trajectory. The red marked

states are only possible, if the golden rule is disregarded.

Objectives
 While reaction times in the TOH have been very well

analyzed within the last decades there exists a lack of eye

tracking data. (RQ1) Can eye tracking data be used for an

interpretation of search space trajectories?

(RQ2) Might eye tracking data be a predictor for different

planning strategies, which are crucial in managing the CLP?

Method

Participants
 A total of 31 participants from the University of Duisburg-

Essen have been recruited for a “Tower-of-Hanoi-Eye-

Tracking-Study” with 2 disks, 3 disks and 4 disks Versions

of TOH. The presented sub-sample of the study consists of

13 educational master-students (nine female; four male;

mean of age: 25.15, sd: 6.45) from the University of

Duisburg-Essen, North Rhine-Westphalia, who worked with

the 2 disk and 3 disk Version.

ICCM2018

179

Materials
A digital version of the Tower of Hanoi (TOH-D) was

implemented with JavaScript and the logfiles are coded in

JSON. For better insights in eye movement sequences we

were interested in a very reduced CLP, therefor we used

initially a two disc version (TOH-D2).

The THO-D was presented on a screen-based eye tracker

(SMI RED500; 500 Hz; 0.4 degrees, 22” display). Three

areas of interest (AOIs) have been edited around the three

stacks. The raw data of the SMI RED500 was exported to

csv-files and analyzed with R (R version 3.4.3) and the

TraMineR package.

Procedure
 All participants have been introduced to the ethical

principles of the University of Duisburg-Essen, which are

compatible to the ethical principles of the German

Psychological Society (DGPs). The quasi-experimental

study took place in a highly standardized Eye Tracking

Laboratory at the Institute of Psychology. TOH-D starts

with a task independent mouse-movement training.

Afterwards all participants have to solve TOH-D2 and the

three-disc version (TOH-D3).

 Results and Discussion

In TOH-D2 two participants have been excluded because of

missing data. From the resulting 11 participants ten reached

the goal with the needed three moves. One participant

reached the goal with four moves and additionally

disregarded the golden rule. The mean of the solution time

is 12198.31 milliseconds with a standard deviation of

5398.4 ms. Sequences have been produced in an alphabet

(A-B-C) of AOI fixations. The minimum of an AOI fixation

time was set to 50ms (Anderson, 2007).

RQ1
 Concerning RQ1 very stable eye movement sequences can

be identified in the first planning phase (B-A-B) in the two-

discs TOH. The weak performing participant shows the

most complex search pattern in the first planning phase (B-

A-B-A-B-C-B-C-B-C-B).

RQ2
 On the search for different strategies transition matrices

between AOIs can be regarded. There are strong differences

in the eye movement behavior between high and low TOH

performer. The low performer show more movement on

stack C. Stack C concerns the goal state. Our interpretation

is that eye-movement might help to reduce CLP, the

information is more processed on the surface of its source.

Thus the better performer do not need to represent the goal

state on the surface level. What is the case in both

performing groups for the sub-goals (Stack B).

Figure 2: The search space and eye movement sequences

between three areas of interest (AOIs: _A_,_B_,_C_) in the

TOH-D2. Only one person (p1) needed four moves and

planning phases (_4). Stable search sequences can be

identified between the participants.

Conclusion

Eye tracking data seems to be promising for interpreting

PLP in the TOH research paradigm. The current AOIs only

represent the eye movement on and between the stacks. In a

special TOH-D version for eye tracking studies the discs

might be bigger for defining AOIs on the level of the discs.

This will lead to a more precise differentiation of the PLPs.

The most important step will be the work on the model of

the different buffer and the perceptual-motor modules of the

ACT-R architecture.

Table 1: The transition matrices of the first planning phase of

the three-discs TOH (TOH-D3) show differences between high

(n=6) and low performer (n=6) especially on stack C.

 -> A -> B -> C

A -> .44/.47 .39/.48 .00/.03

B -> .59/.39 .24/.41 .00/.17

C -> .00/.21 .00/.63 .00/.11

References

Anderson, J. R. (2007). How Can the Human Mind Occur in the

Physical Universe? Oxford: Oxford University Press.

Gunzelmann, G., & Anderson, J. R. (2003). Problem solving:

Increased planning with practice. Cognitive Systems Research,

4(1), 57–76.

Baddeley, A. D. (2000). The episodic buffer: a new component of

working memory? Trends in Cognitive Sciences, 4(11), 417–

423.

Gabadinho, A., G. Ritschard, M. Studer & N. S. Müller (2010).

Mining sequence data in R with the TraMineR package: A

user’s guide, University of Geneva.

Simon, H. A. (1975). The functional equivalence of problem

solving skills. Cognitive Psychology, 7, 268–288.

ICCM2018

180

Automatically translating logical strategy formulas into cognitive models
Jakob Dirk Top (scholar@jakobdirktop.nl)
Institute of Artificial Intelligence, Nijenborgh 9,

Groningen, 9747 AG, the Netherlands

Rineke Verbrugge (l.c.verbrugge@rug.nl)
Institute of Artificial Intelligence, Nijenborgh 9,

Groningen, 9747 AG, the Netherlands

Sujata Ghosh (sujata@isichennai.res.in)
Indian Statistical Institute, 110 Nelson Manickam Road,

Aminjikarai, Chennai 600029, India

Abstract

Whereas game theorists and logicians use formal methods
to investigate strategic behaviour, cognitive scientists use
cognitive models of the human mind to predict and simulate
human behaviour. In this paper, we hope to bring these fields
together by creating a translation system which, starting from
a strategy represented in formal logic, automatically generates
a computational model in the PRIMs cognitive architecture.
We run such models to generate response times and decisions
made in centipede-like games, a subset of dynamic perfect-
information games. Our system is a proof-of-concept for
generating cognitive models from formal logic, and presents a
new method of otherwise laborious model creation.

Keywords: formal logics, PRIMs, strategic reasoning,
automated model generation

Introduction
Centipede-like games
In this paper, we model participants’ reasoning in a turn-
taking game called Marble Drop (Figure 1). Participants
played this game in an experiment against a computer op-
ponent (Ghosh, Heifetz, Verbrugge, & De Weerd, 2017). Be-
cause the structure of the game is reminiscent of a centipede
(its body extends from top left to bottom right of Figure 1
along the trapdoors and it has five feet corresponding to the
bins containing the marbles that are the players’ payoffs),
such games are dubbed ‘centipede-like games’.1

Game theory prescribes that players who are commonly
known to be rational use the backward induction (BI) strat-
egy: one should ignore previous information, and work
backwards from the end of the game tree to reach a deci-
sion (Perea, 2012). For example, in the ‘orange’ player’s
last turn in Game 1 (Fig. 1), he has to decide between go-
ing to the left or to the right, for payoffs of 4 or 3 orange
marbles, respectively. Using BI, because 4 is more than 3,
he chooses to go left, delivering the outcome pair (1,4): 1 for
the blue player, 4 for the orange player. One can then con-
tinue backwards to compare the left and right choices in the
blue player’s second turn: going right gives (1,4) while go-
ing left gives (3,1); because 3 is more than 1, the blue player

1The games in this paper do not comply with the conditions on
payoffs of Rosenthal’s original centipede game (Rosenthal, 1981).

would choose to open the left blue trapdoor. One then contin-
ues to reason backwards to compare the actions in the orange
player’s first turn, where the outcome is (1,2) when playing
left and (3,1) by playing right. One assumes that, 2 being
more than 1, the orange player chooses to open the left or-
ange trapdoor. Finally, one compares the actions in the blue
player’s first turn, where going left leads to (4,1) and going
right leads to (1, 2). Because 4 is more than 1, the blue player
will choose to open the left trapdoor to obtain 4 points. Note
that playing rationally by backward induction does not nec-
essarily lead to the outcome with the highest sum of play-
ers’ payoffs – that would have been achieved by both play-
ers choosing to open their right trapdoors at all four decision
points and ending up with a combined payoff of 6+3.

Cognitive models
We can investigate human behaviour in centipede-like games
by constructing computational cognitive models of the mind
and comparing their behaviour to human behaviour. We as-
sume full understanding of the game’s rules for both the
human players and cognitive models, and investigate their
gameplay and the strategies they may be using. We create
these models in the PRIMs cognitive architecture (Taatgen,
2013). We recall a few key aspects of PRIMs models. Models
in PRIMs have a working memory, used as a mental scratch-
pad, and a declarative memory, used for long-term storage
of information. Visual information is presented to a PRIMs
model hierarchically; the model uses focus actions to move
its visual attention through layers of the hierarchy. Models
in PRIMs operate by sequentially firing primitive elements,
which move or compare information present in the model or
in the visual input it receives. The process of production com-
pilation compiles primitive elements that are often fired in the
same sequence into a single production, causing a speed-up
when performing the same task multiple times.

Formal logic
In (Ghosh & Verbrugge, online first), a formal logic is pro-
posed which formalizes strategic behaviour as demonstrated
by human participants in centipede-like games. A formula
describing a strategy, a strategy formula, consists of a set of

ICCM2018

181

Figure 1: Top: Marble Drop game. Players (assigned blue
and orange) control the marble’s course by opening the left
or right trapdoor of their color once the purple marble arrives
there. When it ends up in a certain bin, each player earns the
marbles of their color. This example payoff structure corre-
sponds to Game 1 of (Ghosh et al., 2017), see bottom figure.
In the payoff pairs, the left payoff is C’s and the right is P’s.

conditions and an action. If the conditions hold, the action
should be played. We use a myopic strategy as an example: a
player using the myopic strategy only looks at his own pay-
offs at the current and next ending location. Consider a play
of Game 1 starting at player C’s first turn. Using the myopic
strategy, player C looks at his own payoff should he play a,
which is 4, and compares it to his own payoff should he play
b and should player P play c, which is 1. The former is larger
so player C should play a using the myopic strategy. This
case is captured by strategy formula K 1

C as follows:
[(〈a+〉(uC = 4)∧〈b+〉〈c+〉(uC = 1)∧ (1 6 4)∧ root) 7→ a]C

Here, K 1
C is the name of the formula, with the game num-

ber in superscript and the player in subscript. The formula
itself is followed by its corresponding player in superscript.
The formula consists of conditions, separated by conjunction
symbols (∧), as well as an action, in this case a. The condi-
tions and action are separated by a mapping arrow (7→). The
first condition, 〈a+〉(uC = 4), specifies that after edge a is tra-
versed (〈a+〉) from the currently active node (in this case the
first node, marked red in Figure 1), player C’s payoff should
be 4 (uC = 4). The second condition, 〈b+〉〈c+〉(uC = 1),
specifies that after edges b and c have been traversed, player
C’s payoff should be 1. The third condition, (16 4), indicates
a comparison between these two payoffs. The last condition,
root, specifies that the currently active node should be the
root of the game tree, which ensures that moving across an

edge using an operator such as 〈a+〉 is possible at this loca-
tion. If all of these conditions hold, then player C plays a.

Research goals
In this paper we propose a system which creates a PRIMs
model from a strategy in the formal logic we just described,
capable of playing centipede-like games. Our encompass-
ing goal is to help understand human behaviour in dynamic
perfect-information games. Our place in this continuing body
of research can be found in Figure 2. Here, human be-

Figure 2: The red arrow in this diagram indicates our place
in research, as we aim to automate the creation of cognitive
models from formal strategies.

haviour is found at the top of the diagram, as all research
involved aims to understand human behaviour. By observ-
ing human behaviour, game theorists formalize strategies as
possibly used by human participants. These formal strate-
gies can be used by cognitive scientists to manually construct
cognitive models. These models automatically generate data,
such as response times. The blue arrow signifies the classic
approach of creating cognitive models by hand based on ob-
served human behaviour. The behaviour of such a model can
be verified by constructing a behavioural experiment, which
gives us data about human behaviour, closing the circle. In
the diagram, dashed lines are automated processes. The red
dashed line indicates our current research, which automates
the creation of cognitive models from formal strategies.

The primary goal of this research is to create a sys-
tem which automatically generates a fully functioning model
in the PRIMs cognitive architecture, capable of playing
centipede-like games, from a strategy represented in the for-
mal logic from (Ghosh & Verbrugge, online first). To achieve
this goal, we solve several subgoals: first, we create a model
in the PRIMs cognitive architecture, capable of playing these
games, by hand. We need this model to verify our translation
system. Next, we discuss the differences between the formal
logic and cognitive models, which is essential to translate one
of them into the other. In the next section we describe our so-
lutions and our translation system.

Methods
Verification model
First, we create a cognitive model in the PRIMs cognitive
architecture by hand, which uses the myopic strategy as dis-
cussed in the introduction. This model plays as player P. We
refer to it as the myopic model. We only look at the model’s
first move, in games that either start with player P, or in games
where player C has already played action b. We use Game

ICCM2018

182

1 in Figure 1 to demonstrate how this model operates. A
model’s visual attention always starts at the root of the tree,
which is the red dot in the image. The myopic model first
moves its visual attention to the first ending location that may
be reached. In Game 1, it moves its visual attention across
edges b and c. The model then stores its own payoff at this
location, the value 2, in its first slot of working memory. The
model proceeds to move its visual attention across edges c,
d, and e to look at the next ending location. Now the model
stores its own payoff at this second location, the value 1, in its
second slot of working memory. Lastly, the model retrieves a
chunk from declarative memory to compare the values 2 and
1 which it has stored in working memory. The model suc-
ceeds in retrieving a chunk specifying that 2 is larger than 1
and, based on this information, ends the game by playing c.
This myopic model is generic - it can use the myopic strat-
egy in any centipede-like game. According to the own-payoff
strategy, a player should only look at their own payoffs in a
game tree, and try to move towards that payoff. For example,
in Game 1 in Figure 1, player C should play b and f in an at-
tempt to reach the payoff of 6 at the rightmost node, which is
the game’s highest payoff. The own-payoff model behaves in
a manner similar to the myopic model. However, it will also
move its visual attention to and make comparisons between
its own payoffs further along the game tree. If it discovers a
payoff higher than its first payoff, it will move right. If it has
compared all payoffs to the first one, and the first one is the
largest payoff, it will move down.

Translation system
As mentioned, our new translation system automatically gen-
erates a model in the PRIMs cognitive architecture from a
formal strategy and its corresponding game. To do so, we
first need to represent centipede-like games and formal strate-
gies in our system. For the games, we use the same tree-like
structure as seen in Figure 1. Centipede-like games consist
of nodes and edges. Nodes can be leaf nodes (ending loca-
tions) and non-leaf nodes (player turns). For leaf nodes, both
players’ payoffs are specified. For non-leaf nodes, the player
who has a turn at the node is specified. Edges specify the two
nodes they connect. All finite centipede-like games can be
stored in this manner. Formal strategies consist of a player,
an action, and a list of conditions. Each of these conditions
consists of a list of zero or more operators (such as 〈a+〉), and
a proposition (such as (uC = 4)). We have already seen most
of these propositions and operators in the formula K 1

C.
We now give truth definitions of the relevant logic formu-

las used in our translation system. The truth of a formula ψ

at a node s is defined inductively as follows (see also Ghosh
and Verbrugge (online first)). Here, M = (T,{−→x

i },V) is
a model consisting of a game tree T , a binary relation on
the nodes of the tree corresponding to each node x and each
player i (denoted by {−→x

i }), and a map V assigning to a state
s the set V (s) of all true propositions in s.

1. M,s |= p iff p ∈V (s) for atomic formulas p.

2. M,s |= 〈a+〉ψ iff there exists an s′ such that s a⇒ s′ and
M,s′ |= ψ.

3. M,s |= 〈a−〉ψ iff there exists an s′ such that s′ a⇒ s and
M,s′ |= ψ.

4. M,s |= B
(i,x)
h

ψ iff the underlying game tree TM is the same
as the one for h and for all s′ such that s−→x

i s′,M,s′ |= ψ.

In layman’s terms: formulas in the logic are interpreted at
the currently active decision node, or the current turn, except
when they are preceded by an operator 〈a+〉. Such an oper-
ator indicates that the remainder of the statement should be
interpreted at the location obtained by following edge a. The
proposition root is true if the node it refers to is the root of the
tree, or the first turn of the game. The proposition (ui = qi)
is true if player i’s payoff is equal to qi at the node it refers
to. The proposition (r 6 q) is not interpreted at a specific
position, and is true if r is equal to or smaller than q. The
proposition turni, not found in the formula K 1

C, is true if it is
player i’s turn at the node it refers to. Finally, we have formu-
las such as Bn1,C

g1 〈b+〉c. This one means ‘player C, in Game
1, at the first node, believes that after playing b, c will be
played.’ It consists of a belief operator Bn1,C

g1 , which accounts
for the phrase ‘player C, in Game 1, at the first node, believes
that’. The operator 〈b+〉 accounts for ‘after playing b’, and c
accounts for ‘c will be played’.

Individual components In the present paragraph, we
give for each novel component in the logic of Ghosh and
Verbrugge (online first) the corresponding behaviour of a
PRIMs model generated using this component.
〈a+〉 and 〈a−〉: Operators such as 〈a+〉 and 〈a−〉 indicate that
a proposition should be evaluated at a location different from
the current location, and specify which location. A model
translated from a formula containing these operators uses fo-
cus actions to move its visual attention to the specified loca-
tion. Focus actions take time to complete similar to human
gazing, causing these operators to increase the model’s reac-
tion time.
root: When a strategy formula contains the proposition root,
the PRIMs model will visually inspect the specified node to
determine whether it is the root of the tree.
turni: When a strategy formula contains a proposition turni,
where i is C or P, the PRIMs model will read the player name
from the specified node in the game tree, and compare it to i.
(ui = qi): The proposition (ui = qi) states that player i’s
payoff is equal to qi at a certain location. The PRIMs model
will compare qi to a value in its visual input. Because this
value may be required for future comparisons, it is also
stored in an empty slot of working memory.
(r 6 q): A proposition (r 6 q) is a comparison between two
values in the game tree. A PRIMs model cannot instantly
access each value in a visual display: it has to remember
them by placing them in working or declarative memory
before it can compare them. A proposition (ui = qi) causes

ICCM2018

183

such a value to be stored in working memory. A proposition
(r 6 q) then sends two of these values from working memory
to declarative memory, to try and remember which one is
bigger. When a model is created, its declarative memory
is filled with facts about single-digit comparisons, such as
(0 6 3) and (2 6 2).
B
(i,x)
h

and a: The operator B(i,x)
h

and proposition a are used
to construct beliefs about the opponent’s strategy. In a belief
operator, i is one of the players C or P. The symbol x is the
decision node, or turn, where the belief is held. For the four
turns in Game 1 (Figure 1) we use n1, n2, n3 and n4, respec-
tively. Lastly, h is the game the belief applies to. In Game
1, h is g1. The symbols a through h refer to the actions that
can be played in the games, represented as propositions. An
example belief is expressed in the following formula:

B
(C,n1)
g1 〈b+〉〈d+〉e (1)

This formula means ‘In Game 1, at node 1, player C believes
that after playing of b and d, e will be played’. To verify such
a belief, a model employs a strategy similar to the ones used
by models in (Stevens et al., 2018). When a model is created,
it contains several player-specific strategies in its declarative
memory. When a model verifies a belief, it sends a partial
sequence of actions to declarative memory, corresponding to
the assumptions of the belief, in an attempt to retrieve a full
sequence of actions, which is a strategy. Using Equation 1
as an example, the assumptions of the belief are that b is
played. Therefore the model sends the sequence b to declar-
ative memory. The sequences b-e and b-f could be retrieved,
depending on the strategies present in declarative memory.
However, only b-e verifies B(C,n1)

g1 〈b+〉〈d+〉e. All others fal-
sify it.

Problems We encountered two problems in the formal
logic in the previous section. First, a comparison (r 6 q) does
not specify which payoffs are being compared, only which
two natural numbers (including zero) are being compared. A
game containing identical payoffs at different nodes poses a
problem for a translation system. Although humans can in-
tuitively determine which comparison would ‘make sense’, a
translation system cannot. Because of this, we use a modified
version of the formal logic where each payoff is marked, and
each comparison refers to two specific payoffs. This allows a
translation system to know precisely which two payoffs it has
to pull from working memory to perform a comparison.

Secondly, a belief such as B(C,n1)
g1 〈b+〉c only specifies what

should be believed, not how this belief should be obtained.
We use a method similar to (Stevens et al., 2018), where the
model begins with strategy chunks in its declarative mem-
ory, and verifies a belief by comparing the current game state
to these strategy chunks. We have strategy chunks for three
strategies: (i) the extensive-form rationalizable (EFR) strat-
egy, which we use because the actions it prescribes corre-
spond more closely than backward induction to the human
data of Ghosh, Heifetz, and Verbrugge (2015), (ii) the back-
ward induction (BI) strategy, which we use because it reaches

a Nash equilibrium and is often put forward as the game-
theoretical solution to games similar to our own (see explana-
tion in Introduction), and (iii) the own-payoff strategy, which
is used in previous research on centipede-like games, such as
(Ghosh et al., 2017).

