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Abstract 

Skill acquisition experiments have rarely focused on 
collaborative tasks. Here we attempt to fill this gap with a 
study on teamwork in a dynamic task. The task - Coop Space 
Fortress - is computer game, in which subjects fly spaceships 
to destroy a space fortress. This task presents two challenges: 
learning how to fly a spaceship in a frictionless environment 
and developing a strategy on how to coordinate. When 
learning to play this computer game, subjects not only master 
the game controls but also typically settle on team roles to 
more efficiently achieve their goal, despite not being allowed 
to communicate. The data from this study will pave the way 
to an ACT-R model of teamwork in a dynamic task. 

Keywords: skill acquisition, dynamic task, teamwork, Space 
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Introduction 

From stumbling into our first steps, to learning a foreign 

language in middle school and our first mathematical 

analysis class at university, our lives are replete with various 

tasks that we master to different extents. It is astounding 

how skilled we can become after a sufficient amount of 

practice: the tightrope walker was once a toddler falling 

after a couple of steps; Shakespeare was once mumbling 

incomprehensible words and even Euler – the most prolific 

mathematician ever – was once unable to count.  

This gradual shift of the unskilled becoming fully 

proficient has been characterized as proceeding in distinct 

phases. Specifically, Fitts (1964, Fitts & Posner, 1967) 

described motor skill as progressing through three phases: a 

Cognitive Phase, an Associative Phase, and an Autonomous 

Phase. Anderson (1982) also adopted the understanding that 

skills go through three phases and applied this to cognitive 

skills, whereby he modeled the successive periods of skills 

acquisition in the cognitive architecture ACT*. Others too 

have accommodated the idea that skill acquisition is a 3-

phase process (e.g., Ackerman, 1988; Kim, Ritter, & 

Koubek, 2013; Rosenbaum, Carlson, & Gilmore, 2001).  

Similarly to ACT*, in ACT-R (Anderson, 2007) – the 

current version of the architecture – skill transitions from a 

slower and more deliberative stage to a faster and more 

automatic stage. This architecture has been applied to model 

skill acquisition in a variety of tasks, such as solving linear 

equations (Anderson, 2005), a complex aviation task 

(Taatgen et al., 2008) and past tense learning (Taatgen & 

Anderson, 2002). Further support of ACT-R’s 

characterization has been provided in neuroimaging studies, 

which uncovered qualitative changes in the recorded neural 

patterns as subjects become more proficient (i.e., in solving 

pyramid problems; Tenison, Fincham, & Anderson, 2016).  

Finally, a modification of the architecture was used to 

model an amount of transfer between skill acquisition tasks 

not completely accounted for by ACT-R (Taatgen, 2013).  

Cognitive Skill Acquisition 

ACT-R does not adhere to a 3-phase view of skill 

acquisition. Instead, this architecture models each 

subcomponent of the skill as transitioning from a declarative 

to a procedural endpoint. At one extreme, the cognitive 

system only has declarative knowledge about a certain task 

domain. This knowledge is typically stored in terms of 

operators in declarative memory, which are composed of 

three pieces of information: the state in which they apply, 

the action that should be taken, and the state that results 

after that action is taken. Operators are the building blocks 

of a subject’s mental model of the task and they are 

typically acquired when reading the task instructions. When 

an unskilled subject faces a task, operators are retrieved to 

determine what action should be taken next.  

These operators are gradually converted to procedural 

knowledge through a process called production compilation 

(Taatgen & Anderson, 2002). When an operator is compiled 

into a production, its actions are directly performed by that 

production without the need to retrieve the operator. The 

result is, first, a faster execution of that action as the time 

cost of retrieval is no longer incurred and, second, retrieval 

processes are no longer occupied and can be used for other 

purposes. Moreover, it is possible for two subsequent 

actions to be complied into a single action if there is no 

conflict of cognitive resources. The relative rate at which 

operators are compiled is a function of how often they are 

evoked, meaning that different subcomponents of skill can 

be proceduralized to different extents at certain time points.  

