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Abstract
This paper describes a representation to support explanation
of robot navigation based on image schemas, a set of abstrac-
tions closely tied to embodiment. The representation is in-
tended to satisfy two criteria: an explanation must provide a
logical or causal account of the phenomenon to be explained
and be understandable by its audience. Evidence in the litera-
ture of cognitive linguistics and related fields suggests that im-
age schemas satisfy the second criterion. We provide evidence
for the first with an Answer Set Programming formalization of
navigation-related image schemas. Schema-based explanation
representations are generated for a robot navigating through a
simple indoor environment.
Keywords: Image schema; robot navigation; explanation

Introduction
Symbolic representations in artificial agents (robots, in this
paper) are often invaluable—they allow for the concise spec-
ification and communication of potentially complex behav-
iors. This pragmatic, engineering motivation sometimes
leaves open the question of why one representation is better
than another. Our interest is in a related issue that has gained
increasing attention in recent years: the ability of a robot to
explain its actions.

This paper describes a representation, based on image
schemas, for the explanation of robot navigation. “Im-
age schema” is a term coined by Lakoff (1987) and John-
son (1987): a structured, general pattern intended to capture
experience “at the level of our bodily movements through
space, our manipulations of objects, and our perceptual in-
teractions.” The contribution of this paper is to show how
a schematic cognitive structure can be derived from patterns
of navigation actions recorded by a physical robot. Image
schemas appear to be a natural fit for explanation.

Navigation may at first seem to be a trivially easy domain,
for human beings if not for robots, but researchers in human
spatial cognition characterize navigation as being among the
most complex of cognitive operations (Wiener, Büchner, &
Hölscher,2009). For example, an ontology developed for ur-
ban transportation (Timpf,2002) contains concepts for path,
start, goal, connection, transportation mode, map, sign, direc-
tion, distance, and time, plus names of specific entities (e.g.,
streets and subway stations). When we navigate, we draw on
our memories and on external maps. We think about naviga-
tion at different levels of abstraction; we chain together nav-
igation plans and paths; we combine navigation with other
activities. Many navigation tasks may be easy to understand,
but they can grow complex enough to require explanation of
why a specific route is followed or avoided.

What counts as a good explanation? In the philosophy
of science, the standard definition of an explanation has two

parts (Hempel & Oppenheim,1948): a description of a phe-
nomenon to be explained (the explanandum) and the explana-
tory account itself (the explanans). Both parts can be formu-
lated as sentences in logic, with the explanandum being one
sentence and the explanans being a set of sentences for which
the explanandum is a consequence. The sentences in the ex-
planans are of two types, general laws and antecedent con-
ditions specifying applicability, and for a sound explanation
they must be true. In other words, a scientific explanation
captures the causes or logic of a phenomenon.

Lombrozo and Carey (2006, p. 169) broaden the defini-
tion above: the logical or causal process identified in an ex-
planation “can be subsumed under some kind of pattern or
causal schema” that is already understood by a questioner or
introduced as part of the explanation itself. That is, a psy-
chological explanation (which we will henceforth call sim-
ply an explanation) is a bridge between the explanans and
the explanandum that has a foundation in a questioner’s prior
knowledge. An explanation should be understandable by the
audience to whom it is directed (as well as the explainer).
Further, explanations do not exist in a vacuum but are are
typically part of a larger context, which includes the goals
of the audience and the situation in which the explanation is
offered (Mueller, Hoffman, Clancey, Emrey, & Klein,2019).

In the next section we briefly review the relevant literature
on image schemas, as a partial account of spatial reasoning.
Schematic structures alone do not satisfy the causal/logical
requirement of explanations, however; for this we depend on
a formalization in terms of Answer Set Programming (Gebser
et al.,2011), which supports inferences to necessary compo-
nents of an explanation in an abstract, symbolic representa-
tion. We then describe the conversion of sensor and control
data on a physical robot into the abstract representation and
walk through an example.

Related work
In the infant cognition literature, Mandler and Pagán
Cánovas (2014, p. 519) outline a set of spatial primitives that
act as image schemas: “By themselves or in combination they
structure the conceptual representations that describe events.”