According to the EFR strategy, one should consider previ-
ous information (Perea, 2012). For example, if player C plays
b in Game 1, then player P could rationalize this decision by
believing that C has skipped the 4 points obtained by playing
a, because C believes that he can get the 6 points at the far
right (the only payoff higher than 4). To get these 6 points,
player C has to play f as well, which P can use in his decision
to play c or d.

Let us explain the model behaviour for a complete strategy
formula, namely K 1

C. This formula, as well as the formulas
used in previous research using this particular logic, takes the
form of a Horn clause, such as a∧b∧c∧d→ p. Given a strat-
egy formula, a PRIMs model tries to verify each proposition
in the conjunction sequentially, using the behaviour earlier
described for each proposition. If it encounters a proposi-
tion it cannot verify, it ‘jumps out of’ this verification process
and doesn’t play the action prescribed by the formula (what it
does we describe in the next section). If the model has veri-
fied all the propositions in the conjunction, it plays the action
prescribed by the strategy formula.

One problem remains. Conjunctions in formal logic are
unordered. Models in PRIMs, however, solve problems se-
quentially. Therefore we need to order the conjunctions in
formal logic, so the corresponding PRIMs model has an or-
der to verify them in. Fortunately, each proposition has to be
verified at a specific location. For example, 〈a+〉(uC = 4),
in Game 1 found in Figure 1, has to be verified at the end-
ing location reached by playing a. Eye-tracking data from
Meijering, Van Rijn, Taatgen, and Verbrugge (2012) tells us
that human participants tend to look through a game tree by
following the edges along the shortest path. Therefore we
compute the shortest path through the game tree. Our PRIMs
models verify propositions as they occur along this path.

Exhaustive strategy formulas In the previous sections we
described how a PRIMs model, generated by our translation
system, behaves based on a strategy formula. One strategy
formula is not always sufficient to describe a strategy. Strate-
gies such as BI and EFR can have multiple solutions if there
are payoff ties: in Game 4 in Figure 3, the last two payoffs
for P, obtained by playing g and h, are tied, allowing for two
options when performing the BI procedure. When using EFR
in Game 4, player C playing b instead of a can be interpreted
as C going for any of two payoffs higher than the 2 he skipped
by playing b. Thus, one has to list all solutions for the spec-
ified strategy. Therefore, our translation system allows for a
strategy to consist of a list of strategy formulas. The PRIMs
model generated from this list tries to verify each formula in
it, using the behaviour described in the previous sections, un-
til it finds one it can verify, and play the action prescribed by
the formula it verified. There is no need to specify what the

ICCM2018

184

Figure 3: Games 1′ and 4 from (Ghosh et al., 2017). Game 1′ is on the left, Game 4 is on the right.

model has to do when it cannot verify any of the formulas:
the list is exhaustive, so at least one of them holds.2

Experiments
Verification experiment In our verification experiment we
compare our handmade with our automatically generated
models, based on six different games, three of which can be
found in Figure 1 and Figure 3. We have four models: hand-
made myopic and own-payoff models, and automatically gen-
erated myopic and own-payoff models, which are generated
from the myopic and own-payoff strategy formulas for Game
1′. The formula for the myopic strategy is as follows:

My1′
P : [(〈c+〉(uP = 2)∧〈d+〉〈e+〉(uP = 1)∧(16 2)∧root) 7→ c]P

These models only play Game 1′ (Figure 3), in the role of
player P against computer opponents C playing prespecified
moves. We use the same methods as the models in (Ghosh &
Verbrugge, online first): we run each model 50 times, where
it plays 50 games, to simulate 50 virtual participants who play
50 games each. We record reaction times and decisions.

Differences In our handmade models we have implemented
the procedural knowledge required to play the myopic and
own-payoff strategies, as described at the beginning of the
‘Methods’ section. Our automatically generated models, in
contrast, play by sequentially verifying propositions in a list
and play a certain action if all of them hold, according to
a logical formula. Our handmade models are general for
any centipede-like game, whereas our automatically gener-
ated models are specific for one game. Due to their general-
ity, our handmade models have to look at more properties of
the game tree, because no assumptions can be made. For ex-
ample, for the myopic strategy, when reading the first payoff
value from the game tree, for the handmade model, its current
goal is ‘finding a value in the game tree’, its visual attention
has to be directed at a leaf node, two slots of working mem-
ory have to be empty, one to store the first value, and another
has to remain empty for a next value. For the automatically
generated model, the game is assumed to be known, as well
as the sequence of actions the model has to fire. Therefore,
when reading the first payoff value from the game tree, for the
automatically generated model, its current goal is ‘finding the

2The strategy specification language described in (Ghosh & Ver-
brugge, online first) provides two possible ways of combining strat-
egy specifications, namely, n1+n2 (n1 or n2) and n1 ·n2 (n1 and n2).
While the former corresponds to the exhaustive list of strategies, the
latter operator is yet to be modelled.

first value in the game tree’, its working memory states that
this is the second action performed in this goal, and within its
visual input the payoff value the model is currently looking at
should be ‘two’ (in order to verify 〈c+〉(uP = 2)).

In short, our handmade models are implementations of a
strategy, whereas our automatically generated models per-
form a sequence of actions corresponding to a logical for-
mula, based on this strategy. We compare them to verify our
translation system and to investigate the differences.3

Exploratory experiment In our second experiment we ex-
plore the abilities of our translation system by looking at
novel automatically generated models. These models play
two games: Game 1 (see Figure 1), and Game 4 (see Fig-
ure 3). For both games, we automatically generate two mod-
els: one that uses backward induction, and one that uses
extensive-form rationalizability. These four models are gen-
erated from the BI and EFR strategy formulas for Game 1
and Game 4. These strategy formulas not only contain pay-
offs and comparisons, like the myopic and own-payoff strat-
egy formulas, but also contain beliefs. We use these games
because both the BI and EFR solutions differ between these
games, which should give different results. Because some
of these strategies have multiple solutions in some of these
games, exhaustive strategy formulas are required to describe
these strategies, whereas we did not use exhaustive strategy
formulas in the previous experiment.

Results
Verification experiment In terms of behaviour, myopic
models always play down, and own-payoff models always
play right. This corresponds to the strategies these models
were generated from. The reaction times for our four mod-
els can be found in Figure 4. It indicates that the myopic
models are faster than the own-payoff models, and the gener-
ated models are faster than the handmade models. Compar-
ing the handmade and automatically generated models, the
proportional difference in mean reaction times between the
myopic and own-payoff models is similar. The proportion
myopic/own-payoff is 0.56 for the handmade models, and
0.55 for the generated models.

3We did not create, by hand, myopic and own-payoff models
that play by verifying a strategy formula, for two reasons: firstly,
our translation system never fails at generating a cognitive model,
and secondly, given a strategy formula, the behaviour of a generated
model is fully known to us - writing the same model by hand would
be akin to ‘copying’ the output of our translation system.

ICCM2018

185

Figure 4: Reaction times of handmade and system-generated
myopic and own-payoff models at first decision in Game 1′.

Exploratory experiment The reaction times for our BI and
EFR models can be found in Figure 5. Our exhaustive mod-

Figure 5: Reaction times for our automatically generated BI
and EFR models, when making their first decision. Here, ‘1
BI’ is the reaction time for the BI model in Game 1, etc.

els are a lot slower than our myopic and own-payoff mod-
els. Furthermore, reaction times in Game 1 are faster than
reaction times in Game 4. It seems that reaction times are
a function of the number of formulas required to create the
exhaustive strategy formula: for both BI and EFR, in Game
1, only one formula is needed. In Game 4, BI requires two
formulas, and EFR requires four formulas. To test this, we
perform a simple linear regression using number of formu-
las to predict reaction times. A significant regression equa-
tion is found (F(1,189) = 432.6, p < 2.2 ·10−16), with an R2

of 0.696. Predicted reaction time in milliseconds is equal to
10401+50453·(number of formulas).

Discussion
The results in the previous sections show the feasibility of
our system as a proof-of-concept. For all turn-taking games
with at most binary choices, our system generates cognitive
models from strategy formulas, without human intervention.
This can greatly speed up research, because cognitive models
are often created by hand. These models can be run to obtain
reaction times, as shown in our results, as well as other data,
such as decisions, gazing behaviour, and neural activity. Our
verification experiment shows that between the handmade
and generated models, the proportion of reaction times be-
tween the myopic and own-payoff strategies are highly sim-

ilar, and the actions they play are the same. We believe this
is due to the similarity in their decision-making processes.
For example: in both myopic models the model looks at two
payoffs in the game tree, stores them in memory, and com-
pares them to make its decision. The difference in reaction
times could be due to the following reason: the automati-
cally generated models are specific models for their respec-
tive games, whereas the handmade models are general mod-
els. Therefore, the handmade models have to perform extra
tests to verify whether certain operations are possible in the
current game, and to remember what they have already done.
These extra steps cannot be removed: the model cannot func-
tion without them. However, the generated models are gener-
ated from a strategy formula designed for a particular game,
so they can simply perform a sequence of actions. This corre-
sponds to the number of primitive elements required by these
models. For example, the automatically generated myopic
model uses 39 primitive elements, and the handmade myopic
model uses 46 primitive elements.

Nonetheless, our exploratory experiments show that our
system can provide predictions such as ‘human response
times in centipede-like games are a function of the number of
game-theoretical solutions in a game’, which can be experi-
mentally tested. In the future we plan to extend the automatic
translation method to perfect-information games with more-
than-binary decision points. Similar translation methods of
linking formal logic directly to cognitive modeling and be-
havioural experiments may be constructed for wider classes
of tasks, such as planning and communication protocols.

References
Ghosh, S., Heifetz, A., & Verbrugge, R. (2015). Do play-

ers reason by forward induction in dynamic perfect infor-
mation games? In R. Ramanujam (Ed.), Proc. 15th conf.
theor. aspects rationality and knowledge (pp. 121–130).

Ghosh, S., Heifetz, A., Verbrugge, R., & De Weerd, H.
(2017). What drives people’s choices in turn-taking games,
if not game-theoretic rationality? In J. Lang (Ed.), Proc.
16th conf. theor. aspects rationality and knowledge (pp.
265–284).

Ghosh, S., & Verbrugge, R. (online first). Studying strate-
gies and types of players: Experiments, logics and cogni-
tive models. Synthese, 2018.

Meijering, B., Van Rijn, H., Taatgen, N. A., & Verbrugge, R.
(2012). What eye movements can tell about theory of mind
in a strategic game. PLoS ONE, 7(9), e45961.

Perea, A. (2012). Epistemic game theory. Cambridge UP.
Rosenthal, R. (1981). Games of perfect information, preda-

tory pricing and the chain-store paradox. Journal of Eco-
nomic Theory, 25(1), 92–100.

Stevens, C. A., Daamen, J., Gaudrain, E., Renkema, T., Top,
J. D., Cnossen, F., et al. (2018). Using cognitive agents to
train negotiation skills. Frontiers in Psychology, 9.

Taatgen, N. A. (2013). The nature and transfer of cognitive
skills. Psychological Review, 120(3), 439–471.

ICCM2018

186

Modeling the Impact of Fake News on Citizens

Stephanie Tulk (stulk@GMU.Edu)
Department of Psychology, George Mason University

Fairfax, VA 22030 USA

Niloofar Bagheri-Jebelli (nbagher2@GMU.Edu)
Computational Social Science Program, George Mason University

Fairfax, VA 22030 USA

William G. Kennedy (wkennedy@GMU.Edu)
Center for Social Complexity, George Mason University

Fairfax, VA 22030 USA

Abstract

The impact of “fake news” on the 2016 presidential election
became a serious concern after the surprising results. The
volume of fake news on social media, which people used as a
serious news source, could have significantly affected voters’
opinions. It is important to consider how social and cognitive
processes were affected by this fake news to estimate the true
impact of this computational propaganda technique. We built
a cognitive model of a citizen deciding what to believe when
encountering election stories on social media, eventually
developing an opinion and using motivated reasoning to help
determine which stories are true. Modeling 100 citizens, we
assemble polls of the agents over the 9 months leading up to
the election that replicates the qualitative characteristics of
actual polls but leaves many questions outside the purview of
cognitive modeling.

Keywords: Cognitive modeling; opinion modeling; motivated
reasoning; computational social science.

Introduction

After the 2016 presidential election in the United States,

“fake news” became a topic of concern due to a surge of false

news articles viewed and shared on social media in the

months leading up to the election. Further investigation

revealed that engagement with fake news articles on

Facebook outnumbered those of real news (Silverman 2016)

and the shared fake news was much more likely to be pro-

Trump (the Republican candidate) than pro-Clinton (the

Democrat) (Allcott & Gentzkow, 2017). It is worth

considering that rather than being insignificant noise, the

biased fake news may have influenced voters enough to

impact the election results. This new misinformation

approach to influencing public opinion and its effectiveness

make up an interesting cognitive phenomenon.

We investigated the effect of fake news on people’s ability

to process news information with their cognitive limitations

and biases. Our approach was to build a cognitive model of

an individual considering the apparent evidence and deciding

who to support during 9 months leading up to the decisive

election. We exposed the many copies of the model

representing the population and its diversity to input

representing the variety of reportedly news items. Over the

period, we polled our synthesized electorate and compared

the modeled population to available survey data. We start

with a discussion of the data available for this phenomenon.

Data on News and Fake News

The fake news surrounding both political candidates

originated from a variety of sources within and outside the

US (Allcott & Gentzkow, 2017). Once these fake articles

were published, they required social actors to promote the

material to their peers (tweets/re-tweets on twitter or shares

on Facebook). Researchers at Indiana University,

Bloomington concluded that “bots”, or algorithms that pose

as social agents on social media, played a key role in the

dissemination of fake news by tweeting and retweeting

misinformation to promote some “news” items to a wider

audience, and tagging popular users to project the appearance

of relevance and legitimacy (Shao et al., 2017). With the help

of these bots, any fake news article may go viral and possibly

reach a large population of voting Americans. Importantly,

human users consistently retweeted misinformation from

bots, increasing the reach of fake articles.

In the last three months leading up to the election, shares

of fake news articles on Facebook outnumbered those of real

news (Silverman, 2016), see Table 1.

More specifically, shares of fake news articles were nearly

four times more likely to be anti-Clinton/ pro-Trump than

anti-Trump/pro-Clinton (Allcott & Gentzkow, 2017). This

contrasts the coverage of real news, where overall the amount

of pro-Clinton/anti-Trump articles slightly outnumbered pro-

Trump/anti-Clinton articles (Patterson, 2016); see Table 2.

By compiling a database of real and fake articles in the

three months leading up to the election and testing the

average American’s recollection of major headlines, Allcott

and Gentzkow (2017) estimated that the average adult US

citizen actually read and remembered 1.14 fake news articles.

This does not account for the exposure to headlines and

thumbnails that may operate more like political

advertisements. In surveys conducted shortly after the

election, those who considered Facebook a major source of

news reported believing 83% of fake news headlines they

ICCM2018

187

remembered seeing over the course of the election

(Silverman & Singer-Vine, 2016).

Table 1: Engagement for Top 20 Election Stories on

Facebook in 2016. Engagement refers to shares, reactions

and comments on stories (Silverman, 2016).

 Feb-April May-July Aug-Nov 8

Mainstream

News 12 mil 9 mil 7.3 mil

Fake News 3 mil 3 mil 8.7 mil

The ability to induce belief in misinformation is an

important effect to investigate further, although it is difficult

to quantify. Shao and colleagues (2017) reported a weak

correlation between activity of bots claiming to be residents

of individual states and differences between actual and

predicted vote margins in the 2016 election for these states.

While they were careful to note that this is in no way

conclusive evidence that bots actually impacted the election

results, it provides an opportunity to explore the subtle and

unseen impact of bot-generated attitude change.

Cognitive Model Foundations

We started with the standard ACT-R cognitive architecture

(Anderson, 2009) as a general architecture supporting the

modeling an individual’s cognition while performing the task

of deciding how to interpret news items and developing a

political opinion. We begin by considering the social factors

that are likely to play a key role in developing an individual’s

political identity. After an individual holds firmly to a belief

system, biased cognitive processes will lead to strengthened

political identity and polarization over time (Lord et al.,

1979). Our model specifically deals with how opinions are

developed with repeated exposure, and strengthened as a

result of motivated reasoning and cognitive biases (cognitive

dissonance, belief bias and propaganda effect). We wanted to

examine what experiences lead to the acceptance of fake

news as factual information, as well as radicalization that can

occur once an individual has a strong enough opinion.

Even when exposure to individual fake stories does not

result in the adoption of an explicit belief, the accumulated

effect can impact individuals’ social cognitive processes in a

number of ways. Viral news (real or fake) not only reaches a

wide audience; it carries some social influence by virtue of

the importance people place on observing and conforming to

the majority opinions (Kiesler & Kiesler, 1969). If something

seems to have a viral audience, without knowing how many

bots shared it, people think that there is some group

consensus that the information is valid.

In the absence of unbiased fact-checking and simply

overwhelming news coverage, individuals are left on their

own to determine the validity of any claims they encounter.

“Epistemic vigilance” refers to the cognitive mechanisms

that exist to constantly monitor the potential that we are being

misled by another party (Sperber et al., 2010). Sperber et al.

Table 2: Positive and Negative Coverage for 2016

Presidential Candidates (Allcott & Gentzkow, 2017;

Patterson, 2016).

Negative

Real

Positive

Real

Negative

Fake

Real

Coverage

D 64 36 79.8 46.5

R 77 23 20.2 53.5

to preserve the value of communication by ensuring that

information recipient can detect and punish dishonesty from

the communicator.

Unfortunately, our mechanisms for epistemic vigilance

seem to be tested by our frequent use of social media. In the

cyber world, we lose valuable information such as

paralinguistic cues that people use to evaluate honesty in

face-to-face communication (Littlepage & Pineault, 1978),

and the overall volume of information in online platforms

overwhelms our attentional capacities, making it difficult to

filter information by quality (Qiu et al., 2017). The delivery

of computational propaganda disguised as peer-disseminated

information exploits our handicapped epistemic vigilance

mechanisms and threatens the overall usefulness of modern

internet-based news disseminating platforms. Without

adequate fact-checking or epistemic vigilance mechanisms,

misinformation will be perceived and interpreted with biased

cognitive processes which significantly contribute to the

bipartisan divide in the US. Our model decided validity using

the following cognitive mechanisms:

(1) “Motivated reasoning” refers to the phenomena where

human decision making is impacted by emotional

factors such as “cognitive dissonance”, or the feeling of

mental discomfort produced when experiencing

information that seems to disconfirm an individual’s

beliefs (Festinger, 1957). Researchers have shown that

liberals and conservatives experience cognitive

dissonance in the same ways, preferring to listen to

arguments supporting or opposing politicians or

partisan topics that are in line with their own partisan

identity to avoid discomfort (Frimer, Skitka & Motyl,

2017).

(2) The “belief bias” is the tendency for individuals to

accept an argument as true if they think it is believable

and in line with their identity rather than assessing the

quality of the argument (Evans, Newstead & Byrne,

1993). When interpreting partisan arguments, for

example, the belief bias would lead individuals to more

easily believe information that is in line with their

partisan identity completely independent of the quality

of information. When surveyed, democrats and

republicans were both about 15% more likely to believe

ICCM2018

188

headlines of articles that appeared on social media in

the three months leading up to the 2016 election when

they fit with their partisan opinions (Allcott &

Gentzkow, 2017), and this pattern could be stronger for

people further isolated in partisan echo chambers.

(3) The “propaganda effect” refers to the tendency for

people to rate information as more believable after they

have been exposed to it previously (Begg et al., 1992).

This effect works implicitly when the individual does

not consciously remember the exposure, therefore

highly partisan propaganda can leave an impression

even if it is not consciously believed.

Cognitive Model Details

We use the standard, off-the-shelf ACT-R, version 7.3,

without modifications to the architecture. The non-default

parameters used turned on sub-symbolic computation (:esc

T) and rule utility learning (:ul T) with a relatively low level

of noise (:egs 0.25). We used the default for memory retrieval

threshold.

Our model was based on the “choice” model of the ACT-

R tutorial, which reads input presented on the screen and

compares that information to memory to make a decision.

Our model uses 12 rules to read and process the news inputs.

A block diagram of the model is shown in Figure 1.