Dynamic Tasks 

The majority of skill acquisition tasks modeled with 

ACT-R follow a linear perception-cognition-action pattern. 

Yet, real-world tasks are complex and dynamic, meaning 

that they involve the coordination of cognitive, perceptual 

and motor activities in an ever-changing, yet predictable 

world. To investigate the applicability of ACT-R’s approach 

to dynamic tasks, learning in the arcade game Space 

Fortress was addressed (Anderson et al., 2019). Space 

Fortress was selected because it is simple enough to be 

suitable for an experiment, challenging at first and still 



learnable within a single experimental session. In addition to 

its dynamic nature, Space Fortress differs from the majority 

of skill acquisition tasks modeled with ACT-R in that it 

requires learning to tune skill to features in the environment 

so that actions are successful. To this end, ACT-R was 

extended with a new module – the Controller (Anderson et 

al., 2019). The model of this dynamic task underwent the 

same process of skill acquisition that other models did by 

gradually compiling operators into productions. However, 

the increased complexity of this task relative to others meant 

that the model spent much more time compiling operators 

than simpler models do. Moreover, while operators in 

declarative memory were being proceduralized, the 

Controller module was tuning actions to relevant 

environmental features.   

Teamwork 

One aspect of skill acquisition that has been rarely 

researched in the lab is how people learn to execute a novel 

task while working as a team. In a team, individuals’ tasks 

become interdependent and their goals shared (Dyer, 1984). 

To achieve high performance, each team member needs to 

successfully manage the tasks that are independent of the 

other team members (i.e., taskwork) and the tasks that are 

intertwined with the others (i.e., teamwork; Salas, Cooke, & 

Rosen, 2008). Both taskwork and teamwork depend on the 

processes of encoding, storage and retrieval of information, 

while two additional factors are key to teamwork. 

Specifically, shared cognition (i.e., shared mental models 

and situation awareness; Salas & Fiore, 2004) and 

communication facilitate coordination and cooperation 

between team members. To investigate how people learn to 

work in a team in a dynamic task, we created a new 

cooperative computer game, Coop Space Fortress. 

Coop Space Fortress 

Space Fortress has a history in the study of skill 

acquisition dating back to the end of the 80’s (Donchin, 

1989; Frederiksen & White, 1989; Gopher et al., 1989). The 

goal of the game is to accumulate as many points as 

possible, which can be achieved by destroying a fortress 

located in the center of the screen while avoiding crashing 

into a rectangle, which defines the playing field. We relied 

on the Pygame implementation of Space Fortress (Destefano 

& Gray, 2008) to create a cooperative version of the game – 

Coop Space Fortress.  

In Coop Space Fortress, two players control two ships 

(see Figure 1). Their goal is to destroy a fortress in the 

center of the screen. However, the fortress has an 

impenetrable shield around it (the small hexagon), which is 

only partially disabled when the fortress shoots a missile. 

When this happens, the back of the fortress is no longer 

shielded and the fortress can be destroyed. Consequently, 

for the team to destroy the fortress, one ship needs act as a 

bait: it needs to enter the big hexagon, which triggers the 

fortress to aim and shoot at that ship if the ship moves 

sufficiently slowly. While the fortress is shooting and its 

back is exposed, the other ship needs to navigate behind the 

fortress, aim at it and destroy it (see Figure 2). To keep 

things simpler, we did not allow players to communicate. 

Thus, players needed to figure out their roles based solely 

on the common instructions that they received. 

 

 

 
Figure 1: Start of the game. Both players are outside of 

the hexagon and the fortress has no target. The players 

should enter the hexagon and try to destroy the fortress. 

 

When the fortress is destroyed, the score is incremented 

by 100 points. The ships need to then exit the hexagon. 

When both ships are outside of it, the fortress respawns and 

the ships can again attempt to destroy it. When outside the 

hexagon, the ships should avoid hitting the outer border (big 

square), because they would explode and reduce their 

common score by 100 points. In addition to penalizing 

deaths, reckless shooting is also penalized by 10 points for 

each missile that does not hit the fortress.  