These image schemas plausibly underlie infant spatial cog-
nitive capabilities, gained in the first six to seven months af-
ter birth: PATH, START-PATH, END-PATH, PATH-TO; LINK;
THING;±CONTACT; CONTAINER, OPEN, INTO, OUT OF; LO-
CATION; ±MOVE, ANIMATE MOVE, BLOCKED MOVE; BE-
HIND; APPEAR, DISAPPEAR, EYES. It will be useful for our
purposes to expand the set of spatial relationships represented
by BEHIND, to include NEAR/FAR, LEFT/RIGHT, IN FRONT



OF/BEHIND. This is not a complete set of image schemas,
even for navigation (Croft & Cruse,2004), but provides a rea-
sonable starting point.

For clarity, a PATH is “the way to get [somewhere];” the
most general version of the schema is commonly called
SOURCE-PATH-GOAL (Lakoff,1987), with its components as
given by its name. BLOCKED MOVE is sometimes referred to
as BLOCKAGE (Cervel,1999), with components that include
a path, a moving entity, and another entity acting as an obsta-
cle. THING is an entity that can be perceived in space, which
we will interpret here as a physical object. LINK is a general,
contingent relationship that may come into being between ob-
jects or schemas.

Image schemas exist in a specialization hierarchy. For ex-
ample, a path component of a SOURCE-PATH-GOAL might
involve continuous motion, or it might consist of a sequence
of discrete steps (each of which can be thought of as a PATH
itself, with an atomic transition between locations). Image
schemas can also be related by composition. The end of a
PATH can be a LOCATION; a BLOCKAGE applies to a PATH.

Image schemas are implicitly associated with activities or
events. We call these characteristic operations—informally,
what an image schema is for. For example, a characteris-
tic operation of the SOURCE-PATH-GOAL schema is for some
agent to traverse it in a specific direction. One characteristic
operation of a CONTAINER is that it can contain other ob-
jects, or that an agent can MOVE INTO or OUT OF one. (Some
characteristic operations are schemas themselves, or incorpo-
rate schemas.) In a navigation context, regions are a type of
CONTAINER: one can enter INTO or exit OUT OF a REGION.
Buildings, rooms, and even deadends are CONTAINERs in the
same way.

Image schemas have been adopted as conceptual primi-
tives in many other fields aside from infant spatial reasoning.
Geographic information systems are one example (Walton
& Worboys,2009). In an extensive discussion, Frank and
Raubal (1999, p. 67) observe that image schemas capture ge-
ographical concepts in a way that “comes close to how people
use them in their everyday lives.”

Another area of related work is AI planning. Robots are
closely associated with planning, from the abstract level of
classical planning down to the detailed level of planning
paths. Our own past work used image schemas to capture pat-
terns of behavior in planning agents (St. Amant et al.,2006).
Navigation planning is typically handled as a search problem
with a single operator for moving between locations, rather
than distinct planning actions for reaching different states.
Korpan and Epstein (2018)’s WHY-PLAN explains navigation
plans, by examining differences between a robot’s objective
function and that of a human being, mapping their compo-
nents to natural language phrases. For example, if a robot’s
objective function is sensitive to crowd density, it can con-
trast its solution plan with a human’s: “This path is 〈slightly〉
〈less crowded〉 than the alternative.”

In an area closely related to explanation, Rosenthal et

al. (2016) describe a system that generates narrative “ver-
balizations” to describe a navigation path. Rosenthal et al.’s
navigation paths are representative of most such work we are
familiar with: a path contains a goal location, a starting lo-
cation, and an ordered list of intermediate waypoints (plus
collinear subsequences of waypoints, to facilitate the identi-
fication of turns). Such representations map naturally onto
the SOURCE-PATH-GOAL image schema. Landmarks, with
appropriate semantic tags, and their spatial relationships to
the robot can also be easily interpreted in schematic terms.
None of this is surprising. Most of the other image schemas
remain only implicit in navigation plan representations, how-
ever, though they could plausibly contribute to explanations.
In the next section, we show how they can be made explicit.

Schemas for Navigation Paths
In this section we describe a formalization of image schemas
to support explanation. Our target is a logical representation
sufficient for an explanation, following the lead of other work
in planning (Chakraborti, Sreedharan, Zhang, & Kambham-
pati,2017;Fox, Long, & Magazzeni,2017). Generation of the
text and narrative of explanations, such as carried out by sys-
tems above, is part of the task that we leave for future work.