Figure 1. Citizen Model Block Diagram

The model begins a cycle by reading input in the form of a

news item (fake or real, positive or negative, R or D), which

the model perceives as a “chunk”. Each news item is

eventually either believed or disbelieved based on three

pieces of information derived from proceeding productions:

(1) The model expresses its explicit opinion in the form of an

R or D vote based on the data it has collected since the first

cycle. (2) Next, the model looks for a memory of a previous

article that matches the current news item in order to find a

belief precedent, deciding whether it wants to search for

something that was previously believed or not believed given

a specific candidate. If there is a retrieval error, the default

precedent is that real news is believable and fake news is not.

(3) A random exposure of positive or negative statements

about a candidate is recalled in order to make a decision when

the explicit opinion and belief precedent conflict. Initially,

the modeled citizen had a random preference but it forms

stronger opinions of the candidates over repeated exposure to

election stories.

Rule utility learning was a part of the sub-symbolic

representation of procedural knowledge of ACT-R. These

rules became strengthened through use. Utility is considered

to be a measure of the rule’s value (Anderson, 2009). Models

use rules with the highest utility. We used the same

mechanism in our model to reward the results based on its

utility. When the model ran, the production with the highest

utility fired. The production firing had a reward value

assigned to it. A reward value is propagated backwards

through previous rule firings and depreciated by time.

To develop motivated reasoning, the modeled citizen

experienced the highest reward when it was able to decide to

believe an article that confirmed its explicit opinion (the vote;

either pro-R/anti-D or pro-D/anti-R), resulting in a “match”,

and a medium reward if it could “ignore” disconfirming

information. This was only possible if the citizen was able to

recall a similar type of article that fit with the motivation

(article precedent; belief bias). If the explicit opinion and the

article precedent were contradictory, the citizen would make

a “gut decision” based on some implicitly recalled

information (propaganda effect). If the citizen was still

unable to confirm their belief or ignore disconfirming

information, it had to accept that the disconfirming

information was true (attending a dissonant belief, resulting

in 0 reward), resulting in a “mismatch”. As the citizen was

continuously exposed to news, it could attempt to reduce

cognitive dissonance either by changing its explicit opinion

about the candidates or by learning to strongly favor

productions that were more likely to lead to matches and

ignores.

Experiment

The experiment consisted of running a cognitive model

representing an American citizen who was exposed to 1,000

news items over the last 9 months of the 2016 campaign

cycle. Of those, 900 were randomly presented at the rates

reported in Tables 1 and 2, with three phases of real and fake

news ratios. To ensure that simulated citizens had some

standardized experiences over time, an additional 100 real

items that were presented at time points corresponding to

some of the most influential real campaign stories. We

recorded data over 100 runs of the model. The number of runs

was arbitrary but intended to produce enough data to be

useful.

Over the course of the experiment, the modeled citizen

decided to believe or disbelieve each article, storing a

memory of the event and slowly learning what candidate to

support and what productions led to confirmation of that

support and the least cognitive dissonance. Once the modeled

citizen had a strong enough opinion about either candidate, it

could partially or altogether stop believing real news that

contradicted its current belief or believe fake news that

confirmed its belief. This allowed us to investigate how

motivated reasoning can affect truth-seeking behavior over

ICCM2018

189

an election, possibly resulting in the adoption of radical

opinions that are immune to the influence of facts.

In addition to the experiment described up until this point

(which we will refer to in later sections as the “Troll”

Condition), we also ran a version of the experiment in which

the rate of fake news was kept constant over the 9 months

(Feb-April in Table 1) and was equally disparaging of each

candidate (deemed the “No Troll” condition), as well as a

“No Troll” version that also had equal coverage of each

candidate in real news (“No Troll/Equal Coverage”). These

additional versions were added as control conditions against

which we could compare the Troll results.

Finally, we ran 5 additional versions of the Troll condition

to compare the rate of belief in real and fake news over time

when the initial rate of belief in real ranged from 100% to

50% and fake ranged from 0% to 50%, in 10% intervals.

Experimental Results and Available Data

The experimental results are presented in two forms: as if our

modeled citizens were regularly polled for their opinions and

how the internal states of the model were shaped over time.

Polling trends were created by plotting the average explicit

opinions over time for the 100 modeled citizens. Our model

was able to reproduce polling trends by setting reward

parameters and noise associated with learning such that a

small amount of individual runs waffled between candidates

on a significant amount of runs, but many explicitly

supported the same candidate for the majority of trials. See

Figure 2. See Figure 3 for comparison. The polling results for

all 3 model conditions are compared to the actual electorate

polling in Table 3.

The first internal factor we looked at was belief in real and

fake news over time. Belief in fake news overtime was shown

to increase. This is plotted as Figure 4.

Interestingly, the baseline model never disbelieved real news

even though this was a possible (yet unlikely) outcome. To

explore this further, the initial base rate of belief in real and

fake news (retrieval failure, see box 4b in Figure 1) was

varied from 100% to 50%. Results are shown in Figure 5.

While we explicitly set rewards to represent motivated

reasoning, our model was still forced to observe

disconfirming information (mismatch), thereby initially

maintaining a solid representation of reality. However, the

competition for attentional resources in the Troll condition

resulted in decreased absorption of true information in the

later months; see Figure 6.

Discussion

The issue of “fake news” had been a source of humor, but it

now appears that fake news can affect the public’s

understanding enough to possibly change the outcome of a

presidential election. The data on the frequency and type of

fake news items circulated by the social media prior to the

2016 election was enough to cause our cognitive model of a

US citizen to change the outcome of an election when

averaged over 100 runs.

Our model shows that with the help of motivated reasoning,

repeated exposure to large amounts of fake news results in

competition for attentional resources that reduces the rate of

Figure 2. Simulated Polling Results Prior to the Election

(averaged over 100 model runs) in the Troll Condition

(Error bars are not shown due to variability of the mean).

Figure 3. Electorate Opinion Polling prior to Election

(Election G., 2016).

Table 3: True and Model Polling Results for Troll, No Troll,

and No Troll/Equal Coverage. * indicates winner.

 Real

Poll

Troll

Poll

No Troll

Poll

No Troll/Eq

Cov Poll

Overall

Average

D 46.3 * 37.9 * 38.1 * 41.3 *

R 41.7 36.8 38.1 * 34.6

Last 5

Days

D 46.3 * 36.5 * 38.9 * 42.7 *

R 42.7 35.8 38.6 33.9

Election

Day

D 48.2 * 34.9 39.5 * 45.3 *

R 46.1 36.7 * 39.5 * 34.5

ICCM2018

190

Figure 4. Modeled Citizen’s Belief in Fake News in Troll

and No Troll Conditions (averaged over 100 runs). Belief in

fake news increases over time in the Troll condition.

Figure 6. Model Results for Troll and No Troll

Conditions. The increase in fake news results in a decline in

the ability to process real information.

absorption of true information and increases the amount of

fake news that is believed. This makes some sense, and the

message is that a person’s capability to process truth and

update an opinion is hampered by the influx of fake news.

Additionally, while there were more real anti-R/pro-D stories

overall, the adoption of biases that were explicit (increased

belief in fake news) and implicit (propaganda effect) against

the heavily trolled candidate seemed to drive down the

candidate’s popularity in the Troll condition. Still, the impact

of more real coverage for the R candidate also seemed to

create more popularity for the R candidate in a type of “No

press is bad press” fashion (see Table 3). While it would be

encouraging to believe that real people never start to doubt

true information, it is likely that people do not begin to

develop an opinion with 100% truth detecting accuracy, and

therefore some immunity to the truth can occur over time.

The most dramatic impact occurs for those individuals who

have the weakest discriminatory power before developing

political bias (see Figure 5).

While our model was able to produce polling results that

fit relatively well with the true polls (see Figure 2 vs. 3), there

were a few limitations. We modeled our citizen to process

about 10 news items daily, spread evenly over 24 hours per

Figure 5. Average Percent of Real Stories Believed over 9

Months Beginning with Different Base Rates of Belief.

Results are from the Troll Condition.

day, for the 9 months prior to the election. Our model begins

with no prior political identity or opinion of either candidate.

The average real citizen would likely have had some political

identity before the 2016 election cycle, which tends to lead

people to surround themselves with like-minded individuals,

which would have affected their true rate of exposure to

partisan stories (real and fake). Additionally, our model only

understood these stories as simplified chunks, not paying

attention to the language of a headline, the user who posted it

or the source that published it, which are all pieces of

information that would enter into the consideration of

validity. Future work will seek to address these processes.

This work is an example of the type of modeling possible

in the field of computational social science, where models of

individual agents reacting to their environment and other

agents can demonstrate possible macro-level results from

relatively simple micro-level agents. Combining cognitive

modeling and computational social science improves the

credibility of results.

Acknowledgments

This work was supported in part by the Center for Social

Complexity at George Mason University. The opinions,

findings and conclusions or recommendations expressed in

this work are those of the authors and do not necessarily

reflect the views of the sponsors.

References

Allcott, H., & Gentzkow, M. (2017). Social media and fake

news in the 2016 election. Journal of Economic

Perspectives, 31(2), 211-36.

Anderson, J. R. (2009). How can the human mind occur in

the physical universe?. Oxford University Press.

Begg, I. M., Anas, A., & Farinacci, S. (1992). Dissociation of

processes in belief: Source recollection, statement

familiarity, and the illusion of truth. Journal of

Experimental Psychology: General, 121(4), 446.

Election, G. Trump vs. Clinton. RealClear Politics. URL:

http://www.realclearpolitics.com/epolls/2016/president/us

/general_election_trump_vs_clinton-5491. html.

ICCM2018

191

Evans, J. S. B., Newstead, S. E., & Byrne, R. M. (1993).

Human reasoning: The psychology of deduction.

Psychology Press.

Festinger, L. (1962). A theory of cognitive dissonance (Vol.

2). Stanford university press.

Frimer, J. A., Skitka, L. J., & Motyl, M. (2017). Liberals and

conservatives are similarly motivated to avoid exposure to

one another's opinions. Journal of Experimental Social

Psychology, 72, 1-12.

Kiesler, C. A., & Kiesler, S. B. (1969). Conformity. Addison

Wesley Publishing Company.

Littlepage, G., & Pineault, T. (1978). Verbal, facial, and

paralinguistic cues to the detection of truth and

lying. Personality and Social Psychology Bulletin, 4(3),

461-464.

Lord, C. G., Ross, L., & Lepper, M. R. (1979). Biased

assimilation and attitude polarization: The effects of prior

theories on subsequently considered evidence. Journal of

personality and social psychology, 37(11), 2098.

Patterson, T. E. (2016). News coverage of the 2016 general

election: How the press failed the voters.

Qiu, X., Oliveira, D. F., Shirazi, A. S., Flammini, A., &

Menczer, F. (2017). Limited individual attention and

online virality of low-quality information. Nature Human

Behaviour, 1(7), 0132.

Shao, C., Ciampaglia, G. L., Varol, O., Flammini, A., &

Menczer, F. (2017). The spread of fake news by social

bots. arXiv preprint arXiv:1707.07592.

Silverman, C., & Singer-Vine, J. (2016). Most Americans

who see fake news believe it, new survey says. BuzzFeed

News.

Silverman, C. (2016). This analysis shows how viral fake

election news stories outperformed real news on Facebook.

BuzzFeed News.

Sperber, D., Clément, F., Heintz, C., Mascaro, O., Mercier,

H., Origgi, G., & Wilson, D. (2010). Epistemic

vigilance. Mind & Language, 25(4), 359-393.

ICCM2018

192

A Neural Field Model of Word Recognition
Andrew P. Valenti (andrew.valenti@tufts.edu)

Bradley Oosterveld (bradley.oosterveld@tufts.edu)

Matthias Scheutz (matthias.scheutz@tufts.edu)
Tufts University Human-Robot Interaction Laboratory, 200 Boston Ave.

Medford, MA 02155

Abstract
We show how temporal and spatial information can be repre-
sented as stable patterns in a dynamical system. We describe a
model in which category perception arises from the incremen-
tal recognition of temporal patterns from sequences of inputs
and this is accomplished by decoding a pool of recurrently con-
nected artificial neurons which is called a neural field. In an
example application, we use these patterns to identify a set of
words which share the word onset represented by the input se-
quence, consistent with the Marslen-Wilson COHORT model
of word recognition. Similarly, we evaluate the extent to which
information contained in the bottom-up sensory signal can be
used to determine word boundaries. We suggest it is plausi-
ble that a neural field offers a naturalistic explanation of how
perception arises in word processing.
Keywords: dynamic field theory, neural fields, connectionist
model, word recognition, COHORT model, machine learning

Introduction
The brain encodes and processes sensory input acquired from
the environment. Sensory input, regardless of modality, is
encoded as spatiotemporal patterns, and a superior form of
pattern processing has evolved in humans coinciding with
the expansion of the neocortex. In this brain structure, sev-
eral essential cognitive processes such as visual, auditory, and
speech perception occur (Koch, 2004; Mattson, 2014). These
processes include not only recognizing patterns, but also clas-
sifying them (Grossberg, 2005). During this processing, dif-
ferent sensory inputs which represent members of the same
category are mapped to a singular representation for that cat-
egory. In speech processing, for example, all pronunciations
of the phoneme “@”, are mapped to the same pattern, allowing
for invariance in speech perception across multiple speakers
(Kleinschmidt & Jaeger, 2015). Consistent with these hy-
potheses, our model uses patterns of activation to represent
sequences of states in the context of perceiving words; we
modeled these states as equilibriums in a neural field.

The human neocortex consists of six layers of tissue con-
taining approximately 1010 neurons. Columns of tissue can
be represented mathematically as neural fields, which form
patterns of activation through interaction with each other
(Amari, 1977). These interactions between fields generate
patterns of activation in a fashion that is believed to be sim-
ilar to how sensory information is represented in the human
neocortex (Amari, 1977; Brady, 2012). These patterns rep-
resent an encoding of spatial and temporal information from
the brain’s sensory input stream.

Each neuron in a neural field F (Figure 1) is connected to
each of its neighbors with weights that create an on-center

off-surround activation pattern, where the closest neighbors
provide a positive influence on activation, further neighbors
a negative influence, and the furthest no influence. If given
no input and random initial conditions, the units of the field
are guaranteed to quickly fall into a stable equilibrium state.
Different equilibrium states of a field can be associated with
different inputs, and thus the states of activation in a neural
field can be used to store information by associating them
with category labels (Valenti, Brady, Scheutz, Holcomb, &
Pu, 2016).

In this work, we demonstrate a model of word perception
using neural fields. Our research is not focused the initial
interaction between perceptual signals and the sensory appa-
ratus. We are instead interested in the processing of the out-
put of such apparatuses, and how it can be used to constrain
the patterns of activation in higher level cognitive processes,
like lexical representation. Our model uses two neural fields,
each representing a level of cognitive processing. Since sen-
sory information unfolds over time as a continuous sequence,
the input presented to the first neural field is a sequence of
feature vectors which represent the letters of an artificial font.
Sequences of output features from the first field representing
letters are then presented as input to the second field which
identifies likely word boundaries and classifies these letter se-
quences as words.

There are many theories about how patterns of activation in
the lexicon are formed once the sensory information has been
received (Dahan & Magnuson, 2006). This work focuses on
the Marslen-Wilson (1987) COHORT model, which theorizes
that information contained in the bottom-up perceptual signal
can be exploited to determine which lexical items should be
activated, and also used to identify perceptual characteristics
such as word boundaries. To explore the extent to which this
information is sufficient, we have developed a model where
word onsets constrain the set of activated lexical entities such
that word onsets activate lexical items with shared onsets.
Our model thus makes predictions similarly to the COHORT
model; the initial information contained in the sensory signal
influences the activation of an initial word-cohort, allowing it
to predict word boundaries in a higher level of processing.

Representing State with a Neural Field
Our model is composed of two layers of neural fields. The
structure of a single layer is shown in Figure 1. An Input
vector (I) is fully connected to the neural field (F) by input

ICCM2018

193

Figure 1: Single field design. Note: I and O are fully con-
nected to F, but only a few connections are depicted here, for
clarity.

weights (Wi). F is fully connected to an output vector (O) by
output weights (Wo). In our model, such a layer (input, field,
and output) can be interpreted as a cognitive processing layer,
computing a specific function such as letter or word detec-
tion. These layers can be combined to represent a hierarchy
of cognitive processes shown in Figure 3.

Our model is based on the following principles of dynamic
field theory. Patterns can be stored as stable equilibrium
states. A sequence can be “remembered” as a unique equilib-
rium, unrelated to any previously generated equilibrium, by
calculating the sum of the pattern generated by the current in-
put and the pattern representing the previous sequence. Fields
converge to a stable equilibrium state after applying a finite
series of “settling” operations after which the field ceases to
change. Finally, fields can be forced out of a stable state into
a target state by applying a finite series of operations which
includes the target as its field input.

Field Dynamics
The input to a layer is received as a vector I, whose dimen-
sionality is the number of discrete categories in the input do-
main. This input is used to first calculate the n×n matrix Ft
(in our evaluation n = 64), which represents field activation
at the given point in the sequence of input vectors. Ft is cal-
culated using the following equations which are a variation of
those widely used in dynamical systems (Amari, 1977).

D =WiI (1)

σ(x) =

{ x
x+1

if x≥ 0

0 if x < 0
(2)

S =Wmh σ(Ft−1 +D) (3)

Ft = σ(S+h+n) (4)

As shown in Equation (1), the driver input, D, is gener-
ated by multiplying the input vector I by the input weights,
Wi (dimensionality n×n× ‖ I ‖). D is then added to the cur-
rent field equilibrium, Ft−1, and the result is squashed to the
range [0,1] using Equation (2). This new equilibrium repre-
sents the sequence of input seen up to time t, plus the input
at t. The result is multiplied by the within field weights, Wmh,

which are defined using the Mexican hat function;1 the result
is the field influence term, S, Equation (3). Small bias h and
noise n terms are added to the field influence, and the result
is squashed again to produce the field activation Ft , Equa-
tion (4).

Settling to an Equilibrium State
Once a field has been updated from an input, a settling oper-
ation is applied resulting in convergence to an equilibrium
state. This process is expressed in Equation (5), which is
based on Equations (3) and (4) with the notable exception that
the value of the field at the previous time step is not added to
the input. This operation is repeated until a stable equilib-
rium is reached, determined by comparing the field activation
at time t with its activation at t−1, repeating until the differ-
ence is below a small epsilon value.

S =Wmh σ(S+n) (5)

Layer Output
The settled equilibrium is used to calculate the layer’s output
vector, O, whose dimensionality is the number of categories
in the output domain.

O = tanh(FtWo) (6)

The state of the field is multiplied by the output weights
Wo (n× n× ‖ O ‖), and their product is passed through the
hyperbolic tangent activation function. The result is a vector
whose values are normalized to the range [−1,1].

The COHORT Model Using Neural Fields
The Marslen-Wilson (1987) COHORT model of spoken word
recognition suggests that the real-time constraints of a speech
signal influence how bottom-up information is used to de-
termine which items in the mental lexicon become activated.
According to the model, on each new input onset only the co-
hort of possible values remains activated; a cohort is the set
of all lexical items that share an onset. A decision is reached
only when one possible value remains in the cohort. Consis-
tent with the original version of COHORT (which assumed
a highly categorized, abstract string of phonemes rather than
feature vectors as input), our model uses only the features
present in the bottom-up sensory input to develop the cohort.

The neural fields in our model simulate what happens when
sensory information makes contact with the mental lexicon. It
is assumed that, once past the sensory apparatus, information
flow through differentiated neural architectures, e.g., visual or
auditory, is represented in the same fashion. In our evaluation
we chose to focus on visual information, and the following
sections describe how it is handled by the model.

1A Mexican Hat function where D is the Euclidean distance be-
tween two units in the field: Wmh = e

−D2

r2d · (cos(πD
2r)− z) · (1

1−z),r =
4.5,z = 0.15

ICCM2018

194

Model Input
The input to our model is a sequence of feature vectors
which represent the output of the visual perceptual system.
As in the Interactive Activation model of word recognition
(McClelland & Rumelhart, 1981), visual features are ex-
tracted from the raw input, sequences of letters, by separating
each letter into a set of component features. These features
can be thought of as the pen strokes used to write the letter.
For simplicity, we have chosen the font used by Rumelhart
and Siple (1974) which is shown in Figure 2. Sequences of
feature vectors are generated from a letter by arbitrarily cir-
cumnavigating the font clockwise from the outermost feature,
spiraling inward. For example, the letter “R” is represented
by the sequence [0, 1, 4, 5, 8, 9, 12].