Navigation in Coop Space Fortress relies on three actions: 

rotating clockwise (key “D”), rotating counterclockwise 

(“A”) and thrusting (“W”), while shooting is achieved with 

the spacebar. Despite having only 4 actions overall, learning 

to play Coop Space Fortress is a challenging task. A major 

difficulty is that frictionless space is counterintuitive to 

operate in. First, the ship’s orientation is independent of its 

direction of flight. Moreover, the ship does not slow down 

on its own and no breaks are available. Instead, to slow 

down one needs to turn in a direction opposite the flight 

direction and thrust. Similarly, moving in a desired direction 

requires thrusting in a direction, whose vector sum with the 

flight velocity results in the desired flight path. Another 

challenge for players is learning how key press durations 

map to acceleration or rotation rate. 

In addition to learning how to control the ship, Coop 

Space Fortress poses the additional challenge of 

coordinating with a teammate, because unless each player 



does their task, no player will earn any points. For example, 

the player that acts as a bait needs to stay inside the hexagon 

and fly at a slow speed while the shooter is aiming and 

shooting. Note that if the bait accidentally exits the hexagon 

or is shot down by the fortress, the shooter becomes the bait 

and both players need to reset their current goals. Similarly, 

if the shooter does not succeed in commanding the ship with 

enough proficiency to destroy the fortress, the team will 

perform poorly. Finally, both players need to exit the 

hexagon for the fortress to respawn. As a consequence, the 

final performance in the game is an interaction between the 

skills of each player: If even one player struggled to 

performs his/her task, the common score would remain low. 

On the other hand, if each player performed at a reasonable 

level, the common score would increase. 

 

 
Figure 2: Players coordinating: one player acts as a bait, 

while the other is shooting at the fortress. The fortress, 

having shot at the first player, has its back exposed. Once 

the fortress is destroyed, the two players should exit the big 

hexagon so that the fortress respawns. 

 

Methods 

Participants 

Thirty subjects (13 males, mean age: 22.4 years, min age: 

18, max age: 35) from the Pittsburgh area, mostly students 

from Carnegie Mellon University and the University of 

Pittsburgh, participated for money, which included a base 

payment ($15) and a bonus payment (Mean: $2.03, Min: 

$0.10, Max: $11.85) based on their performance. Pairs of 

participants were formed either randomly, restricted by 

participants’ availability, or by asking participants to bring 

another participant to play with. Informed consent approved 

by the Carnegie Mellon University Institutional Review 

Board (IRB) was obtained from each participant. The data 

of the first pair of subjects was not included in the analysis 

as it was not completely recorded. Only 4 of the 28 subjects 

reported having played a similar game (2 reported 

Asteroids, while Snake and Minecraft were each considered 

similar by a single subject each) in the post-experimental 

questionnaire.  

Procedure 

The experiment consisted of 4 tasks: (1) a demographics 

questionnaire, (2) game instructions, (3) 20 3-minute-long 

rounds of playing Coop Space Fortress, and (4) a feedback 

questionnaire. A task needed to be completed by both 

participants before the subsequent one could be started. 

Participants were given a 1-minute break after 10 games. 

The overall experiment took between 1h15min and 1h20min 

of participants’ time.  

Demographics questionnaire. This questionnaire consisted 

of general demographics questions and of game-related 

questions. The general demographics questions inquired 

about the subject’s sex, age, ethnicity, and field of study. 

The game-related questions requested information about the 

subject’s video game experience, such as whether they ever 

played or currently play video games, the frequency of play, 

the platform they played on and the preferred genre of video 

games. 

Post-experimental questionnaire. The post experimental 

questionnaire elicited information about a subject’s 

experience during the experiment. It inquired what 

difficulties subjects faced during gameplay, what strategies 

they attempted and what strategy they finally settled on. 