Answer Set Programming, with roots in knowledge rep-
resentation and reasoning, has become a popular paradigm
for declarative problem solving. ASP has shown promise in
spatial and temporal reasoning (Li,2012) and commonsense
reasoning (Balduccini,2009). Our implementation relies on
the Potassco set of tools for ASP; rules are encoded using the
input language of Gringo (Gebser et al.,2011).

A problem specification is separated into two parts: a spe-
cific problem instance, expressed as predicates; and an encod-
ing, a general set of inference rules that apply to any problem
instance. For explanation of a navigation path, a problem in-
stance consists of locations and objects in environment, the
initial location of the agent, the path it follows, and the com-
mands it issues to follow the path. (We refer to an “agent”
in this context as a reminder that this is a high-level abstrac-
tion of a robot—the agent is not even explicitly represented.)
Time and space, in the form of a set of locations, are dis-
cretized; a time limit M for execution of the planned path
(moves(M)) is also provided.

Locations are named by unique constants, e.g., loc(x1). A
path has a source location and a goal location, path(x0,x f ),
and a sequence of waypoints to be traversed in order. These
are expressed as steps with paired locations; if P is a path,
then step(P,x0,x1), step(P,x1,x2), . . . , step(P,x f−1,x f ).
The agent begins at(x0,1), where 1 is the starting time.
The environment may also include landmarks, obstacles,
or demarcated regions that occupy specific locations, e.g.
land(l1,x6), obst(o1,x3). Landmark locations are disjoint
from path locations; obstacles have a non-empty intersection
with path locations; regions have neither restriction.

An ASP problem encoding is further divided into separate
parts. In the generation part we can specify candidate solu-



tions, actions taken by the agent. The agent may move from
one location to another along the path by taking a step, a move

action; moves are possible at any time T = 1..M, but no more
than one move can be carried out at a given time.

{ move(Xi,X j,T) :

P = path(Xs,X f ), step(P,Xi,X j) } <= 1 :-

path(Xs,X f ), moves(M), T = 1..M.

The definition part of an encoding defines predicates for in-
ferences contributing to a solution. For example, a change of
location can be inferred based on volitional movement from
the present location.

at(X j,T+1) :- at(Xi,T), cmd move(Xi,X j,T),

move(Xi,X j,T).

The integrity constraint part restricts inferences, including
those related to the agent’s movements. For example, the
agent can move from a location only if it is at that location,
and the agent cannot move to locations occupied by an ob-
stacle. (An underscore, below, is an anonymous variable that
can take on any value.)

:- move(Xi, ,T), at(X j,T), Xi != X j.

:- move( ,X,T), obstacle( ,X,T).

:- move( ,X, ), obstacle( ,X).

Spatial relationships other than at are also accommo-
dated in the representation, though falling short of generality.
(Commonsense reasoning and qualitative spatial reasoning
pose well-known and unresolved challenges.) Our account
is necessarily brief and incomplete, for reasons of space, but
the description should give the flavor. The important point is
what the encoding can produce, summaries of the execution
of a given navigation plan in the form of predicates.

• traversed(path(x0,Xg)), at(Xg,T): The path was fol-
lowed until the agent reached its goal, with the last action
taken at time T.

• blocked(X j,P), at(Xi,T): The path was blocked by some
obstacle at location X j; at time T the agent was left at Xi.

• stopped(X,P), at(X,T): The path was followed until the
agent stopped at X; this predicate lets us distinguish quies-
cence from being prevented from moving.

These mechanics provide for the construction of a set of
ground terms (i.e. predicates containing no variables) that
form the “logic” of an explanation for a navigation problem
instance. The representation is limited in its discretization of
space and time, but it can manage simple changes over time.
For example, obstacles may be permanent or temporary, as
might be presented by a person or object moving across a
path at a specific time steps: obst(o2,x4,3), obst(o2,x4,4).
A strong limitation is that unpredicted errors and deviations
in behavior cannot be explained by our approach.