In our implementation, the model receives visual features
as input. As mentioned earlier, the input features could also
represent information from other sensory modalities. For ex-
ample, the input features could also come from a speech rec-
ognizer and instead represent sequences of phonemes. At the
cognitive processing level, the model’s basic results do not
depend on what the input represents. With different input
features there are obviously low-level feature processing is-
sues (e.g., different types of variance in the input) which are
outside the scope of this work.

(a) Labeled Segments (b) Letters

Figure 2: 14-segment display using the letter font.

Model Architecture
The architecture of our model is shown in Figure 3. It uses
two neural fields, each representing a stage of cognitive pro-
cessing: F1 which is a letter detector, and F2 which is a word
detector. F1 and F2 are connected via a Send Gate which
controls when information from F1 is sent to F2.

Before the model can be used, it must first be initialized.
This initialization generates the associations between input
and neural field equilibrium states which are used to detect
sequence boundaries. During this initialization the model is
presented with sequences of input features and the boundaries
between them that represent meaningful units. Perceptrons
are trained to detect these boundaries based on the equilib-
rium states which represent them.

Once initialized, information flows through the model as
shown in Figure 3. Letter segment sequences previously gen-
erated by the visual recognizer flow as input to F1; letters
detected by F1 flow as letter sequences to the word detector
F2. Perception arises as the generated pattern predicts a set,
or cohort, of letter or word candidates. As new features are

fed incrementally into the model, a new pattern is generated
and each field’s perceptron updates its prediction, removing
candidates from its cohort. Letter or word recognition occurs
when there is a single candidate left in the respective cohort.
When recognition occurs, the send gate is opened sending
the output perceptron’s value to the next layer as input. In
the case of the letter layer, the output is sent as input to the
word layer; in the case of the word layer, the output value of
the perceptron is used by the decoder perceptron to generate
results interpretable by a human.

Model Initialization
The characteristic theory of the COHORT model is instanti-
ated in the neural field model during initialization. This ini-
tialization forms the associations between input features and
neural field equilibrium states used during perception. This
initialization is composed of three steps: (1) Initial equilib-
rium generation (2) Wi training (3) Wo training.

The initial values of the weight matrices used in the model
(F1: Wi, Wo and F2: Wi, Wo) are chosen randomly from a
truncated normal distribution with a standard deviation of:

2√ninputs
Using this particular standard deviation helps the

training to converge more quickly (Géron, 2017).

Initial Equilibrium Generation: A “seed” equilibrium is
generated to represent each unique input feature a field will
receive. For the letter detector, F1, 15 equilibriums are gener-
ated to represent each of the 14 possible letter visual features,
plus an equilibrium to represent the beginning of a sequence
when no input has been presented yet. For the word detec-
tor, F2, 27 equilibriums are generated, for the 26 letters in
the English alphabet and one more for the initial sate. These
initial equilibriums are generated by a variation of Equation 1
where I is the product of a one-hot vector whose 1-bit corre-
sponds to the ordinal value of the letter segment in the range
[0,15] or letter in the range [0,27] and the randomly drawn Wi
for the given field.

Wi Training: For a feature vector (i.e., letter segments for
the first field, letters for the second), a set of weights (Wi) is
trained which will reliably reproduce the initial equilibrium
associated with that feature vector. The model’s operation
assumes that a settled field generated from new input can be
added to the current settled field to produce a new equilibrium
representing the input sequence seen thus far. Without trained
driver weights, an unsettled equilibrium would be added, vi-
olating a core model assumption. The training of Wi, uses a
version of the perceptron learning rule, Equation 7, to train
the single layer perceptron whose activation is found by mul-
tiplying the driver input by Wi,

∆Wi = ηI(Target− IWi) (7)

where Target is the seed equilibrium for the category and η

is a learning rate. Training proceeds until Target − IWi <
0.0001. This approach is a variation of Hebbian learning,
a biologically plausible mechanism for learning associations

ICCM2018

195

Figure 3: Neural Field based Cohort Model architecture.

between neurons (Laszlo & Plaut, 2012).

Wo Training: The output weights Wo map a field’s current
equilibrium to the output domain relevant to its cognitive
layer (i.e., letters cohort or words cohort). For a given cogni-
tive layer the output vector O represents the members of the
cohort that are currently active. O is the size of the lexicon of
known labels at the given cognitive level, each of its elements
representing a member of the lexicon. A member of the lex-
icon is considered activated if the value of its corresponding
element in O is above an activation threshold. For example,
the letter segment sequence [0, 1] is the prefix of the letters
{A, B, D, O, P, Q, R} (see Figure 2a).

The weights Wo are trained so that the same value of O
can be calculated every time a corresponding equilibrium is
present in F. The weights are updated using Equation 8,

∆Wo = ηF(Target−FWo) (8)

where Target is the vector in the output domain (e.g., letters
or words) indicating cohort membership of the lexical entries
whose onset is represented by the equilibrium of the neural
field F . Training proceeds until Target−FWo < 0.001.

Detecting a New Sequence
An equilibrium for a sequence is generated by adding the seed
equilibrium of the new element of the sequence to the cur-
rent sequence equilibrium. For the first segment in a letter,
its seed equilibrium is added to a default value (i.e., the 15th

seed equilibrium). This process is repeated for each segment
of the letter and after each addition, the field is settled. A
challenge in implementing the COHORT model is detecting
when a new sequence begins. In our model, an input sequence
is “remembered” as an equilibrium whose value is the sum of
the equilibriums seen as input thus far. Thus, when the end
of the sequence is detected there must be some way of re-
setting the field so that the next sequence is not affected by
the previous sequence. To do this, each field has a reset gate
whose purpose is to detect the conditions under which the
field should be reset to its default equilibrium.

The default equilibrium is the starting state to which sub-
sequent equilibriums are added. The model hypothesizes that
a reset signal represents constraints arriving top-down from

higher cognitive processing levels (e.g., syntactic, semantic,
pragmatic) as well as bottom-up from the features contained
in the input data.

The Send Gate
Each layer of the model has an associated Send Gate which
controls the information that it sends to the next highest level
of cognitive processing. The first layer’s send gate connects
the letter detector field to the word detector field and the sec-
ond layer’s determines the overall output of the model. In
different configuration of the model, the second layer’s send
gate could connect to a third field and so on. Send Gate pro-
cessing is the same for every layer (refer to Figure 4). First,
the input features A are presented, and the field is updated B.
The cohort is then calculated C and evaluated by the Reset
Gate D. The field may or may not then be reset to its default
state. The cohort is calculated and if it has shrunken to one
member, the Send Gate E opens.

Notice that the Send Gate only opens when the cohort has
shrunk to one member. Thus we must ensure that the state
of the cohort is reset so that a new sequence can be subse-
quently recognized,otherwise a feature that is repeated across
category boundaries will not be recognized. The Send Gate
behavior models the recognition point prediction of the CO-
HORT model which states that word recognition occurs as
soon as sufficient information is received such that all other
candidates are eliminated (Marslen-Wilson, 1987).

Model Evaluation
The primary goal of our research was to determine whether
neural fields are a plausible way to model word perception.
Prior research theorizes that humans represent word forms
as categories, abstracted away from variability (Dahan &
Magnuson, 2006) and it is this view that our model seeks
to explore. There are several well-known cognitive models
(e.g., COHORT, TRACE, Neighborhood Word Activation)
whose theories make different predictions once the input sig-
nal make contact with the lexicon. We chose the COHORT
model as a starting point and explore whether two of its pre-
dictions can emerge from our neural field model: word-initial
cohort and the identification of word boundaries. The opera-
tion of the model is summarized as follows:

ICCM2018

196

Figure 4: Reset/Send Signal Processing. If the reset gate (D)
is open, it will set the field to a default equilibrium; otherwise
it will update the field to the sum of the equilibrium of the
current field and the equilibrium of the new feature. Send gate
processing (E) takes place after the reset gate is processed.

1. Each feature (i.e., letter segment) of sensory input is con-
verted to a pattern.

2. Sequences are generated by adding the current input’s pat-
tern to the previous input’s pattern.

3. Perception arises as the generated pattern predicts a set,
or “cohort”, of letter or word candidates. A perceptron is
trained to decode the pattern and interpret the prediction.

4. As new features are fed into the model, a new pattern is
generated and the perceptron updates its prediction, remov-
ing candidates from the cohort.

5. Letter or word recognition occurs when there is one candi-
date left in the cohort.

6. New categories are recognized at the point when either the
cohort is empty or when new candidates are added.

Data
The TIMIT corpus (Garofolo, Lamel, Fisher, Fiscus, & Pallet,
1993) provides a set of 10 phonetically rich sentences spoken
by 630 speakers of eight major dialects of American English
which are annotated at the word and phoneme level. The an-
notations of the corpus were used as a set of naturally occur-
ring sequences to train the model’s letter and word detectors.
The text of the corpus was used to create feature vectors, as
described in Model Input, which was presented to the F1 as a
sequence of letter segments.

Results
The entirety of the TIMIT training set was pre-processed by
the visual feature recognizer and its output, an unbroken se-
quence of letter segments was presented as input to the model.
In the first experiment, the model was artificially reset to a de-
fault state at the end of every word so that errors in the percep-
tion of one word did not affect the perception of other words.
This was done to verify correct operation of the model. For

100% of the words in the lexicon, the activation matched
the ground truth for every letter segment in that word. Fur-
thermore the model generated the correct cohort (when one
existed) of letters for every letter segment sequence and of
words for every letter sequence. In a separate experiment
(Valenti, Oosterveld, & Scheutz, 2017), the model was not re-
set and in 82.5% of cases, the model detected the word level
transition, suggesting that bottom-up information alone is in-
sufficient to detect word boundaries.

Discussion
The model uses the structure of the data to represent top-down
cues which are simulated through a “forced reset” when the
start of a new letter or word is detected from the structure of
the input data set. This is not ideal but allows the model to
continue processing when the bottom-up cues alone are insuf-
ficient. One alternative to the forced reset would be to train a
detector to recognize likely word boundaries in a training cor-
pus, using it to augment the existing cohort-based reset mech-
anism. Consider the following sequence of letters without any
explicit separation (we could have equally used a letter seg-
ment sequence, but that would have been harder to visualize):

shewashedyourdarksuitingreasywashwaterallyear

Humans can usually distinguish each letter sequence of a
word and consequently recognize each word of the target sen-
tence; however it is not as straightforward for a computer
model to do so. Without further information constraints, a
naı̈ve model might correctly reject all sequences of letters
that form non-words (e.g., shew) but erroneously recognize
legal words such as suiting, resulting in a syntactically im-
plausible reading of the sentence. Our model attempts to dis-
cern sequence boundaries by exploiting the cohort dynam-
ics when processing letters. As a sequence of letters is read
into the model, a cohort of possible words is initially formed
which shrinks in size until only a single word candidate is
left; this is the word’s recognition point. If a shrinking co-
hort begins to grow again when a new letter is added to the
sequence,decided this might indicate the start of a new word
sequence and that the model should reset the field (D in Fig-
ure 4).

Since the present design does not model higher level cog-
nitive processes, we abstract over all those that might be rele-
vant to detecting a category boundary and combine them into
one signal per field called forcedReset. Specifically, the data
is preprocessed by the visual feature recognizer so that the let-
ter segments have been grouped into sequences by letter. This
roughly corresponds to how the higher areas of the visual cor-
tex constrain lower area feature sequences during perception
(Friston, 2005). The model uses this information to force the
letter detector field to reset at the start of every new sequence.
Likewise, the model uses the word size as a top-down cue
to force a reset in the F2 word detector. During evaluation,
the percentage of times the model accurately detects a word
boundary using only the bottom-up signal is calculated; the

ICCM2018

197

forced reset ensures the model can continue processing when
there is insufficient bottom-up information.

Future Directions
The first version of COHORT assumed input to be an ab-
stract phoneme string. Thus, we arbitrarily chose to present
visual input to the neural field as an unambiguous, noiseless
sequence of letter segments which made it easier to visualize
the model’s operation in its graphical user interface. Real-
world data is noisy yet perception still arises from these cog-
nitive “noisy channels”. Developing a design that incorpo-
rates noisy channels is key to understanding situated cogni-
tive processes. Similarly, the input is invariant. In the speech
perception domain, humans can usually recognize what is be-
ing said regardless of the speaker’s accent, gender, etc. The
model design needs to incorporate the ability to map vary-
ing input to invariant representations in order to simulate hu-
man performance in most perception domains. The model
uses bottom-up information contained in the input signal to
determine word boundaries, which is insufficient for 100%
accuracy. Training an additional perceptron on a large speech
corpus such as TIMIT should allow the model to statistically
learn when a word boundary is likely to occur and this can be
as a top-down cue to be added to the reset signal and improve
its accuracy. Lastly, human cognitive language processing in
the auditory and visual domains is often studied using elec-
tro physiological measures such as Event-related Potentials
(ERPs). We have previously demonstrated a mapping of a
single neural field model’s dynamics to an ERP component
(Valenti et al., 2016). Extending this to multiple fields could
lead to models of human cognitive performance under vary-
ing cognitive workloads.

Conclusion
We explore the cognitive process of word recognition by cre-
ating a dynamacist model of the COHORT theory of Marslen-
Wilson (Marslen-Wilson, 1987). This theory describes how
sensory input is mapped to a specific word from a person’s
mental lexicon. Whereas Marslen-Wilson predicted the iden-
tification of a word cohort from which a unique word is se-
lected and recognized he did not address how it might arise
functionally from the input signal nor did he specify an im-
plementation of the model. Moreover, we know of only one
implementation of COHORT (Johnson & Pugh, 1994); it too
conceives of encoding the input as patterns from which a co-
hort emerges and resolves. However it does not discuss the
underlying algorithm for this process nor how it was trained,
so it is difficult to assess its plausibility. In contrast, the pre-
sented model provides a general way to encode sequences in
patterns and to find positions within those sequences which is
applicable to any type of sensory information unfolding over
time.

References
Amari, S. (1977). Dynamics of pattern formation in lateral-

inhibition type neural fields. Biological cybernetics, 27(2),

77–87.
Brady, M. C. (2012). A field-based artificial neural network

with cerebellar model for complex motor sequence learn-
ing. Unpublished doctoral dissertation, Indiana University.

Dahan, D., & Magnuson, J. S. (2006). Spoken Word Recog-
nition. In M. J. Traxler & M. A. Gemsbacher (Eds.), Hand-
book of Psycholinguistics.

Friston, K. (2005). A theory of cortical responses. Philo-
sophical Transactions of the Royal Society London, Series
B, Biological Sciences, 360(1456), 815–836.

Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G.,
& Pallet, D. S. (1993). DARPA TIMIT acoustic-phonetic
continuous speech corpus CD-ROM, NIST speech disc 1-
1.1. NASA STI/Recon technical report n, 93.

Géron, A. (2017). Hands-on Machine Learning with Scikit-
Learn & TensorFlow (1st ed.). Sebastopol, CA: O’Reilly.

Grossberg, S. (2005). Adaptive resonance theory. In L. Nadel
(Ed.), The encyclopedia of cognitive science (1st ed.). Wi-
ley.

Johnson, N. F., & Pugh, K. R. (1994). A cohort model of
visual word recognition. Cognitive Psychology, 26, 240–
346.

Kleinschmidt, D. F., & Jaeger, T. F. (2015). Robust speech
perception: Recognize the familiar, generalize to the simi-
lar, adapt to the novel. Psychological Review, 122(2), 148–
203.

Koch, C. (2004). The Quest for Consciousness: a Neurobi-
ological Approach (1st ed.). Englewood, CO: Roberts and
Company Publishers.

Laszlo, S., & Plaut, D. (2012). A neurally plausible paral-
lel distributed processing model of event-related potential
reading data. Brain and Language, 120, 271–281.

Marslen-Wilson, W. D. (1987). Functional parallelism in
spoken word-recognition. Cognition, 25, 71–102.

Mattson, M. (2014). Superior pattern processing is the
essence of the evolved human brain. Frontiers in Neuro-
science, 8(265). doi: 10.3389/fnins.2014.00265

McClelland, J., & Rumelhart, D. (1981). An Interactive Ac-
tivation Model of Contextual Effects in letter perception:
Part 1. Psychology Review, 88(5), 375–407.

Rumelhart, D., & Siple, P. (1974). Process of recognizing
tachistoscopically presented words. Psychology Review,
81, 99–118.

Valenti, A. P., Brady, M. C., Scheutz, M. J., Holcomb, P. J., &
Pu, H. (2016). A neural field model of word repetition ef-
fects in early time-course ERPs in spoken word perception.
In A.Papafragou, D. Grodner, D. Mirman, & J. Trueswell
(Eds.), Proceedings of the 38th Annual Conference of the
Cognitive Science Society (pp. 2765–2770).

Valenti, A. P., Oosterveld, B., & Scheutz, M. J. (2017, Sep. 6-
8). A neural field model of sequence perception. In Cog-
nitive Computational Neuroscience Conference 2017. New
York, NY.

ICCM2018

198

Modelling the Effect of Depression on Working Memory
Maarten A. van der Velde (m.a.van.der.velde@rug.nl)

Marieke K. van Vugt (m.k.van.vugt@rug.nl)
Niels A. Taatgen (n.a.taatgen@rug.nl)

Department of Artificial Intelligence, University of Groningen
Nijenborgh 9, 9747 AG Groningen, The Netherlands

Abstract

Individuals with depression are prone to engaging in rumina-
tion, a process in which attention turns inwards to narrowly-
focused, negative patterns of thought, at the cost of attend-
ing to a task. Other core deficits associated with depression
are weaker inhibition of information that is no longer relevant,
and a negative perceptual bias. Here, we present a computa-
tional cognitive model that uses these mechanisms to explain
performance on an n-back task in which the stimuli are faces
with different emotional expressions, and in which depressed
participants exhibit specific impairments. These impairments
are explained by assuming that depressed participants selec-
tively elaborate on sad items as they are removed from work-
ing memory, and that they have a perceptual bias towards sad
faces. In this way, by specifying a mechanism by which per-
formance impairments come about, the model helps to provide
a deeper understanding of the cognitive processes underlying
behaviour.
Keywords: depression; rumination; mind-wandering; work-
ing memory; computational cognitive modelling.

Introduction
Depression is an important mental health issue, but much
is still unknown about its cognitive mechanisms. A major
cognitive component of depression is thought to be rumina-
tion, which can be conceptualised as a maladaptive form of
mind-wandering (Marchetti, Koster, Klinger, & Alloy, 2016).
Mind-wandering, a process in which attention is directed
away from a task towards internal thoughts and memories,
can take up as much as 50% of our waking hours, and can
have both positive and negative effects on cognitive perfor-
mance (Mooneyham & Schooler, 2013). What sets rumina-
tion apart from other forms of mind-wandering is that it is
characterised by a thematic narrowness, focusing primarily
on negative memories and thoughts related to one’s current
dysphoric state. Ruminators tend to repeatedly engage in cer-
tain narrow trains of thought from which it can be difficult to
escape (Christoff, Irving, Fox, Spreng, & Andrews-Hanna,
2016). While both depressed and non-depressed individu-
als have been observed to engage in off-task thinking dur-
ing laboratory tasks (e.g., Smallwood, Obonsawin, & Heim,
2003), participants with depression spend more time mind-
wandering than their non-depressed counterparts (Hoffmann,
Banzhaf, Kanske, Bermpohl, & Singer, 2016).

Rumination has been associated with several cognitive ef-
fects, including inhibitory and switching deficits. Individuals
who ruminate tend to have more difficulty inhibiting informa-
tion that is no longer relevant to their current situation, com-
pared to non-ruminators. A study by Whitmer and Banich
(2010), in which participants memorised a list of study items
and subsequently rehearsed only a subset of this list, found

that those with a tendency for rumination inhibited unre-
hearsed items from the original list less strongly than non-
ruminators. This inability to effectively inhibit outdated in-
formation also affects working memory. In a task-switching
paradigm, the occurrence of depressive rumination is associ-
ated with a weaker inhibition of previous task sets (Whitmer
& Banich, 2007). Depressed individuals find it particu-
larly difficult to inhibit obsolete information when it has a
negative valence (Joormann & Gotlib, 2008), whereas non-
depressed individuals have similar difficulty inhibiting posi-
tive stimuli (Deveney & Deldin, 2006), suggesting a mood-
congruency effect.