Results 

All pairs of participants exhibited learning in the course of 

the 20 games of Coop Space Fortress. Figure 3 shows the 

average, minimum and maximum points obtained by subject 

pairs over the course of the 20 games. On average, teams 

monotonically increased their performance as the 

experiment progressed. Yet, there was a substantial 

variability in the amount of points achieved in a game.  

 

 
Figure 3: Game score progression over 20 3-minute 

games. Error bars represent minimum and maximum points 



achieved in a game. The mean score increases steadily, but 

the variability is large. 

A major reason for the large variability in score is the 

between-subject variability (Figure 4), which likely reflects 

prior experience with video games. Note that total points 

result from an interaction of the ability of both players: If 

one player is of low skill, the pair would not reach a high 

total score no matter how skilled the second player. The 

skewed distribution of average team score is likely a 

consequence of this interaction. A second major contributor 

to the large variability in score is the game-to-game 

variability within pairs of subjects (error bars in Figure 4).  

 

 
Figure 4: Average score per game for each of the 14 pairs 

of subjects. Error bars plot standard deviations. There is a 

large variability in skill between pairs of subjects. 

 

Points are determined to a large extent by the number of 

fortress kills and number of player deaths. Not surprisingly, 

as the game progresses, players become better at destroying 

the fortress and less likely to die (see Figure 5).  
 

 
Figure 5: Average number of fortress kills and average 

number of deaths over 20 3-minute-games. Error bars 

represent standard deviations. Players progressively become 

better at killing the fortress and avoiding crashing into 

obstacles. 

 

The primary cause of death in the beginning of the game 

is hitting the outer border of the game field (i.e., the large 

square), which reflects players’ poor navigation abilities. As 

players become more skilled at controlling the ship in the 

frictionless environment, they also almost never hit the outer 

border and their total number of deaths decreases 

substantially. 

 Pairs of subjects differ significantly in skill. Where some 

subjects are highly skilled at coordinating their actions and 

aiming accurately while moving fast and, consequently, are 

able to achieve a lot of kills, other subjects’ poor navigation 

skills force them to fly at a slow speed to avoid crashing 

into an obstacle, which leads them to reaching a lower 

number of kills per unit time. Moreover, these subjects are 

also typically worse at aiming and precisely navigating their 

ship to successfully coordinate with each-other.  

Individual Skill Acquisition 

Learning to navigate is a primary challenge in the 

frictionless environment. In addition to becoming better and 

pressing keys at durations that would lead to the intended 

ship state, players also learn to stay within reasonable 

ranges of their flight speed, because too high speeds easily 

lead to losing control over the ship and crashing (Figure 6).  

 

 
Figure 6: Speed distribution over 20 games. Players learn 

that excessive speed leads to loss of ship control and thrust 

less. The lines correspond to the 10th, 25th, 50th, 75th and 90th 

percentile. 

 

Another key component of the game is the ability to 

destroy the fortress, which requires learning how to aim and 

when to shoot. In the initial games, players shoot more 

frequently overall (Figure 7a) and need many more shots to 

achieve a fortress kill (Figure 7b). As players become more 

skilled, they asymptote towards needing 2 shots per fortress 

kill on average and reduce their total number of shots 

overall, which further increases their point total as each 

missed shot leads to a 10-point penalty.  

Cooperation Strategy 

No matter how skilled at flying the ship, aiming and timing 

a shot, players still need to coordinate their action in order 

to achieve a high score in the game. An efficient strategy 

would exploit the strengths of each player and allow players 



to learn quickly. As indicated by in-game variables and 

subject reports, the majority of teams settled on a 

cooperation strategy that required each player to adopt a 

specialized role, whereby one player acted as a bait, while 

the second one as a shooter. Specifically, out of the 14 

teams, in 9 at least 2/3 of all kills were committed by one 

player (see fraction of fortress kills per player in Figure 8).  

 

 
Figure 7: (a) Total number of shots and (b) fortress kills 

per shot over 20 games, averaged over 14 subject pairs. 

Error bars plot standard deviation. Teams become more 

efficient at destroying the fortress as the game progress. 