Image schemas have been formalized in other
mathematical and logical formalisms (Frank &
Raubal,1999;Kuhn,2007;Walton & Worboys,2009). One

subtle issue is the intended application of the formalization.
Most such work aims at description of entitities and their
changing relationships. We have to make an additional
commitment to interpreting image schemas in logical and
even causal terms, because that is what is necessary for
explanations. A move action, for example, does more than
describe what happens; an agent carries out the action in
order to change its location. This is a commonplace as-
sumption in planning but important to make explicit because
logical/causal interpretation is central to explanation.

At the end of the next section we show how this formalism
works for a real navigation problem.

A Navigation Scenario
This section lays out an example navigation scenario, one that
we can use as a target for explanation.

System
The hardware for this work is a K-Bot platform, from Uni-
versity of Pennsylvania. The robot sensor package includes
a microstrain 3DM-GX2 IMU, two Point Grey Firewire
Grasshopper cameras, a Point Grey GigE Blackfly camera,
a Point Grey Bumblebee2 stereo camera, and an ASUS Xtion
pro RGB-D camera, as well as a two Hokuyo UTM-30LX-
EW (Ethernet) Scanning Laser Rangefinder and a Velodyne
HDL-32E LiDAR. Software is built on ROS (Robot Operat-
ing System) Indigo by the Open Source Robotics Foundation,
plus ROS software drivers to read sensor data streams.

ROS’s primary navigation stack is move base, which im-
plements a number of essential capabilities. Cost maps pro-
vide a two-dimensional representation, in the form of a grid,
of the cost to traverse a space. Some cells in the map may
have nominal cost (a constant FREE SPACE), indicating that the
robot may move freely through the location corresponding to
the cell. Physical objects or obstacles also occupy cells in
the grid, which means that the cost recorded in those cells is
the maximum possible (a constant named LETHAL OBSTACLE).
The region of each object is “inflated,” meaning that the cells
surrounding the region occupied by the object have an inter-
mediate cost, to indicate a location with a risk of collision.

Planners supply the robot with a path based on the values
contained in the cost map, given a starting location and a goal
location. The global planner creates a general path to follow,
a discrete sequence of locations, between the start and the
goal. The local planner is responsible for attempting to follow
the global path by generating movement commands for the
robot; this path includes orientation information for the robot.
When we refer to the path planner in the remainder of this
paper, we mean the global planner.

Task Environment and Execution
The robot is tasked with moving across a warehouse floor.
For the purposes of this scenario, a region in the center of
the room is traversable, but it is also considered vulnerable
and should be avoided. In a military scenario such a region
might correspond to an area visible to a hypothetical observer,



which is undesirable for movement under concealment; in an
urban search and rescue scenario, the region might be where
the ceiling above has been weakened and may fall. This task
was chosen for explanation because an alternative, shorter
path to the goal location on the other side of the room is ob-
vious: a straight line. If the contextual information is absent,
a questioner might reasonably ask the robot to explain.

To implement the navigation task, a custom ROS node was
written to add such regions to the navigation stack via a sep-
arate layer of the cost map, as virtual obstacles, with corre-
sponding lethal obstacle cell costs. A separate layer was used
because the robot updates the cost map as it moves through
the environment. Virtual objects or regions are not detected
by the system’s raytracing algorithm, and the costs associated
with such objects would be overwritten. A separate layer also
limited the need to modify existing ROS move base software.

April tags (Olson,2011) were used to represent the centroid
of a region of vulnerability, mounted on a physical cone for
easy detection. The radius of the region was set program-
matically. This was an alternative to assessing vulnerability
directly; it allows comparable virtual information to be inte-
grated into the physical environment. In our discussion of the
scenario below, we will treat the April tags and the cone as
being invisible to the robot, which would be the case if the
vulnerable region were directly assessed.

In a sample execution of the task, the robot starts at a lo-
cation in the lower right of Figure 1. The goal location is in
the upper left of the figure. The robot begins with an empty
cost map; cells are assigned costs based on sensor informa-
tion about obstacles, in this experiment both real and virtual.
The path planner searches for and returns a path from the start
to the goal, a sequence of a few hundred locations, each with
associated bookkeeping information. The vulnerable region
in this example has been given a LETHAL OBSTACLE cost, but in
a different variation it could be given some lower VULNERABLE
cost. The robot ends at the goal location and its path is shown
as a dashed red line.