Aside from the inhibitory deficits associated with rumina-
tion, depression can also influence visual perception and at-
tention. Whereas healthy humans commonly exhibit a per-
ceptual bias towards positive stimuli, perception in those with
depression tends to be coloured by a negativity bias. When
Gollan, Pane, McCloskey, and Coccaro (2008) asked partici-
pants to judge the emotion of a neutral face in a forced-choice
task, non-depressed participants saw its emotion as happy
more often than sad, while depressed participants were more
inclined to judge the same face as sad. Visual attention is also
not immune to bias: depressed individuals tend to demon-
strate selective attention towards sad faces and/or away from
happy faces (Bourke, Douglas, & Porter, 2010; Suslow, Jung-
hanns, & Arolt, 2001). Indeed, depression may be linked to
a general negativity bias, which also reveals itself in, e.g.,
memory recall (Dalgleish & Watts, 1990).

Gaining a better understanding of how depression influ-
ences and interacts with cognition could potentially aid the
development of better diagnostic tools and more effective
treatments. Schemes that are currently used to diagnose psy-
chiatric disorders tend to be overly simplistic in their cate-
gorisation, and do not translate well to the clinical level (van
Os et al., 1999). Existing cognitive theories of depression,
generally formulated as verbal accounts, can be difficult to
generalise or integrate with other theories. In recent years, the
field of computational psychiatry has demonstrated the bene-
fits of striving towards more rigorous accounts of the role of
cognition in mental illness (Adams, Huys, & Roiser, 2016).

We have been developing such a computational model in
the ACT-R cognitive architecture (Anderson, 2007), which
is well-suited to translating verbal theories into quantitative
predictions. Increasing the prominence of negative items
in the model’s declarative memory transforms its regular
mind-wandering behaviour into more persistent, negatively-
coloured depressive rumination (van Vugt, van der Velde, &

ICCM2018

199

ESM-MERGE Investigators, 2018). When applied to a sus-
tained attention task, the model predicts lower response accu-
racy as a result of this change.

Here, we extend this model to a more complex task, the
emotional n-back task (Levens & Gotlib, 2010). Modelling
this task requires the addition of some mechanisms to our ex-
isting model. The task, a modified version of the n-back,
uses images of happy, neutral, and sad faces as its stim-
uli. It involves complex working memory operations, as par-
ticipants are required to maintain an up-to-date mental list
of recently seen items in their memory in order to respond
correctly (Lovett, Daily, & Reder, 2000; Juvina & Taatgen,
2007). Because of its use of emotional face stimuli and its
reliance on working memory, this task is expected to elicit
many of the cognitive effects of depression.

Levens and Gotlib (2010) had depressed and non-
depressed participants perform the emotional n-back task,
and found that, while depressed participants responded more
slowly and slightly less frequently across conditions, they
were as accurate as healthy controls at identifying whether a
face had the same expression as one shown two trials earlier.
Response times did reveal differences in working memory up-
dating: depressed participants responded relatively quickly in
trials with a sad stimulus, compared to happy or neutral tri-
als, indicating easier integration of a sad face into their mental
list. Furthermore, depressed participants were relatively slow
when breaking a former set of matching faces with sad ex-
pressions, suggesting a tendency to linger on negative items
as they were pushed off the mental list, possibly because these
items activated related concepts and memories more easily.
For instance, a sad face might trigger ruminative thoughts in
a participant about a negative experience or their current dys-
phoria. Such an elaboration on mood-congruent items could
also account for the observation that non-depressed control
participants responded relatively slowly in trials that involved
breaking a set of happy faces, as these items might trig-
ger positive elaboration in healthy participants. Surprisingly,
there was no evidence of a perceptual bias: in a 0-back control
condition, in which participants compared each stimulus to a
target expression given earlier, depressed and non-depressed
participants performed identically.

We present a computational cognitive model that can ex-
plain the observed differences in performance between de-
pressed participants and healthy controls, on the basis of sim-
ple assumptions about mental elaboration on mood-congruent
items as they are removed from working memory, which can
account for the behavioural differences between participants
with and without depression. Our model also suggests that
the existence of a perceptual bias is necessary for capturing
depressed participants’ faster responses to sad stimuli in the
2-back task.

Model
Following our previous model of rumination, performance on
the emotional n-back task is modelled as a competition for

cognitive resources between task-directed thought and off-
task thought (i.e., mind-wandering or rumination).

The model is implemented in the PRIMs cognitive archi-
tecture (Taatgen, 2013), an extension of the ACT-R archi-
tecture (Anderson, 2007). Like ACT-R, PRIMs provides a
framework for modelling an entire task, from perceptual in-
put to motor output, and everything in between. The archi-
tecture consists of a number of modules (declarative mem-
ory, working memory, vision, goal state, motor action) that
exchange information through buffers. A PRIMs model has
one or more goals, each of which has a unique set of op-
erators associated with it. PRIMs operators are comparable
to production rules in ACT-R: if-then rules requiring certain
conditions to be met before a sequence of information pro-
cessing steps is performed. For example, a goal might be to
memorise a letter shown on screen. An operator associated
with this goal may first check that there is a letter, read the
letter, and then encode it in a new memory chunk in working
memory.

Unlike ACT-R, the PRIMs architecture makes no theo-
retical distinction between procedural knowledge (operators
or productions) and declarative knowledge (facts): both are
treated as regular chunks stored in declarative memory. This
means that, like declarative facts, each operator has an acti-
vation value (representing its memory trace strength, which
is boosted by retrievals and decays over time), and is sub-
ject to spreading activation. Goals spread activation to their
operators, making operators belonging to more active goals
more likely to be selected for execution. Operators can also
spread activation to each other, thereby increasing the like-
lihood that operator execution follows a certain favoured se-
quence. Chunks in other buffers, such as the imaginal buffer
or the retrieval buffer, can furthermore influence operator se-
lection through spreading activation. Because of these dy-
namics, a PRIMs model can freely alternate operators from
different goals. Our emotional n-back model switches flexi-
bly between operators that fall under the umbrella of the task
goal, and operators that enact the mind-wandering goal.

The model also builds on previous ACT-R models of the 2-
back task. Lovett et al. (2000) and Juvina and Taatgen (2007)
implemented multiple 2-back strategies. Here, we implement
their high-effort strategy, since participants were explicitly in-
structed to use this method. This means that the model holds a
list of the most recently seen stimuli in its declarative memory
that is updated every trial. Each item on this list is a chunk,
encoding the facial expression of the stimulus (happy, neu-
tral, or sad) as well as its position in the list (0-back, 1-back,
or 2-back). At the start of a trial, the model retrieves each item
on the list in turn, increments its list position, and pushes the
modified item back to declarative memory. In the case of the
old 2-back chunk, its index is changed to old, reflecting the
fact that it is no longer part of the list. The new stimulus that
is currently on screen is then added to the front of the list. To
decide its response, the model retrieves the 2-back item from
memory and compares it to the current stimulus.

ICCM2018

200

The recognition of facial expressions is modelled as a
memory retrieval: the model sees a string representing a
face, which it uses as a cue to retrieve the corresponding ex-
pression from its declarative memory. This mechanism al-
lows us to model differences in recognition speed by varying
the activation of face chunks of different emotional valence.
Levens and Gotlib (2010) found that both depressed and non-
depressed participants responded more quickly to happy faces
than to sad or neutral faces, so chunks representing happy
faces are given a higher activation, making them faster to
retrieve. Since humans are not perfect at recognising facial
expressions, we use partial matching to allow the occasional
retrieval of an incorrect facial expression. Participants in both
groups were more accurate in their responses to happy faces
than to sad or neutral faces, with neutral faces being the most
difficult to categorise (Levens & Gotlib, 2010). This effect is
captured in the model by varying the mismatch penalty that is
applied to a non-matching face on the basis of its expression.

The competing mind-wandering goal is implemented as
a process of memory retrieval, following earlier models of
mind-wandering (van Vugt, Taatgen, Sackur, & Bastian,
2015; van Vugt et al., 2018). At any point in the task, op-
erators from this goal can initiate the retrieval of a sequence
of random items from declarative memory. Once a memory is
retrieved, it is placed in the model’s working memory to bring
it to the forefront of attention, and a new memory is retrieved.
This process continues until a task operator is selected.

In addition to the 2-back condition, we also model the 0-
back condition, which Levens and Gotlib (2010) used to show
that depressed participants did not have a different perceptual
bias than non-depressed controls. The 0-back model works
the same as the 2-back model when it comes to perceiving
and classifying stimuli, but differs in how it determines the
correct response. In the 0-back condition, each stimulus has
to be compared to a target expression, which eliminates the
need for maintaining a history of recent stimuli in memory.
Instead, once the model has determined the facial expression
of a stimulus, it directly compares the expression to the target
stored in its goal buffer, and responds accordingly.

To capture the differences between depressed and non-
depressed participants, we manipulated several aspects of the
model. Firstly, since depression is associated with more per-
vasive mind-wandering, the activation of mind-wandering op-
erators was increased in the depressed version of the model,
making them more likely to be selected. In addition, we recre-
ated the general psychomotor slowing found in those with
depression (Schrijvers, Hulstijn, & Sabbe, 2008) by increas-
ing the time needed to execute a keypress in the depressed
model. These two manipulations were expected to lower the
depressed model’s response rate on the n-back, while increas-
ing its average response time.

Depression is linked to difficulties inhibiting negative emo-
tional information that is no longer relevant, so the model in-
cludes a mechanism by which it can elaborate on sad faces
as they are discarded. Whenever a sad face is pushed off the

model’s mental list of recent stimuli, the task process can be
briefly interrupted by an elaboration operator from the mind-
wandering goal. Although it is simply implemented as a de-
lay in the current model, this operator represents the activa-
tion of related concepts and memories that are triggered by
the sad face. The time penalty that is incurred by lingering on
old information and subsequently having to refocus on up-
dating the mental list will slow down the model’s response in
the affected trials. Since non-depressed individuals have been
found to exhibit a difficulty letting go of positive emotional
information, a similar mechanism is implemented in the non-
depressed version of the model. Rather than elaborating on
negative items, however, the non-depressed model has an op-
erator that can elaborate on happy faces as they are removed
from the mental list.

Finally, the depressed version of the 2-back model includes
a negative perceptual bias: sad face chunks are given a higher
activation than in the non-depressed version of the model,
which makes them faster to retrieve. Since Levens and Gotlib
(2010) did not find evidence of such a bias in the 0-back con-
dition, it is left out of the 0-back model.

Parameters that distinguish the depressed model from the
control model (activation of mind-wandering operators, key-
press duration, and activation of face chunks) were initially
set to reasonable values and were subsequently adjusted to
better fit the behavioural results. The full code for de-
pressed and control versions of the model is available at
github.com/maartenvandervelde/emotional-n-back/.

Methods
0-back
The depressed and control version of the 0-back model were
each run 50 times, simulating 50 participants per group (sim-
ilar to the 29 participants per group in the empirical data).
Both models went through 9 full training runs of 3 blocks
with 43 trials each to learn the task, before they performed a
final run. Only the final run of each model was analysed.

2-back
Both versions of the 2-back model were run 50 times, simu-
lating 50 depressed participants and 50 control participants.
The models received a similar amount of training as before (3
full runs containing 6 blocks of 55 trials), before performing
a final run. Once again, only this last run was analysed.

Analysis
Performance of the depressed and control versions of the
emotional n-back model was compared to that of the de-
pressed and healthy participants in Levens and Gotlib (2010).
Following Levens and Gotlib, we removed trials with re-
sponse times outside 2.5 SD of a model participant’s mean
response time. Only correct trials were used for calculating
mean response time. Trials in which the model did not re-
spond within 2 seconds after stimulus onset were considered
non-response trials. These trials were excluded when calcu-
lating response accuracy. To allow for further comparison of

ICCM2018

201

0.00

0.25

0.50

0.75

1.00
R

es
po

ns
e

ra
te

a

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

b

0.00

0.25

0.50

0.75

1.00

R
es

po
ns

e
tim

e
(s

)

c

control data
control model

depressed data
depressed model

Figure 1: 0-back model performance compared to that of real
participants. The model replicates the slightly lower response
rate of depressed participants relative to controls (a), as well
as the lack of a difference in accuracy between groups (b). As
in humans, the depressed version of the model has longer re-
sponse times (c). Error bars indicate 1 SD from the mean (SD
of the human response rate and accuracy was unavailable).

relative response speed between groups, response times were
normalised using a z-transformation (for every participant,
each condition mean RT was subtracted from their overall
mean RT and divided by the SD of the condition RT).

Results
0-back
Figure 1 summarises the 0-back model’s behavioural fit to
the human data1. It shows that, by increasing the model’s
tendency to engage in mind-wandering and by slowing down
its motor response, we can reproduce the lower response rate
and higher response times of depressed participants, relative
to their non-depressed counterparts (although the model’s re-
sponse times are less variable than those of human partici-
pants). As in humans, depression does not affect response
accuracy; the depressed and non-depressed versions of the
model have equal accuracy (albeit slightly higher than the
accuracy of human participants). Table 1 confirms that the
model fits the data satisfactorily.

2-back
Figure 2 shows the fit of the 2-back model to the human data.
As before, the higher activation of mind-wandering opera-
tors in the depressed version, together with a longer keypress
time, causes it to correctly predict a lower response rate and
higher response times relative to the control model. However,

1The output data of the model, as well as additional
analyses of the results, including a more detailed break-
down by condition and statistical comparisons, are available at
github.com/maartenvandervelde/emotional-n-back/.

0.00

0.25

0.50

0.75

1.00

R
es

po
ns

e
ra

te

a

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

b

0.0

0.4

0.8

1.2

1.6

R
es

po
ns

e
tim

e
(s

)

c

control data
control model

depressed data
depressed model

Figure 2: 2-back model performance compared to that of real
participants. The model replicates the lower response rate of
depressed participants relative to controls (a), but does not
capture the similar response accuracy of both groups (b). As
in humans, the depressed version of the model has longer re-
sponse times (c). Error bars indicate 1 SD from the mean (SD
of the human response rate and accuracy was unavailable).

while participants in both groups responded equally accu-
rately, the control model is more accurate than the depressed
model. Both models’ accuracy is slightly too high, but other-
wise they capture the differences between groups (Table 1).

Z-transformed response times in two relevant 2-back con-
ditions are shown in Figure 3. As Figure 3a shows, the model
reproduces the relatively slow responses that occur in trials
which require a mood-congruent face to be removed from the
mental list. By elaborating on sad faces as they are being
discarded, the depressed version of the model takes relatively
long to respond in trials in which a previous set of sad faces
is broken. In contrast, the control model is slower than usual
in trials that require the breaking of an old set of happy faces,
as it spends some time elaborating on the happy face being
discarded. When breaking a neutral set, neither model elabo-
rates on the discarded face. As a result, both are equally fast
(accounting for differences in baseline speed), matching the

Table 1: Model fit to data. RMSE = root-mean-square error.

Task Measure RMSE

0-back Response rate .01
Accuracy .07
Response time (s) .04

2-back Response rate .04
Accuracy .09
Response time (s) .01
Z-transformed RT .46

ICCM2018

202

break set no set

happy neutral sad happy neutral sad

-1

0

1

2

-1

0

1

2

z-
tr

an
sf

or
m

ed
R

T
a b

control data
control model

depressed data
depressed model

Figure 3: Z-transformed response times of the model com-
pared to those of human participants on two conditions of the
2-back task. (a) When breaking a mental set (i.e., discard-
ing one of the elements that previously made up a set from
the mental list), the model reproduces the mood-congruent
slowing effect seen in humans: the control model responds
relatively slowly when breaking a happy set, while the de-
pressed model is slow when breaking a sad set. Like hu-
mans, both models are equally fast when breaking a neutral
set. (b) In non-match trials without a set to break, the de-
pressed model responds more quickly to a sad stimulus than
the control model, matching the pattern found in humans. Er-
ror bars indicate 1 SD from the mean.

pattern found in human participants.
Figure 3b further shows that, by manipulating the speed

at which the model recognises a particular facial expression,
we can recreate the human response time pattern observed
in trials without a previous set to break or a current match.
In particular, the higher activation of sad face chunks in the
depressed model allows it to respond more quickly in trials
with a sad stimulus, compared both to its own response times
in happy or neutral trials and to the control model’s responses
in sad trials.

Discussion
In this paper we have presented a model of the cognitive ef-
fects of depression on performance in an emotional working
memory task. Through the model, we have identified several
key factors that differ between depressed and non-depressed
participants. Depressed patients have a stronger tendency for
mind-wandering, at the cost of attending to the task, which
explains a lower response rate. Additionally, a slower motor
response accounts for a higher average response time. Since

individuals with depression were previously found to have
difficulty inhibiting negatively-valenced information once it
was no longer relevant, we implemented a mechanism for
elaborating on negative items as they were discarded. With
this mechanism, the model reproduces the observed response
time pattern in the human data. The same mechanism, but
focused on positive instead of negative items, furthermore
captures the opposite pattern that was present in the non-
depressed control group.

A potential criticism of our model is that it fails to pro-
vide a unified explanation for depressed participants’ lack of
a perceptual bias in the 0-back on one hand, and their faster
responses to sad stimuli in the 2-back on the other. Depressed
0-back performance is captured without a perceptual bias rel-
ative to the control model. Yet, the depressed 2-back model
requires faster perception of sad faces to reproduce depressed
participants’ relatively fast responses to sad faces.

There are two responses to this. Firstly, it is possible that
the absence of perceptual bias in the 0-back task was a chance
finding—indeed, it is inconsistent with earlier studies associ-
ating depression with a negative perceptual bias, and a study
by the same authors in which participants who had recovered
from depression performed the same task did find a sadness
bias in the 0-back (Levens & Gotlib, 2015). If so, we could
use the same response bias in the 0-back and 2-back models.

Alternatively, the inconsistency is due to an architectural
limitation. It can be argued that the lower response times to
sad stimuli in the 2-back task are not the result of faster per-
ception, but rather of faster integration into working memory.
Currently, PRIMs (and ACT-R) assumes that creating a new
chunk in working memory takes a fixed length of time, irre-
spective of its contents. If it is indeed the case that depressed
individuals integrate sad faces more quickly into working
memory than neutral or happy faces, the architecture would
have to be extended to support a variable working memory
integration time that is dependent on an item’s content.

An additional limitation of the model is that it assumes
there to be little interaction between perceptual bias, working
memory bias, and the mind-wandering process. Instead, these
components are modelled as separate mechanisms. In an ear-
lier version of the model we unsuccessfully used spreading
activation in an attempt to influence task performance through
the occurrence of mind-wandering. In that model, mind-
wandering memories had an emotional valence (happy, neu-
tral, or sad) and could spread activation to face chunks with
their respective emotion, such that negatively-themed mind-
wandering would make recognition of sad faces faster, and
the processing of sad faces would more easily trigger mind-
wandering. This approach failed because spreading activation
is too fleeting, disappearing as soon as its source leaves its
buffer. To make it work would require having a longer-lasting
effect of spreading activation. Alternatively, affect-related
spreading activation should come from an external source
(such as physiology, see, e.g., ACT-R Φ (Dancy, 2013),
which would also allow one to model some of the biologi-

ICCM2018

203

cal factors underlying depression). A further option would be
to model the tendency to elaborate on mood-congruent infor-
mation as a learned association. Future work should examine
whether these mechanisms could achieve a similar fit to the
data while requiring fewer parameters.

In summary, we have shown how computational cognitive
modelling can help us uncover the cognitive mechanisms that
shape behaviour in depression and other psychiatric disor-
ders. With a stronger propensity for mind-wandering, slower
motor actions, a negative perceptual bias, and selective elab-
oration on mood-congruent items in working memory, our
model reproduces specific behavioural deficits in working
memory observed in humans. Through the implementation
of existing theory, and by comparing the resulting predictions
against human behaviour, we can deepen our understanding
of the depressed mind.

References
Adams, R. A., Huys, Q. J. M., & Roiser, J. P. (2016). Com-

putational Psychiatry: Towards a mathematically informed
understanding of mental illness. J Neurol Neurosurg Psy-
chiatry, 87(1), 53–63.

Anderson, J. R. (2007). How Can the Human Mind Occur in
the Physical Universe? Oxford, United Kingdom: OUP.

Bourke, C., Douglas, K., & Porter, R. (2010). Processing of
facial emotion expression in major depression: A review.
Australian and New Zealand Journal of Psychiatry, 44(8),
681–696.

Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., &
Andrews-Hanna, J. R. (2016). Mind-wandering as spon-
taneous thought: A dynamic framework. Nature Reviews
Neuroscience, 17(11), 718–731.

Dalgleish, T., & Watts, F. N. (1990). Biases of attention and
memory in disorders of anxiety and depression. Clinical
Psychology Review, 10(5), 589–604.

Dancy, C. L. (2013). ACT-RΦ: A cognitive architecture
with physiology and affect. Biologically Inspired Cognitive
Architectures, 6, 40–45.