 

 
Figure 8: Total number of fortress kills for each player in 

each pair of subjects. The fraction of total fortress kills of 

the subject that committed more kills is displayed on top of 

each bar.  

Role adoption did not happen immediately. While initially 

each player was, on average, equally likely to shoot down a 

fortress, role separation slowly started emerging. By games 

5-6, the player acting as a shooter destroyed the fortress on 

average 70-75% of the time (see Figure 9). Note that there 

was a large inter-subject and inter-game variability, which 

was due to, first, the teams that did not adopt a role and, 

second, to poorly performing teams, for which the fraction 

of fortress kills varied more strongly.   

 

 
Figure 9: Average fraction of fortress kills per game of 

the player with more total kills over all 20 games. Error bars 

plot one standard deviation. As the games progress, players 

become more likely to adopt and stick to a role. 

 

In their post-experimental reports, 9 of the 14 pairs of 

subjects reported purposely adopting a role, 4 pairs of 

subjects did not report this or reported purposely alternating 

roles, and the subjects in one pair had conflicting intentions 

– one player attempted to act as a bait, while the second did 

not adopt the role of the shooter. Instead, his strategy was to 

try to get any positive score and then try not to die by the 

end of the 3-minute game. Moreover, each team followed 

their idiosyncratic cooperation path. For example, out of 

fairness considerations, the skilled player in one pair 

reported intentionally taking turns in acting as a bait and as 

a shooter until realizing that it is more efficient to stick to 

the same role.  

 Most pairs did not report why they adopted their role. Of 

the 3 that did, for 2 the shooters were the players that were 

better at controlling the ship and for 1, the bait was the 

player better at controlling the ship. Interestingly, 7 of the 

28 subjects also mentioned that one difficulty in playing the 

game was their inability to communicate with their partners, 

which they claimed would facilitate strategizing and role 

assignment.  

Finally, independent of their role, many subjects also 

reported trying fly on the opposite side of the fortress than 

their teammate. Evidence for this could also be seen when 

observing player’s trajectories, which for some teams 

revealed that the teammates stayed in opposite quadrants of 

the playing field.  



Discussion and Conclusion 

We presented the results of an experiment that investigates 

how subjects acquire skill in a dynamic teamwork task. The 

task, Coop Space Fortress, is a modification of the dynamic 

game Space Fortress that requires pairs of subjects to 

cooperate in order to earn points. All pairs of subjects 

learned to play the game, although there were large inter-

subject differences in ability. Subjects improved their game 

score both by becoming more skilled at controlling their 

ship and by typically settling on a role. 

Why are subjects adopting distinct roles? Adopting roles 

likely simplifies skill acquisition, because it is easier to 

learn the actions associated with a single task as opposed to 

with two separate tasks. Moreover, it is likely more 

efficient, because there are no switching costs. Yet, how do 

subjects decide who should adopt what role, given that they 

are not allowed to communicate? As hinted by the post-

experimental questionnaires, different roles might require a 

different amount of skill. Consequently, the more competent 

player should lean towards adopting the more difficult task. 

Interestingly, the three subject reports did not all agree on 

which role is more difficult. If subjects are equally skilled, 

random factors such as who happens to be targeted by the 

fortress first might turn the scales in one direction.  

One way of exploring these questions more deeply would 

be to extend the existing ACT-R model of Space Fortress 

(Anderson et al., 2019), which captures individual skill 

acquisition, to include shared mental models. One 

component of shared mental models are the game 

instructions, which are represented as operators. 

Additionally, the model of each player needs to represent 

the past actions of the teammate, which would then enable it 

to infer the teammate’s likely future actions. As suggested 

by Lebiere, Jengtsch, and Ososky (2013), one could rely on 

Instance-based Learning Theory (Gonzalez, Lerch, & 

Lebiere, 2003) to store instances of the teammate’s past 

actions and their outcomes. This final model would then 

allow us to trace out the skill acquisition trajectory in this 

cooperative task to better understand how people learn to 

work in teams. 
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