The visual representation shows the cost map that the path

Figure 1: Movement around a region of vulnerability

planner accesses to construct the path that the robot follows.
Different colors correspond to different cost values, in partic-
ular yellow for lethal obstacle cost, light gray for free space
cost, and other colors for intermediate values produced by the
“inflation” mentioned above. The outermost color is for re-
gions with unknown cost. The physical borders of the room
are clearly visible on the map; the upper area shows work
tables and equipment. The circle on the map, with a sphere
floating above, is the visual representation of the vulnerable
region, derived from the April tag located at the center of
circle. A physical obstacle would look similar, except that
the region opposite the robot would not be visible to the its
sensors and would thus have unknown cost values. In this
scenario, the robot begins in a location from which all rele-
vant cost values for path planning can be determined directly,
which means that it can follow the path produced by the plan-
ner without the need for replanning.

Generating a representation
Figure 1 might be seen as an explanation: it indicates an ob-
stacle in the center of the room, which the robot will avoid.
By comparing a map with the physical environment it be-
comes clear that the object is virtual, representing a vulnera-
ble region; the robot would presumably plan around it. But
the phenomenon to be explained and the explanation are only
implicit in the visualization. Even the basic vocabulary of
navigation concepts is missing. The robot has no internal
representation of these concepts, to impose an explanation on
the visualization. At best we might say that the image helps
viewers explain the robot’s behavior to themselves.

What we want instead is the generation of an explicit ab-
stract representation that captures the robot’s behavior.

• Locations: All world locations are translated into 2D cells
on the cost map, and those cells generate unique symbols.
Not all locations or cells are used; relevant ones are identi-
fied in translating other kinds of objects.

• Paths: Three different types of paths are generated. A
planned path is constructed from the set of waypoints pro-
duced by the ROS path planner. An external path is gener-
ated by an external process directly on the cost map (e.g.,
a hypothetical straight line path between two locations).
An executed path is constructed from the sequence of the
robot’s sensed locations as it moves through the world.
In the last case locations are sampled whenever a cmd vel

message is issued. After the conversion to cost map cells,
path locations are filtered to remove jitter.

• Commands: For planned and external paths, locations are
walked to create a set of cmd move predicates, with pro-
grammatically generated timestamps. For executed paths,
cmd vel messages are converted to cmd move predicates.

• Landmarks, regions, and obstacles: These are treated sim-
ilarly, and in our navigation scenario, the vulnerable re-
gion can be any one of them, depending on the path and



cost values. Generation is from an object’s external speci-
fication. A directional relationship is computed to the ob-
ject from each location on the path. These relationships
are determined by a validated cognitive model of spatial
projective terms, AVS (Regier & Carlson,2001), which we
have used in previous robotics projects (Ward, St. Amant,
& Fields,2017). The process that walks an executed path
records the robot’s pose (i.e., its location and the direction
it is facing); for other paths, the direction is determined
by projecting through the locations of future steps. The
robot’s pose plus the relative bounds of a landmark are suf-
ficent for the model to estimate the acceptability rating of a
description—in front of, behind, left, or right—for a spatial
relationship. The highest-rated description is used.

The conversion is straightforward, but we present this level
of detail to highlight the judgment calls necessary to make the
problem of generating an explanation tractable. Locations are
the main issue: the only locations generated for a problem
instance are those relevant to the following of a given path,
producing a few hundred locations in contrast to more than
5 million distinct cost map cells. Similarly, the entire region
occupied by a landmark or an obstacle is not represented ex-
plicitly but only through relationships to path locations.

Explanations
Finally we reach explanations. Explanations can be divided
into two types (Leddo & Abelson,1986). A constructive ex-
planation is a direct application of the definition of scientific
explanation, identifying the causal or logical factors that give
rise to some result. Contrastive explanations make compar-
isons with one or more alternatives that may not be given
explicitly. Generation of alternatives in general is challeng-
ing (Leddo & Abelson,1986) and we will assume that any al-
ternatives are provided as input to the ASP inference process
(as explained in more detail below).