Deveney, C., & Deldin, P. (2006). A preliminary investigation
of cognitive flexibility for emotional information in major
depressive disorder and nonpsychiatric controls. Emotion,
6, 429–37.

Gollan, J. K., Pane, H. T., McCloskey, M. S., & Coccaro, E. F.
(2008). Identifying differences in biased affective informa-
tion processing in major depression. Psychiatry Research,
159(1), 18–24.

Hoffmann, F., Banzhaf, C., Kanske, P., Bermpohl, F., &
Singer, T. (2016). Where the depressed mind wanders:
Self-generated thought patterns as assessed through expe-
rience sampling as a state marker of depression. Journal of
Affective Disorders, 198, 127–134.

Joormann, J., & Gotlib, I. H. (2008). Updating the contents
of working memory in depression: Interference from irrel-
evant negative material. Journal of Abnormal Psychology,
117(1), 182–192.

Juvina, I., & Taatgen, N. A. (2007). Modeling control strate-
gies in the n-back task. In Proceedings of the 8th Interna-
tional Conference on Cognitive Modeling (pp. 73–78).

Levens, S. M., & Gotlib, I. H. (2010). Updating positive and
negative stimuli in working memory in depression. Journal
of Experimental Psychology: General, 139(4), 654–664.

Levens, S. M., & Gotlib, I. H. (2015). Updating emo-
tional content in recovered depressed individuals: Evalu-
ating deficits in emotion processing following a depressive
episode. Journal of Behavior Therapy and Experimental
Psychiatry, 48(Supplement C), 156–163.

Lovett, M. C., Daily, L. Z., & Reder, L. M. (2000). A
source activation theory of working memory: Cross-task
prediction of performance in ACT-R. Cognitive Systems
Research, 1(2), 99–118.

Marchetti, I., Koster, E. H., Klinger, E., & Alloy, L. B.
(2016). Spontaneous Thought and Vulnerability to Mood
Disorders The Dark Side of the Wandering Mind. Clinical
Psychological Science, 835 – 857.

Mooneyham, B. W., & Schooler, J. W. (2013). The costs and
benefits of mind-wandering: A review. Canadian Jour-
nal of Experimental Psychology/Revue canadienne de psy-
chologie expérimentale, 67(1), 11–18.

Schrijvers, D., Hulstijn, W., & Sabbe, B. G. (2008). Psy-
chomotor symptoms in depression: A diagnostic, patho-
physiological and therapeutic tool. Journal of Affective
Disorders, 109(1-2), 1–20.

Smallwood, J., Obonsawin, M., & Heim, D. (2003). Task
unrelated thought: The role of distributed processing. Con-
sciousness and Cognition, 12(2), 169–189.

Suslow, T., Junghanns, K., & Arolt, V. (2001). Detection of
Facial Expressions of Emotions in Depression. Perceptual
and Motor Skills, 92(3), 857–868.

Taatgen, N. A. (2013). The nature and transfer of cognitive
skills. Psychological Review, 120(3), 439–471.

van Os, J., Gilvarry, C., Bale, R., Horn, E. V., Tattan, T.,
White, I., & Group, R. M. o. B. o. t. U. (1999). A com-
parison of the utility of dimensional and categorical rep-
resentations of psychosis. Psychological Medicine, 29(3),
595–606.

van Vugt, M. K., Taatgen, N. A., Sackur, J., & Bastian, M.
(2015). Modeling mind-wandering: A tool to better under-
stand distraction. In Proceedings of the 13th International
Conference on Cognitive Modeling (pp. 252–257).

van Vugt, M. K., van der Velde, M., & ESM-MERGE Investi-
gators. (2018). How Does Rumination Impact Cognition?
A First Mechanistic Model. Topics in Cognitive Science,
10(1), 175–191.

Whitmer, A. J., & Banich, M. T. (2007). Inhibition versus
switching deficits in different forms of rumination. Psy-
chological Science, 18(6), 546–553.

Whitmer, A. J., & Banich, M. T. (2010). Trait rumination
and inhibitory deficits in long-term memory. Cognition &
Emotion, 24(1), 168–179.

ICCM2018

204

ACTR-STAP:
Connecting ACT-R to task software used by humans

(and by other computational frameworks)
Vladislav D. Veksler (vdv718@gmail.com)

DCS Corp, U.S. Army Research Laboratory

Norbou Buchler
U.S. Army Research Laboratory

Abstract

ACTR-STAP is an open-source ACT-R LISP library that en-
ables ACT-R models to connect to task software developed in
any programming language, running locally or remotely. Most
importantly, the task software employed for ACT-R simula-
tions would be the same software that is employed in human
experiments and/or simulations with other modeling frame-
works. STAP promotes model re-use across tasks and task
re-use across models (including non ACT-R models). ACTR-
STAP enables millisecond-precision model-controlled timing,
even for faster-than-real-time simulations, and STAP message
log files may be played back and analyzed on equal footing
with those of humans and other computational participants.

Keywords: STAP, simulations, cognitive modeling

Research in computational cognitive modeling often in-
volves the comparison of model behavior to that of humans,
and the comparison of multiple models to each other across
a set of tasks. Unfortunately, graphic displays as seen by hu-
man participants (Graphical User Interfaces; GUIs) do not
naturally translate to virtual display components required
by cognitive modeling frameworks. Likewise, a simulated
task developed for use with a cognitive modeling frame-
work would not inherently include a GUI for human par-
ticipants. Moreover, a task development effort that specifi-
cally focuses on adding user interface components into both
GUI and computational framework displays often focuses on
a single type of cognitive framework, making it difficult to do
cross-framework model comparison. A comparison of human
behavior to that of several models based in different computa-
tional cognitive architectures would require a multiplication
of the development effort.

Though this may seem like a menial software-development
issue, it bears significant consequences for scientific progress.
A given empirical study may benefit from a complementary
computational simulation, but the benefits often do not merit
the effort needed to try and connect a cognitive framework
to the software used in the human study. In another case, a
new computational model of cognitive processes may benefit
from evaluation across a wide variety of task software, but
the development effort needed to parse each task interface
(or to re-develop each task for the purposes of having ac-
cess to their interfaces) is prohibitive. The development effort
needed to gather data from human participants and multiple
models across several cognitive frameworks across multiple
tasks of any complexity is simply beyond what any research

laboratory can afford. Lowering the bar to entry for connect-
ing computational agent frameworks to a battery of behav-
ioral software – the same software that is employed in human
studies – would enable a better quality of research.

The Simple Task-Actor Protocol (STAP;
https://vdv7.github.io/stap; Veksler, Buchler, Lebiere,
& Morrison, 2018; Veksler, Buchler, Lebiere, Mor-
rison, & Kelley, 2016) focuses on universal task
access – enabling equal access to human and com-
putational participants, regardless of user-side de-
vice, operating system, or programming paradigm.
More specifically, STAP is a
user interface (UI) serialization
language for enabling plug-
and-play interconnectivity be-
tween software employed in
human studies and various
modeling frameworks and computational agents. Some of
the main features of STAP include (1) clear separation of
functionally-essential task affordances from arbitrary stylistic
choices, (2) minimal core set of UI primitives, and (3) user-
side time management (for faster-than-real-time and slower-
than-real-time simulations). Additionally, STAP messages
are JSON (http://json.org) format compliant, which means
that STAP messages can be serialized/deserialized via JSON
libraries available for just about every programming lan-
guage, including LISP, Python, and JAVA (i.e. the languages
most-often employed for ACT-R modeling).

The ACT-R cognitive architecture (Anderson, 1993, 2007;
Anderson et al., 2004; Anderson & Lebiere, 1998) is a pop-
ular framework for developing models of cognition and run-
ning behavioral simulations. This is a very important frame-
work, not only as a theory of cognition, but also as software
that comprises empirically validated cognitive mechanisms
capable of predicting timing and preferences at the level of
milliseconds, as well as practice/performance effects at the
level of days, months, and years. Perhaps just as important
as the software capabilities themselves is that the domain-
specific language employed for ACT-R modeling is widely
known and employed by hundreds of Cognitive Science re-
searchers across the world.

Most often ACT-R models and tasks are developed in LISP,
although there are ACT-R implementations in JAVA and in
Python programming languages, as well. It is rare, however,

ICCM2018

205

for ACT-R models developed in one programming paradigm
to be employed for simulations where task software is devel-
oped in another one. An HTML5 task developed for mass
human participation via Mechanical Turk, for example, will
not be accessible by an ACT-R model developed in LISP. A
standard ACT-R modeling effort involves (1) the development
of experiment software and a model within the same environ-
ment (e.g. LispWorks), with custom calls to functions that
add UI primitives to both, the human GUI, and the ACT-
R visicon (ACT-R internal virtual display); (2) the develop-
ment of GUI experiment software for humans, and a sepa-
rate replication of this effort for ACT-R simulations; or (3)
in the case where the software employed for human experi-
ments provides an API (Application Programming Interface),
developing a custom translation layer for this API for ACT-R.

The lack of a standard method/API for connecting ACT-
R models to task software greatly increases the development
effort needed for each simulation, essentially reducing the set
of potential tasks that models may be connected to. There are
two additional problems. First, the virtual display in ACT-
R, whether based on an exposed task API or based on a re-
constructed simulation of the task, is not guaranteed to in-
clude every important detail of the GUI task software that hu-
mans are exposed to, reducing the validity of human-model
comparisons. Second, given the effort needed to replicate
the task or develop an API translation layer for ACT-R, it
is unlikely that the researcher will repeat this effort for con-
necting a different cognitive framework to the task, making
cross-framework model comparison (however much wanted)
highly unlikely. A standard API, such as STAP, would help to
resolve these problems, promoting model re-use across tasks,
and task-reuse across models and modeling frameworks.

ACTR-STAP (https://github.com/vdv7/actr-stap) is an
open-source LISP library developed for connecting ACT-R
via TCP to any STAP-compliant task software. STAP task
software may be developed in any programming language,
and may be presented to human participants on any device.
Thus, ACTR-STAP enables modelers to run ACT-R simula-
tions using the same task software that is employed by hu-
man participants, whether the software was developed for
controlled laboratory studies or for open web access. Unlike
prior efforts to connect ACT-R to task software via a standard
API (e.g., Hope, Schoelles, & Gray, 2014), STAP isn’t spe-
cific to either ACT-R, nor cognitive-modeling. STAP simply
enables and promotes the separation of functionally-relevant
task affordances from arbitrary stylistic choices in the UI, thus
making it easier for machines to parse the information and re-
spond. In this way, STAP, as a language, is highly compatible
with the ACT-R visicon (as it would be with virtual displays
in other cognitive and AI frameworks).

More specifically, each STAP message from task software
is an update to the display. ACTR-STAP opens a connection
to task software (which runs as a server), and then pushes
updates to the ACT-R visicon based on the incoming STAP
messages (i.e., JSON arrays comprising added/updated UI
element properties). Any ACT-R device inputs (e.g., but-
ton clicks) are asynchronously sent back to the task server as
STAP-compliant response (i.e., JSON arrays comprising the
input element and value, along with the ACT-R time stamp).

Event timing in STAP is driven by user-side software,
which enables millisecond-level sensitivity in modeling re-
search, even in faster-than-real-time simulations. Addition-
ally, user-side time-stamps enable real-time playback of non-
real-time simulations. Since logged STAP messages look the
same regardless of whether the participant is human, or an
ACT-R model, or some other computational agent, the logs
from different participant types may be analyzed on equal
footing (or played back for Turing testing).

STAP-compliant task software is unambiguous as to which
UI features are required for task participation (these are spec-
ified via a “require” directive). If a model was to be exposed
to a battery of tasks, and one of the tasks required a feature
that is yet to be implemented in ACTR-STAP (e.g. anima-
tion), the model could simply skip this task. ACTR-STAP
currently enables all text-and-button tasks, as well as preci-
sion timing delay/wait options. Importantly, more advanced
feature development efforts would not be one-off efforts unus-
able beyond specific experiments. Rather, as the community
continues to drive this open-source library, ACT-R modelers
will be able to connect to a continuously increasing range of
tasks.

References
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence

Erlbaum Associates.
Anderson, J. R. (2007). How can the human mind occur in the

physical universe? Oxford ; New York: Oxford University
Press.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglas, S., Lebiere, C.,
Quin, Y., . . . Qin, Y. L. (2004). An integrated theory of the
mind. Psychological Review, 111(4), 1036–1060.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of
thought. Mahwah, NJ: Lawrence Erlbaum Associates Pub-
lishers.

Hope, R. M., Schoelles, M. J., & Gray, W. D. (2014). Simplifying
the interaction between cognitive models and task environ-
ments with the JSON Network Interface. Behavior research
methods, 46(4), 1007–12. doi: 10.3758/s13428-013-0425-z

Veksler, V. D., Buchler, N., Lebiere, C., & Morrison, D. (2018).
Humans aren’t enough: Providing access for simulated par-
ticipants to behavioral experiment software. In 40th annual
meeting of the cognitive science society (cogsci 2018).

Veksler, V. D., Buchler, N., Lebiere, C., Morrison, D., & Kelley,
T. D. (2016). The performance comparison problem: Univer-
sal task access for cross-framework evaluation, Turing tests,
grand challenges, and cognitive decathlons. Biologically In-
spired Cognitive Architectures(18C), 9–22. Retrieved from
http://dx.doi.org/10.1016/j.bica.2016.10.003

ICCM2018

206

ACTR-STAP:
Connecting ACT-R to task software used by humans

(and by other computational frameworks)
Vladislav D. Veksler (vdv718@gmail.com)

DCS Corp, U.S. Army Research Laboratory

Norbou Buchler
U.S. Army Research Laboratory

Abstract

ACTR-STAP is an open-source ACT-R LISP library that en-
ables ACT-R models to connect to task software developed in
any programming language, running locally or remotely. Most
importantly, the task software employed for ACT-R simula-
tions would be the same software that is employed in human
experiments and/or simulations with other modeling frame-
works. STAP promotes model re-use across tasks and task
re-use across models (including non ACT-R models). ACTR-
STAP enables millisecond-precision model-controlled timing,
even for faster-than-real-time simulations, and STAP message
log files may be played back and analyzed on equal footing
with those of humans and other computational participants.

Keywords: STAP, simulations, cognitive modeling

Research in computational cognitive modeling often in-
volves the comparison of model behavior to that of humans,
and the comparison of multiple models to each other across
a set of tasks. Unfortunately, graphic displays as seen by hu-
man participants (Graphical User Interfaces; GUIs) do not
naturally translate to virtual display components required
by cognitive modeling frameworks. Likewise, a simulated
task developed for use with a cognitive modeling frame-
work would not inherently include a GUI for human par-
ticipants. Moreover, a task development effort that specifi-
cally focuses on adding user interface components into both
GUI and computational framework displays often focuses on
a single type of cognitive framework, making it difficult to do
cross-framework model comparison. A comparison of human
behavior to that of several models based in different computa-
tional cognitive architectures would require a multiplication
of the development effort.

Though this may seem like a menial software-development
issue, it bears significant consequences for scientific progress.
A given empirical study may benefit from a complementary
computational simulation, but the benefits often do not merit
the effort needed to try and connect a cognitive framework
to the software used in the human study. In another case, a
new computational model of cognitive processes may benefit
from evaluation across a wide variety of task software, but
the development effort needed to parse each task interface
(or to re-develop each task for the purposes of having ac-
cess to their interfaces) is prohibitive. The development effort
needed to gather data from human participants and multiple
models across several cognitive frameworks across multiple
tasks of any complexity is simply beyond what any research

laboratory can afford. Lowering the bar to entry for connect-
ing computational agent frameworks to a battery of behav-
ioral software – the same software that is employed in human
studies – would enable a better quality of research.

The Simple Task-Actor Protocol (STAP;
https://vdv7.github.io/stap; Veksler, Buchler, Lebiere,
& Morrison, 2018; Veksler, Buchler, Lebiere, Mor-
rison, & Kelley, 2016) focuses on universal task
access – enabling equal access to human and com-
putational participants, regardless of user-side de-
vice, operating system, or programming paradigm.
More specifically, STAP is a
user interface (UI) serialization
language for enabling plug-
and-play interconnectivity be-
tween software employed in
human studies and various
modeling frameworks and computational agents. Some of
the main features of STAP include (1) clear separation of
functionally-essential task affordances from arbitrary stylistic
choices, (2) minimal core set of UI primitives, and (3) user-
side time management (for faster-than-real-time and slower-
than-real-time simulations). Additionally, STAP messages
are JSON (http://json.org) format compliant, which means
that STAP messages can be serialized/deserialized via JSON
libraries available for just about every programming lan-
guage, including LISP, Python, and JAVA (i.e. the languages
most-often employed for ACT-R modeling).

The ACT-R cognitive architecture (Anderson, 1993, 2007;
Anderson et al., 2004; Anderson & Lebiere, 1998) is a pop-
ular framework for developing models of cognition and run-
ning behavioral simulations. This is a very important frame-
work, not only as a theory of cognition, but also as software
that comprises empirically validated cognitive mechanisms
capable of predicting timing and preferences at the level of
milliseconds, as well as practice/performance effects at the
level of days, months, and years. Perhaps just as important
as the software capabilities themselves is that the domain-
specific language employed for ACT-R modeling is widely
known and employed by hundreds of Cognitive Science re-
searchers across the world.

Most often ACT-R models and tasks are developed in LISP,
although there are ACT-R implementations in JAVA and in
Python programming languages, as well. It is rare, however,

ICCM2018

207

for ACT-R models developed in one programming paradigm
to be employed for simulations where task software is devel-
oped in another one. An HTML5 task developed for mass
human participation via Mechanical Turk, for example, will
not be accessible by an ACT-R model developed in LISP. A
standard ACT-R modeling effort involves (1) the development
of experiment software and a model within the same environ-
ment (e.g. LispWorks), with custom calls to functions that
add UI primitives to both, the human GUI, and the ACT-
R visicon (ACT-R internal virtual display); (2) the develop-
ment of GUI experiment software for humans, and a sepa-
rate replication of this effort for ACT-R simulations; or (3)
in the case where the software employed for human experi-
ments provides an API (Application Programming Interface),
developing a custom translation layer for this API for ACT-R.

The lack of a standard method/API for connecting ACT-
R models to task software greatly increases the development
effort needed for each simulation, essentially reducing the set
of potential tasks that models may be connected to. There are
two additional problems. First, the virtual display in ACT-
R, whether based on an exposed task API or based on a re-
constructed simulation of the task, is not guaranteed to in-
clude every important detail of the GUI task software that hu-
mans are exposed to, reducing the validity of human-model
comparisons. Second, given the effort needed to replicate
the task or develop an API translation layer for ACT-R, it
is unlikely that the researcher will repeat this effort for con-
necting a different cognitive framework to the task, making
cross-framework model comparison (however much wanted)
highly unlikely. A standard API, such as STAP, would help to
resolve these problems, promoting model re-use across tasks,
and task-reuse across models and modeling frameworks.

ACTR-STAP (https://github.com/vdv7/actr-stap) is an
open-source LISP library developed for connecting ACT-R
via TCP to any STAP-compliant task software. STAP task
software may be developed in any programming language,
and may be presented to human participants on any device.
Thus, ACTR-STAP enables modelers to run ACT-R simula-
tions using the same task software that is employed by hu-
man participants, whether the software was developed for
controlled laboratory studies or for open web access. Unlike
prior efforts to connect ACT-R to task software via a standard
API (e.g., Hope, Schoelles, & Gray, 2014), STAP isn’t spe-
cific to either ACT-R, nor cognitive-modeling. STAP simply
enables and promotes the separation of functionally-relevant
task affordances from arbitrary stylistic choices in the UI, thus
making it easier for machines to parse the information and re-
spond. In this way, STAP, as a language, is highly compatible
with the ACT-R visicon (as it would be with virtual displays
in other cognitive and AI frameworks).

More specifically, each STAP message from task software
is an update to the display. ACTR-STAP opens a connection
to task software (which runs as a server), and then pushes
updates to the ACT-R visicon based on the incoming STAP
messages (i.e., JSON arrays comprising added/updated UI
element properties). Any ACT-R device inputs (e.g., but-
ton clicks) are asynchronously sent back to the task server as
STAP-compliant response (i.e., JSON arrays comprising the
input element and value, along with the ACT-R time stamp).

Event timing in STAP is driven by user-side software,
which enables millisecond-level sensitivity in modeling re-
search, even in faster-than-real-time simulations. Addition-
ally, user-side time-stamps enable real-time playback of non-
real-time simulations. Since logged STAP messages look the
same regardless of whether the participant is human, or an
ACT-R model, or some other computational agent, the logs
from different participant types may be analyzed on equal
footing (or played back for Turing testing).

STAP-compliant task software is unambiguous as to which
UI features are required for task participation (these are spec-
ified via a “require” directive). If a model was to be exposed
to a battery of tasks, and one of the tasks required a feature
that is yet to be implemented in ACTR-STAP (e.g. anima-
tion), the model could simply skip this task. ACTR-STAP
currently enables all text-and-button tasks, as well as preci-
sion timing delay/wait options. Importantly, more advanced
feature development efforts would not be one-off efforts unus-
able beyond specific experiments. Rather, as the community
continues to drive this open-source library, ACT-R modelers
will be able to connect to a continuously increasing range of
tasks.

References
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence

Erlbaum Associates.
Anderson, J. R. (2007). How can the human mind occur in the

physical universe? Oxford ; New York: Oxford University
Press.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglas, S., Lebiere, C.,
Quin, Y., . . . Qin, Y. L. (2004). An integrated theory of the
mind. Psychological Review, 111(4), 1036–1060.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of
thought. Mahwah, NJ: Lawrence Erlbaum Associates Pub-
lishers.

Hope, R. M., Schoelles, M. J., & Gray, W. D. (2014). Simplifying
the interaction between cognitive models and task environ-
ments with the JSON Network Interface. Behavior research
methods, 46(4), 1007–12. doi: 10.3758/s13428-013-0425-z

Veksler, V. D., Buchler, N., Lebiere, C., & Morrison, D. (2018).
Humans aren’t enough: Providing access for simulated par-
ticipants to behavioral experiment software. In 40th annual
meeting of the cognitive science society (cogsci 2018).

Veksler, V. D., Buchler, N., Lebiere, C., Morrison, D., & Kelley,
T. D. (2016). The performance comparison problem: Univer-
sal task access for cross-framework evaluation, Turing tests,
grand challenges, and cognitive decathlons. Biologically In-
spired Cognitive Architectures(18C), 9–22. Retrieved from
http://dx.doi.org/10.1016/j.bica.2016.10.003

ICCM2018

208

The time course recovery of confidence judgments using interruptions

Kevin Zish (kzish@gmu.edu)
George Mason University

4400 University Dr, Fairfax, VA 22030

Nathan Aguiar (naguiar@masonlive.gmu.edu)
George Mason University

4400 University Dr, Fairfax, VA 22030

Malcolm McCurry (malcolm.mccurry.ctr@nrl.navy.mil)
Peraton

12975 Worldgate Dr, Herndon, VA 20170

Erik M. Altmann (ema@msu.edu)
Michigan State University

316 Physics Rd, East Lansing, MI 48824

J. Gregory Trafton (greg.trafton@nrl.navy.mil)
U.S. Naval Research Laboratory

4555 Overlook Ave SW, Washington, DC 20375

Abstract

Participants were interrupted during a procedural ask. Choice

response time and confidence were measured up to seven trials

after the interruption. Empirical data suggests a curvilinear

pattern of recovery for choice response time and confidence.

Two models of recovery for choice response time and

confidence judgments were built. A comparison of the models

provided support for post-decisional theories of confidence

which suggest that confidence judgments are formed after a

choice is made.

Keywords: ACT-R, confidence, activation, modeling,
decision-making

Introduction

When are confidence judgments formed? Current theories of

confidence debate whether confidence judgments are formed

at the time a decision is made or after. If someone asks:

“How confident are you that the person you identified

committed the crime?”, decisional theories of confidence say

that confidence is available at the same time as the decision.

Post-decisional theories of confidence say that confidence is

only available after the decision is made.

Decisional theories are modeled in the context of signal

detection theory (SDT: Green & Swets, 1966) and the role of

strength in recognition memory (Egan, Schulman, &

Greenberg, 1959; Hart, 1967; Norman & Wickelgren, 1969;

Wickelgren, 1968). In these theories, confidence judgments

are directly related to the strength of a retrieved memory.

Stronger memories elicit higher confidence responses than

weaker memories. Confidence is the strength of a memory or

the memory’s distance to a decision criterion (Donaldson,

1996; Wixted & Mickes, 2010). The confidence judgment is

tied to the decision process and confidence is available at the

same time a decision is made.

Post-decisional theories state that forming a confidence

judgment begins after a decision is made (Pleskac &

Busemeyer, 2010; Vickers, 2001, 2014). These theories

typically use sequential sampling models (Juslin & Olsson,

1997; Vickers, 1970), specifically drift diffusion models

(Heath, 1984; Laming, 1968; Link & Heath, 1975; Ratcliff,

1978). In drift diffusion models, choice begins at some point

z and evidence accrues on a series of counters (usually one)

towards a criterion for decision A or decision B. Confidence

is calculated as the speed with which evidence accumulates

towards a criterion (Pleskac & Busemeyer, 2010; Ratcliff &

Starns, 2009, 2013) or as the difference between the counters

(Merkle & Van Zandt, 2006; Van Zandt & Maldonado-

Molina, 2004; Vickers, 2014).

There is evidence for both decisional and post-decisional

theories of confidence. In a recent study, Dotan, Meyniel, &

Dehaene (2018) provided support for decisional theories of

confidence. Participants were presented with arrows that

pointed to the left or right side of the screen. Arrows were

presented one at a time. Participants were asked to move

their finger from the bottom middle to targets at either the top

left or top right of the screen. Participants moved to the side

they thought the majority of the arrows was pointing towards.

The authors found that y-speed, the speed that a participant

was heading towards one choice or the other, was a better

predictor of confidence than choice response time (RT).

Because instantaneous speed was a better predictor of

confidence than final choice RT, the authors argued that

confidence is calculated online and repeatedly throughout the

process of a judgment.

Post-decisional theories suggest that evidence continues to

be collected after a choice is made as shown by response

ICCM2018

209

mailto:malcolm.mccurry.ctr@nrl.navy.mil
mailto:Erik%20Altmann%20%3Cema@msu.edu%3E
mailto:greg.trafton@nrl.navy.mil

reversals (Resulaj, Kiani, Wolpert, & Shadlen, 2009; Van

Zandt & Maldonado-Molina, 2004). Therefore, confidence

judgments are based on the evidence collected for the choice

plus some additional evidence collection.

One influential post-decisional theory is the two stage

dynamic signal detection theory (2DSD: Pleskac &

Busemeyer, 2010) which models the relationship between

choice and confidence in a drift diffusion model. Participants

collect evidence for a choice using a standard drift diffusion

process. Evidence retrieved from memory or the environment

accrues on a counter towards a response threshold for given

alternatives. When the counter reaches the choice criteria a

choice is made. The evidence collected for the choice

continues to be sampled to make a confidence judgment.

There is also support for both decisional and post-decional

explanations in a single experiment (Baranski & Petrusic,

1998). Baranski & Petrusic (1998) asked participants to

determine the longer or shorter of two horizontal lines under

accuracy stress or speed stress. Under speed stress, the

authors found a negatively linear relationship for confidence

response time and confidence, where faster responses were

more confident than slower responses. Under accuracy stress

there was no relationship. The authors argued that speed

stress caused participants to spend less time calculating

confidence during the primary decision and rendered

confidence post-decisonally. In contrast, participants had no

change in confidence response time across levels of

confidence for accuracy stress because confidence was

processed during the decision.

The evidence from Dotan et al. (2018), 2DSD, and

Baranski & Petrusic (1998) suggest that rendering confidence

judgments is a cognitively complex process that can originate

at different times during decision making.

One way to investigate cognitively complex processes is to

interrupt them and record performance data at different

points in time as the process recovers. Altmann & Trafton

(2007) used interruptions to investigate time course recovery

of memory and attention after an interruption.

Here, we incorporated confidence judgments in a

procedural task that generates rich error data. Error data

allows us to investigate process recovery of confidence

judgments. Confidence judgments are relevant to study in

this context because they could help inform both models of

information processing in procedural tasks and performance

in applied contexts where procedural errors have high

potential cost.

Altmann & Trafton (2007) had participants complete a

dynamic decision making task. Participants were interrupted

after completing an action. The time to resume the task after

the interruption (i.e. resumption lag: Trafton, Altmann,

Brock, & Mintz, 2003) was measured up to seven actions

after the interruption was complete. The authors found that

interruptions increased resumption time after the interruption.

However, participants did not immediately recover after the

first action following an interruption. Instead, the data

showed that resumption lag followed a curvilinear pattern of

recovery wherein the response time for each action after the

interruption was faster than the preceding action.

Altmann & Trafton (2007) developed a mathematical

model that fit the pattern of recovery for resumption time.

The model suggests that in procedural tasks spreading

activation plays a critical role in facilitating the selection of

the next action in a task. Activation spreads through

associative links that form between actions in a task. An

associative link means that when an action is completed,

priming from the completed action is added to the activation

of all following actions. The activation for an element at

position p is represented by

where assoc is the amount of activation received by

preceding elements of the task that have already been

retrieved. The action directly after the current action receives

the most priming. Subsequent actions receive lower and

lower amounts of priming.

When participants are allowed to complete an

uninterrupted task, an element receives small amounts of

priming from each associatively linked action before it.

Interruptions effectively cut off that priming making it so that

activation for the action to be resumed is lower than if it had

not been interrupted. The curvilinear pattern of choice RT is

evidence of cumulative priming building for the task as it

recovers.

The recovery process of choice RT is based on the ACT-R

theory (Anderson et al., 2004) and is represented by

where F is a scaling parameter representing non-decisional

processes.

Using a similar approach, we can investigate the time

course of confidence judgments by interrupting participants

during a decision and building a model of choice, taken from

Altmann & Trafton (2007), and a model of confidence as

those processes recover. We assume, as does SDT theory,

that confidence is a scaled measure of strength. We represent

strength using activation which is the assoc parameter in the

Altmann & Trafton (2007) model.

Activation, has been explored extensively in the ACT-R

cognitive architecture (Anderson et al., 2004) of which the

findings of Altmann & Trafton (2007) were based. We used

the activation-based properties of ACT-R to make

predictions about the relationship between choice RT and

confidence.

ACT-R suggests that activation of a memory element m is

defined by the relationship between the number of times a

goal has been rehearsed n and the time that has passed T. The

following is a simplified equation for activation adapted from

equation 2.2 in Anderson, Bothell, Lebiere, & Matessa

(1998).

ICCM2018

210

 Goals that have been rehearsed many times in the recent

past have more activation than goals that have been rehearsed

fewer times or rehearsed in the distant past.

Goals also undergo decay. Decay is an important part of

forgetting and is indexed by time. The more time that has

passed since a goal has received activation (from being

retrieved or from associative priming) the lower the

activation for the goal. Interruptions decrease activation by

decreasing the probability that a goal can be rehearsed,

increasing the amount of time between rehearsal, or some

combination of the two.

Because we assume that confidence is based on activation,

it follows that confidence should behave in several

systematic ways according to ACT-R. First, confidence

should decrease after an interruption because interruptions

decrease activation. This finding has already been

demonstrated by Aguiar, Zish, McCurry, & Trafton (2016)

and Zish, Hassanzadeh, McCurry, & Trafton (2015).

Second, confidence should increase in a curvilinear pattern

after an interruption similar to Altmann & Trafton (2007).

Cumulative priming after an interruption should result in a

decrease in confidence after an interruption followed by a

gradual increase in confidence for later actions as the

decision process recovers.

 Third, a mathematical model of the time course of

recovery for confidence C can be built that will match

empirical data. The model we propose is

Different parameters were used for the RT model and the

confidence model as RT and confidence are not on the same

scale. We change the F parameter to S and the activation

parameter from –A(p) for RT to A(p) given that RT decreases

after an interruption and confidence increases.

Fourth, we can use the two models to provide evidence for

decisional or post-decisional theories. In particular we can

compare the assoc parameter in each model (RT and

confidence). Decisional theories would predict that the assoc

parameter for the RT model and the assoc parameter for the

confidence model should be equivalent because the theories

claim that both choice and confidence emerge at the same

time. In contrast, post-decisional theories would predict that

choice and confidence emerge at different times and in

particular that confidence judgments occur after decision.

 Therefore, post-decisional theories would predict that the

assoc parameter would be significantly smaller for the

confidence model than the assoc parameter for the RT model.

Methods

Participants

One hundred and fifty-five George Mason University

undergraduates participated for course credit.

Task

Primary Task The UNRAVEL task was adapted from

Altmann, Trafton, & Hambrick (2014). The UNRAVEL task

has seven rules each represented by a letter (i.e. U, N, R, A,

V, E, L). Participants are presented with one number and one

letter at the same time. Each letter and number has certain

characteristics that change from trial to trial such as color,

font, position, etc. Participants are instructed to keep the

UNRAVEL rule in memory, interpret what characteristic of

the stimuli they are asked to identify, analyze the stimuli, and

using the keyboard to submit what characteristic they

identified (Figure 1). The UNRAVEL rules are available to

the participant at anytime by holding the Shift + ? keys.

Figure 1. Example of the UNRAVEL task from Altmann et

al. (2014).

For example, the U action in UNRAVEL prompts

participants to identify if a number or letter is underlined or

italicized. If a letter or number is underlined they press the

“u” key on the board. If the letter is italicized they are

instructed to press the “i”. After they submit their response

participants will be presented with a brand new stimulus.

They will search the stimulus for a characteristic prompted

by the N action. The N action prompts participants to

determine if the letter is near (“n”) or far (“f”) from the

beginning of the alphabet. Participants continue to proceed

through the UNRAVEL rules. Once completed, participants

wrap around to the U action. The goal is to complete the

rules in order and correctly identify the prompted

characteristic for each stimulus.

Each action in UNRAVEL has a different set of keys

associated with a response. As a result, the keystrokes reveal

what action participants think they are on allowing for an

analysis of sequence errors.

Interruption Task We used an equation to determine when

participants were given a secondary task that served as an

interruption. The equation can be found in Altmann et al.,

(2014) and resulted in an interruption 11.85% of the time.

ICCM2018

211

After an UNRAVEL response was submitted, the

UNRAVEL task was occluded and participants were asked to

type in a series of letters into a box. Once the letters were

typed in correctly the UNRAVEL task was revealed again.

Participants were asked to return to the UNRAVEL task in

the correct order.

Confidence Question Participants received a confidence

question after completing an UNRAVEL action following

half of the interruptions and an equal number of the control

trials. The screen was replaced with a question that asked:

“How confident were you that you just chose the correct step

during the UNRAVEL task? Enter your choice on a scale

from 1 to 6, with 1 being least confident and 6 being most

confident.” The participant typed in their response into a text

field. After submitting their response the participant was

returned to the UNRAVEL task

Procedure

Participants filled out an approved IRB consent form as well

as biographical information. The task was first described

using screenshots.

Participants were given a practice session where each rule

of UNRAVEL was explained. They were exposed to all

elements of the task including interruptions and confidence

questions. Participants were shown that they could hit a

certain key to access a list of the UNRAVEL rules at any

time.

Results

One hundred and fifty-five participants completed 42442

UNRAVEL actions. We treated each action as a trial. There

were 4925 confidence judgments. Only trials with confidence

judgments were analyzed. We averaged RT and confidence

for each participant for the first seven actions after an

interruption.

Modeling the Time course of Recovery for Decisions

RT

Not every participant had a confidence question at each step

after the interruption. We used a linear mixed-effects model

which can account for unbalanced repeated measures designs

(Lindstrom & Bates, 1990) to look for differences in RT

across step. There was a significant effect of step [F(1,

723.61) = 69.16, p < .05]. To investigate differences

between steps, we compared Step 1 with Steps 2-7. Step1

after an interruption was significantly higher than Steps 2-7

[F(1,154) = 171.9, MSE = 207.15, p < .05]. This result

replicates the disruptive effects of interruptions (Altmann et

al., 2014; B. Edwards & Gronlund, 1998; Gillie &

Broadbent, 1989).

Replicating Altmann & Trafton (2007) the response time

for the primary judgment has a curvilinear pattern of

recovery after an interruption [Overall: F(6, 848) = 17.64, p <

.05; Linear: t = -6.89, p < .05; Quadratic: t = 4.65, p < .05].

Following Altmann & Trafton (2007), we fit the model to the

data by estimating F and assoc for each participant. We used

the mean decision RT for the first trial after the interruption

for each participant as the F parameter. An RMSE was

calculated for the F parameter while varying the assoc

parameter between .005 and 1 by .005. The lowest RMSE for

each fixed F and varied assoc parameter was set for each

participant. The F and assoc were then averaged across

participants to give us an F of 4.79 and an assoc of .29 for

our model. The mean RMSE was 1.11 and R
2

was .37. Figure

2 shows the empirical data for choice RT for each

UNRAVEL step after an interruption and predicted choice

RT from our model. This replicates Altmann & Trafton

(2007).

To test goodness of fit we ran runs tests (Bradley, 1968) on

the signs of the deviations from the model minus the data.

The runs test showed that the model and data were not

significantly different from each other [t(154) = 1.47, p =

.14].

Figure 2. Data (solid) and model (dashed) for time course

recovery of decision RT. Error bars are 95% confidence

intervals data.

Modeling the Time course of Recovery for

Confidence

There was a significant effect of step [F(1, 701.85 = 35.80, p

< .05]. To investigate the differences between steps we

compared Step 1 with Steps 2-7. Step 1 after an interruption

was significantly lower than Steps 2-7 [F(1,154) = 67.6, MSE

= 11.32, p < .05]. Similar to decision RT, confidence shows a

pattern of recovery after an interruption [Overall: F(6,848) =

3.89, p < .05; Linear: t = 3.05, p < .05; Quadratic: t = -2.37, p

< .05]. We used the same modeling process that Altmann &

Trafton (2007) did and that was used above for the RT

model. The S and assoc parameters were estimated for each

participant and the parameters with the lowest RMSE were

used for the final model. The S parameter was 4.95 and the

assoc parameter was .08 for the final model. The mean

RMSE was .41 and R
2

was .43. Figure 3 shows the empirical

data for confidence for each UNRAVEL action after an

interruption and predicted confidence from our model.

ICCM2018

212

The goodness of fit for the runs test for the model and data

showed no significant difference [t(154)= -.02, p = .98]

suggesting that confidence is, indeed, tied to activation.

Figure 3. Data (solid) and model (dashed) for time course

recovery of confidence. Error bars are 95% confidence

intervals for data.

Comparing Activation for Choice RT and

Confidence

To compare the timing of choice and confidence, we assume

that the strength of a memory (activation) is the driver of

both judgments.

Both of our models have an activation component that is

represented by the assoc parameter. We took the assoc

parameter from each participant’s lowest RMSE model fit

and compared assoc for choice RT and confidence using a

within-subjects ANOVA. The assoc parameter was

significantly lower for confidence (M=.08) than for choice

RT (M=.29) [F(1,154) = 169.9, MSE = 3.56, p < .05, η2

=.31] .

Discussion

In this paper we built two models of complex cognitive

processes: decision-making and confidence judgments. We

instantiated decision-making using the model from Altmann

& Trafton (2007) and modeling choice RT. We then built a

model of confidence that also used an activation parameter so

that we could compare the models. Our data and models

produced five important findings.

First, we were able to replicate the empirical curvilinear

pattern from Altmann & Trafton (2007) and show that RT

recovers over time after an interruption.

Second, we built and replicated a model of RT for data on

a new task.

Third, we showed that confidence is influenced by

cumulative priming and that confidence recovers over time.

This is a unique finding given that many models and

experiments measuring confidence consider the contribution

of memory only from the item just retrieved (DeSoto &

Roediger, 2014; Merkle & Van Zandt, 2006; Pleskac &

Busemeyer, 2010; Ratcliff & Starns, 2009, 2013; Van Zandt

& Maldonado-Molina, 2004; Douglas Vickers, 2014).

In this study we did not rely on the common list-learning

or perceptual stimuli that have come to dominate the field.

Instead we used a procedural task which allowed us to

demonstrate that confidence judgments respond to priming

from other elements of the task. Given that many of the

current popular models of confidence consider confidence

judgments a unitary process (Merkle & Van Zandt, 2006;

Pleskac & Busemeyer, 2010; Ratcliff & Starns, 2009, 2013;

Van Zandt & Maldonado-Molina, 2004), our findings

suggest that models of confidence should be able to account

for carryover effects.

Fourth, we built a novel model for confidence judgments

that explains the recovery of the confidence judgment

process following an interruption. The model is driven by

two parameters. The first is a scaling parameter which

accounts for non-decisional processes. The second parameter

is the amount of associative activation between elements.

This second parameter is theoretically important because it

suggests that in procedural tasks, confidence is sensitive to

changes in activation.