A problem instance is generated as described for the path
above. The ASP inference process fills in other predicates:

path(x4107,x4232),

landmark(vul,x5446),

at(x4107,1), move(x4107,x4108,1), at(x4108,2), ...

right(vul,58), ...

at(x4231,125), move(x4231,x4232,125), at(x4232,126),

finished(arrived(x4232,126))

Because the vulnerable region does not intersect the path,
it is translated into a landmark; from the start until T=58 the
region is in front of the robot; it is to the right until T=90
and thereafter behind. The necessary information for an ex-
planation is provided, in general laws for the domain (e.g., re-
quirements for and constraints on movement) and antecedents
as specified in the problem instance. In words, “Why did the
robot end up at(X4232,126)?” “Because it was at(X4231,125)

[antecedent], there was a step [antecedent], it executed a
cmd move [antecedent], and the result was a move to that loca-
tion [general law].” A set of such statements, working back-

ward to the antecedent of the robot at the start of the path,
constitutes a complete explanation representation.

For contrast, consider accounting for a hypothetical alter-
native path. In navigation, a straight line is a natural default
for a human navigator (Korpan & Epstein,2018). Bresen-
ham’s algorithm is used to generate a straight-line sequence
of cells on the cost map between source and goal locations.
In the navigation scenario, with the vulnerable region given a
LETHAL OBSTACLE cost, the generation process puts obstacles
on path locations inside the region. The inference process
then generates the following:

path(x8037,x8292), obst(vul,x8147), obst(vul,x8148),

at(x8037,1), move(x8037,x8038,1), at(x8038,2), ...

at(x8145,109), move(x8145,x8146,109), at(x8146,110),

finished(blockage(x8147,path(x8037,x8292)))

The inferred predicates describe the robot moving along
the path until reaching a location just outside the vulnerable
region; actions from that point wait until the time limit is
reached. As with a constructive explanation, there exists a
chain of domain laws and antecedents that account for this
result. Said differently, it cannot be inferred that the robot
reaches the goal location; it can be inferred that the robot will
be at a different location at the time limit. The relevant do-
main law is the constraint that the agent cannot move to a
location where there is an obstacle, which results in the infer-
ence of a blockage.

As a final example, we can change the cost of the region to
VULNERABLE and use the same straight path. The explanation
changes. In this case the robot can enter the region and that
the path can be completed. As with the relationship to land-
marks, the information that the robot was inside the vulnera-
ble region is inferred, and this information forms the basis for
comparison with other paths.

Discussion
We have presented a system for producing explanations of a
robot’s path planning and path following behavior. Part of
our work is analytical. We adopted two well-known criteria
for explanations: that they be understandable and that they
provide a logical or causal account of a system’s behavior.
Image schemas satisfy the first criterion, by assumption; we
have also presented evidence from the psychology literature
that this assumption is plausible. Satisfying the second cri-
terion involved showing that combinations of image schemas
could be interpreted in logical or causal terms. The ASP for-
mulation is a good match for the semantics of image schemas.

We are interested in the specific domain of navigation,
though we expect to move next to consider the larger context
of robot planning and acting. ASP supports inferences related
to commonsense reasoning (e.g., that a landmark remains to
my right from one step to the next as I move past).

Tradeoffs and limitions apply to our work. We call our
explanations “lightweight” because the explanation is obser-
vational, not coupled with the robot’s control processes. The
main advantage of this approach is pragmatic: We can make



many fewer assumptions about whether the robot is being
controlled by a script, a state machine, an AI planner, or some
other possibility. The disadvantage is that “why” inferences
must be based on observations and domain knowledge with-
out limited control information. For example, we can imag-
ine a robot being programmed with a preference to pass on
the left, with obstacles being observable on the right, but if
this preference is not made public, the spatial relationship to
an obstacle is descriptive rather than part of an explanation
for why the robot chose its path.

Among the obvious limitations is the scope of the naviga-
tion task. It is reasonable to ask whether the representation
and processing described in previous sections are necessary
to explain such a simple activity. Activities with a cognitive
component (in this case navigation tasks in general but also
our use of image schemas for representation) do often turn
out to be subtle underneath, but it will require human-robot
interaction studies to evaluate the need for and the adequacy
of explanations in this domain.

This limitation suggests another: representations are diffi-
cult to evaluate in the abstract. Mueller et al. (2019), in an
extensive literature review of explainable AI, identify proper-
ties of good explanations and empirical techniques for evalu-
ation. Our work produces representations but not the surface
form of explanations, and we have not yet subjected them to
evaluation. Once textual (or multimedia) explanations can be
generated, human studies will be needed.
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