Fifth, the comparison of the assoc parameter for choice RT

and confidence strongly suggests that confidence happens

after choice. Recall the predictions of the decisional and post-

decisional theories of confidence. Decisional theories claim

that confidence emerges as a result of the primary choice and

that confidence is made available at the same time. Post-

decisional models claim that additional information is

collected about the primary choice and confidence is formed

after a decision is made. Therefore, decisional models would

predict that the assoc parameter used to model choice RT and

confidence would be the same for both because they emerge

at the same time. Post-decisional models predict that the

activation in the assoc parameter would be lower for

confidence than for choice RT because the confidence

decision occurs after choice RT.

In our study we find that the assoc parameter is

significantly less for confidence than it is for choice RT. This

finding supports the post-decisional theories of confidence

that say confidence is rendered after a decision is made. We

believe that the assoc parameter is lower because the goal

used to make the confidence judgment has undergone decay

from when the same goal was measured earlier to make the

primary choice.

Calculating activation through modeling has some unique

benefits for measuring cognitive processes that are otherwise

difficult to investigate empirically. For example, in Dotan et

al., (2018) the authors offer an alternative explanation of

their data. According to some views of confidence

processing, their data could be interpreted as very fast and

discrete post-processing. By this view, participants make

decisions and confidence judgments several times before

rendering a final judgment. However, it would be very

difficult empirically to disentangle online confidence from

rapid post-decision processing. As was the case in our study,

modeling could be a helpful tool to help investigate such a

hypothesis.

ICCM2018

213

Acknowledgments

This work was supported by the Office of Naval Research to

JGT. The views and conclusions contained in this document

should not be interpreted as necessarily representing the

official policies of the U. S. Navy.

References

Aguiar, N., Zish, K., McCurry, J. M., & Trafton, J. G.

(2016). Interruptions Reduce Performance across

All Levels of Signal Detection When Estimations of

Confidence are Highest. In Proceedings of the

Human Factors and Ergonomics Society Annual

Meeting (Vol. 60, pp. 254–258). SAGE

Publications.

Altmann, E. M., & Trafton, J. G. (2007). Timecourse of

recovery from task interruption: Data and a model.

Psychonomic Bulletin & Review, 14(6), 1079–1084.

Altmann, E. M., Trafton, J. G., & Hambrick, D. Z. (2014).

Momentary interruptions can derail the train of

thought. Journal of Experimental Psychology:

General, 143(1), 215.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory

of the mind. Psychological Review, 111(4), 1036.

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M.

(1998). An integrated theory of list memory.

Journal of Memory and Language, 38(4), 341–380.

Edwards M. B., & Gronlund, S. D. (1998). Task interruption

and its effects on memory. Memory, 6(6), 665–687.

Baranski, J. V., & Petrusic, W. M. (1998). Probing the locus

of confidence judgments: experiments on the time to

determine confidence. Journal of Experimental

Psychology: Human Perception and Performance,

24(3), 929.

Bradley, J. V. (1968). Distribution-free statistical tests.

DeSoto, K. A., & Roediger, H. L. (2014). Positive and

negative correlations between confidence and

accuracy for the same events in recognition of

categorized lists. Psychological Science.

Donaldson, W. (1996). The role of decision processes in

remembering and knowing. Memory & Cognition,

24(4), 523–533.

Dotan, D., Meyniel, F., & Dehaene, S. (2018). On-line

confidence monitoring during decision making.

Cognition, 171, 112–121.

Gillie, T., & Broadbent, D. (1989). What makes interruptions

disruptive? A study of length, similarity, and

complexity. Psychological Research, 50(4), 243–

250.

Green, D. M., & Swets, J. A. (1966.). Signal Detection

Theory and Psychophysics. New York City, New

York: Wiley.

Heath, R. A. (1984). Random-walk and accumulator models

of psychophysical discrimination: a critical

evaluation. Perception, 13(1), 57–65.

Juslin, P., & Olsson, H. (1997). Thurstonian and Brunswikian

origins of uncertainty in judgment: a sampling

model of confidence in sensory discrimination.

Psychological Review, 104(2), 344.

Laming, D. R. J. (1968). Information theory of choice-

reaction times.

Lindstrom, M. J., & Bates, D. M. (1990). Nonlinear mixed

effects models for repeated measures data.

Biometrics, 673–687.

Link, S. W., & Heath, R. A. (1975). A sequential theory of

psychological discrimination. Psychometrika, 40(1),

77–105.

Merkle, E. C., & Van Zandt, T. (2006). An application of the

poisson race model to confidence calibration.

Journal of Experimental Psychology: General,

135(3), 391.

Pleskac, T. J., & Busemeyer, J. R. (2010). Two-stage

dynamic signal detection: a theory of choice,

decision time, and confidence. Psychological

Review, 117(3), 864.

Ratcliff, R. (1978). A theory of memory retrieval.

Psychological Review, 85(2), 59.

Ratcliff, R., & Starns, J. J. (2009). Modeling confidence and

response time in recognition memory. Psychological

Review, 116(1), 59.

Ratcliff, R., & Starns, J. J. (2013). Modeling confidence

judgments, response times, and multiple choices in

decision making: recognition memory and motion

discrimination. Psychological Review, 120(3), 697.

Resulaj, A., Kiani, R., Wolpert, D. M., & Shadlen, M. N.

(2009). Changes of mind in decision-making.

Nature, 461(7261), 263.

Trafton, J. G., Altmann, E. M., Brock, D. P., & Mintz, F. E.

(2003). Preparing to resume an interrupted task:

Effects of prospective goal encoding and

retrospective rehearsal. International Journal of

Human-Computer Studies, 58(5), 583–603.

Van Zandt, T., & Maldonado-Molina, M. M. (2004).

Response reversals in recognition memory. Journal

of Experimental Psychology: Learning, Memory,

and Cognition, 30(6), 1147.

Vickers, D. (1970). Evidence for an accumulator model of

psychophysical discrimination. Ergonomics, 13(1),

37–58.

Vickers, Douglas. (2001). Where Does the Balance of

Evidence Lie with Respect to Confidence?

Vickers, Douglas. (2014). Decision processes in visual

perception. Academic Press.

Wixted, J. T., & Mickes, L. (2010). A continuous dual-

process model of remember/know judgments.

Psychological Review, 117(4), 1025.

Zish, K., Hassanzadeh, S., McCurry, J. M., & Trafton, J. G.

(2015). Interruptions can Change the Perceived

Relationship between Accuracy and Confidence. In

Proceedings of the Human Factors and Ergonomics

Society Annual Meeting (Vol. 59, pp. 230–234).

SAGE Publications.

ICCM2018

214

ICCM2018 Author Index

Author Index

Acklin, Dina 133
Aguiar, Nathan 210
Altmann, Erik M. 210
Ang, Grace 169
Arlt, Lennart 63

Borst, Jelmer 37
Brasoveanu, Adrian 1
Brill, Zachary 9
Brown, Noelle 133
Buchler, Norbou 206, 208
Byrne, Michael 61, 69

Cassenti, Daniel N. 208
Christie, Thomas 11
Curley, Taylor 75

Dai, David Yun 77
Dancy, Christopher 9, 135
Dotlacil, Jakub 1
Dörr, Lisa 121

Elflein, Lukas 17
Eliasmith, Chris 175
Esfandiari, Babak 97

Fields, Maryanne 151
Fisher, Chris 25

Ghosh, Sujata 182
Glavan, Joseph 19

Halverson, Tim 25
Haubert, Ashley 25
Hoffman, Blaine E. 208
Hough, Alexander 55
Houpt, Joseph 19
Huyck, Christian 31

Jebelli, Niloofar 188
Ji, Yuhue 31
Jin, Christina 37
Jones, Steven 127
Juvina, Ion 55

215

ICCM2018 Author Index

Kennedy, Bill 40
Kennedy, William 188
Kieras, David 43
Kraft, Oliver 180
Kralik, Jerald 49

Laird, John 127, 157
Larue, Othalia 55
Lebiere, Christian 61, 145
Lennon, Craig 151
Lindner, Stefan 63
Lindstedt, John 69
Lynn, Spencer 75

McCurry, Malcolm 210
Mekik, Can Serif 77
Mitsopoulos, Constantinos 145
Morita, Junya 83
Mueller, Shane 85
Mussack, Dominic 11
Myers, Christopher 25

Nelson, Brittany 85
Nishikawa, Junpei 83

Oosterveld, Bradley 194
Oury, Jacob D. 91

Peters, Chad 97
Prezenski, Sabine 121

Ragni, Marco 17, 115
Rakesh, Vasundhara 103
Rice, Patrick 109
Riesterer, Nicolas 115
Ritter, Frank E. 91, 163
Russwinkel, Nele 63, 121

Salvucci, Dario 61
Sample, Char 208
Schatz, Jule 127
Scheuerman, Jaelle 133
Scheutz, Matthias 194
Schrater, Paul 11
Schwartz, David 135
Sense, Florian 137
Smith, Garrett 139

216

ICCM2018 Author Index

Somers, Sterling 145
Srivastava, Nisheeth 103
St. Amant, Robert 151
Stearns, Bryan 157
Stevens, Christopher 25
Stewart, Terrence C. 175
Stocco, Andrea 109
Sugrim, Shridat 208
Sun, Ron 77

Taatgen, Niels 61, 200
Tabor, Whitney 139
Tamborello, Frank 121
Tehranchi, Farnaz 91, 163
Teo, Leong-Hwee 169
Thompson, James 40
Thomson, Robert 145
Thorgeirsson, Sverrir 175
Tobinski, David 180
Top, Jakob Dirk 182
Trafton, Gregory 61
Trafton, J. Gregory 210
Tulk, Stephanie 188

Valenti, Andrew 194
van der Velde, Maarten 137, 200
van Rijn, Hedderik 137
van Vugt, Marieke 37, 200
Veksler, Vladislav Daniel 206, 208
Verbrugge, Rineke 182

West, Robert 97
Weyhrauch, Peter 75

Zish, Kevin 210

217

ICCM2018 Keyword Index

Keyword Index

ACT-R 1, 9, 19, 25, 61, 63, 83, 91,
109, 121, 133, 137, 169, 210

ACT-R/ Φ 135
activation 210
anthropology 49
API 206
Applied research 121
articulatory rehearsal 19
artificial intelligence 49
Association-based Retrieval 127
Associative Memory 31
attentional refreshing 19
automated model generation 182

basal ganglia 175
Bayesian modelling 103
Bayesian models 1
Bayesian Rationality 17
behavioral simulations 208
Believable Agents 75
beyond rational cognition 40

Cell Assembly 31
classification 151
cognitive architecture 43, 55, 157
Cognitive architecture 163
Cognitive Architecture 61
Cognitive architectures 40
cognitive architectures 9, 49
cognitive decoupling 55
Cognitive Load of Planning 180
cognitive model 151
Cognitive model 163
cognitive modeling 49, 63, 69, 133, 145, 206, 208
Cognitive Modeling 17, 115
Cognitive modeling 188
cognitive neuroscience 49
computational cognitive modelling 200
Computational Model 169
computational modeling 19
computational neuroscience 175
computational social science 188
Computer vision 163
Conditional Reasoning 17, 115

218

ICCM2018 Keyword Index

confidence 25, 210
connectionist model 194
control 157
cue consistency 25
cue cost 25
cyber security 208

decision making 11, 25, 133
decision-making 210
deep reinforcement learning 145
deliberation 55
depression 200
Dorsal premotor cortex 109
Drift diffusion model 103
Driving 169
Dynamic Systems 97
dynamic field theory 194
dynamical systems models 139

error detection 85
evolution 49
evolutionary neuroscience 49
evolutionary psychology 49
exploration vs exploitation 135
eye movements 43
Eye Tracking 180

fact-learning 137
Fatigue 169
Feeling of Rightness 55
forecasting 85
formal logics 182

GOMS 97
Guessing 115

Hebbian Learning 31
heuristic 55
High-level cognition 49
Human computer interface interaction 163
human factors 69
human-AI interaction 9

Ideal observer model 103
incremental processing 1
Individual Differences 169
information theory 11
instance based learning theory 133

219

ICCM2018 Keyword Index

Instance-Based Learning Theory 25
Interindividual differences 17
introspection 145
item search 121

Language 83
learning 11, 85
Learning Curve 91
local coherence effects 139

machine learning 194
Macro Cognition 97
Marslen-Wilson Cohort model 194
memory models 137
Meta-cognition 103
mind-wandering 37, 200
Model Analysis 17
model generalizability 69
Model-based adaptive learning 137
modeling 210
motivated reasoning 188
Multinomial Processing Trees 115
multiple cues 25

neural engineering framework 175
neural production systems 175
neural fields 194

opinion modeling 188

Perception and motor output 163
Perceptual Judgement 75
phases 157
Phonological awareness 83
practice 11
prediction 85
primitive elements 157
PRIMs 182
Probabilistic Models 17
Problem Solving 180
Project Malmo 9, 135
PROP 157
prototype theory 151

Rational analysis 103
rational cognition 40
Raven’s Matrices 77
real-world application 137

220

ICCM2018 Keyword Index

reinforcement learning. 135
Remote Associates Test 127
Retention Model 91
RITL 109
Rule resolution 109
Rule-based Reasoning 77
rumination 200

self-organization 139
self-paced reading 1
Semantic Memory 127
semantics 1
sensemaking 85
sentence processing 139
SGOMS 97
Signal Detection 75
similarity 63
Similarity-based Reasoning 77
Simulated eyes and hands 163
simulations 206
single-trial ERP 37
skill acquisition 157
Soar 127, 157
Solder Simulation 75
Spiking Neuron 31
spiking neurons 175
spoken word recognition 194
spreading activation 157
Spreading Activation 127
STAP 206
StarCraft 97
strategic reasoning 182
support vector machine 37
sustained-attention-to-response task 37
swipes 121
syntax 1

teamwork 9
TensorFlow 194
time-based resource-sharing 19
Time-on-Task 169
TMS 109
tool 121
Touch interaction 121
Tower of Hanoi 180

UCT 9
UI 69

221

ICCM2018 Keyword Index

Usability 121
User Modelling 121
utility 135

visual grouping 69
visual search 43, 63
voting 69

Wason task 55
working memory 19, 200
Workshop 61

222

	1 front-matter2.pdf
	2 toc 1.pdf
	3 papers.pdf
	o1_paper_14.pdf
	Introduction: framework & case study
	ACT-R and eager left-corner parsing
	Modeling results
	Conclusion

	o2_paper_36.pdf
	o3_paper_44.pdf
	o4_paper_22.pdf
	o5_paper_12.pdf
	o6_paper_31.pdf
	o7_paper_8.pdf
	o8_paper_21.pdf
	o9_paper_25.pdf
	Integrating Emotional and Rational Cognition
	William G. Kennedy (wkennedy@GMU.Edu)
	Center for Computational Social Science, George Mason University
	Fairfax, VA 22030 USA
	James C. Thompson (jthompsz@GMU.Edu)
	Department of Psychology, George Mason University
	Fairfax, VA 22030 USA
	Abstract
	Introduction
	Current Approaches
	Emotion in ACT-R
	Emotion in Soar
	Emotion in Agent-Based Models

	Architectural Approach
	Changing the Processing of Conditions
	Interfering with Memory Retrievals
	Interfering with Normally Sequential Rules

	Integrated Theory Development
	References

	o10_paper_2.pdf
	o11_paper_10.pdf
	o12_paper_26.pdf
	o13_paper_29.pdf
	o14_paper_23.pdf
	o15_paper_3.pdf
	o16_paper_48.pdf
	o17_paper_39.pdf
	o18_paper_17.pdf
	o19_paper_41.pdf
	o20_paper_34.pdf
	o21_paper_20.pdf
	o22_paper_38.pdf
	o23_paper_47.pdf
	o24_paper_15.pdf
	o25_paper_18.pdf
	o26_paper_45.pdf
	o27_paper_7.pdf
	o28_paper_27.pdf
	o29_paper_16.pdf
	o30_paper_9.pdf
	o31_paper_35.pdf
	o32_paper_5.pdf
	o33_paper_40.pdf
	o34_paper_37.pdf
	o35_paper_46.pdf
	o36_paper_42.pdf
	o37_paper_24.pdf
	o38_paper_1.pdf
	o39_paper_32.pdf
	Modeling the Impact of Fake News on Citizens
	Department of Psychology, George Mason University
	Fairfax, VA 22030 USA
	Niloofar Bagheri Jebelli (nbagher2@GMU.Edu)
	Computational Social Science Program, George Mason University
	Fairfax, VA 22030 USA
	William G. Kennedy (wkennedy@GMU.Edu)
	Center for Social Complexity, George Mason University
	Fairfax, VA 22030 USA
	Abstract
	Introduction
	Data on News and Fake News
	Cognitive Model Foundations
	Cognitive Model Details
	Experiment
	Experimental Results and Available Data
	Discussion
	Acknowledgments
	References

	o40_paper_13.pdf
	o41_paper_6.pdf
	o42_paper_28.pdf
	o43_paper_4.pdf
	o44_paper_33.pdf

	4 author_index 1.pdf
	5 keyword_index 1.pdf

	0:
	0:
	1:
	2:
	3:
	4:
	5:
	6:
	7:
	8:
	9:
	10:
	11:
	12:
	13:
	14:
	15:
	16:
	17:
	18:
	19:
	20:
	21:
	22:
	23:
	24:
	25:
	26:
	27:
	28:
	29:
	30:
	31:
	32:
	33:
	34:
	35:
	36:
	37:
	38:
	39:
	40:
	41:
	42:
	43:
	44:
	45:
	46:
	47:
	48:
	49:
	50:
	51:
	52:
	53:
	54:
	55:
	56:
	57:
	58:
	59:
	60:
	61:
	62:
	63:
	64:
	65:
	66:
	67:
	68:
	69:
	70:
	71:
	72:
	73:
	74:
	75:
	76:
	77:
	78:
	79:
	80:
	81:
	82:
	83:
	84:
	85:
	86:
	87:
	88:
	89:
	90:
	91:
	92:
	93:
	94:
	95:
	96:
	97:
	98:
	99:
	100:
	101:
	102:
	103:
	104:
	105:
	106:
	107:
	108:
	109:
	110:
	111:
	112:
	113:
	114:
	115:
	116:
	117:
	118:
	119:
	120:
	121:
	122:
	123:
	124:
	125:
	126:
	127:
	128:
	129:
	130:
	131:
	132:
	133:
	134:
	135:
	136:
	137:
	138:
	139:
	140:
	141:
	142:
	143:
	144:
	145:
	146:
	147:
	148:
	149:
	150:
	151:
	152:
	153:
	154:
	155:
	156:
	157:
	158:
	159:
	160:
	161:
	162:
	163:
	164:
	165:
	166:
	167:
	168:
	169:
	170:
	171:
	172:
	173:
	174:
	175:
	176:
	177:
	178:
	179:
	180:
	181:
	182:
	183:
	184:
	185:
	186:
	187:
	188:
	189:
	190:
	191:
	192:
	193:
	194:
	195:
	196:
	197:
	198:
	199:
	200:
	201:
	202:
	203:
	204:
	205:
	206:
	207:
	208:
	209:
	210:
	211:
	212:
	213:
	214:
	215:
	216:
	217:
	218:
	219:
	220:
	221:
	222:
	223:
	224:
	225:
	226:
	227:
	228:
	229:
	230:
	231:
	232:
	233:
	234:
	235:
	236:
	237:
	238:
	239:
	240:
	241:
	242:
	243:
	244:
	245:
	246:
	247:
	248:
	249:
	250:
	251:
	252:
	253:
	254:
	255:
	256:
	257:
	258:
	259:
	260:
	261:
	262:
	263:
	264:
	265:
	266:
	267:
	268:
	269:
	270:
	271:
	272:
	273:
	274:
	275:
	276:
	277:
	278:
	279:
	280:
	281:
	282:
	283:
	284:
	285:
	286:
	287:
	288:
	289:
	290:
	291:
	292:
	293:
	294:
	295:
	296:
	297:
	298:
	299:
	300:
	301:
	302:
	303:
	304:
	305:
	306:
	307:
	308:
	309:
	310:
	311:
	312:
	313:
	314:
	315:
	316:
	317:
	318:
	319:
	320:
	321:
	322:
	323:
	324:
	325:
	326:
	327:
	328:
	329:
	330:
	331:
	332:
	333:
	334:
	335:
	336:
	337:
	338:
	339:
	340:
	341:
	342:
	343:
	344:
	345:
	346:
	347:
	348:
	349:
	350:
	351:
	352:
	353:
	354:
	355:
	356:
	357:
	358:
	359:
	360:
	361:
	362:
	363:
	364:
	365:
	366:
	367:
	368:
	369:
	370:
	371:
	372:
	373:
	374:
	375:
	376:

	anm0:

