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Abstract

Humans are not mere observers, passively receiving the infor-
mation provided by their environment; they deliberately en-
gage with their environment, actively participating in the in-
formation acquisition stage to improve their learning perfor-
mance. Despite being a hallmark of human cognition, the
computational underpinnings of this active (or self-directed)
mode of learning have remained largely unexplored. Drawing
on recent advances in machine learning, we present a neural-
network model simulating the process of learning how to ac-
tively learn. To our knowledge, our work is the first neural-
network model of learning to actively learn. Extensive simu-
lations demonstrate the efficacy of our model, particularly in
handling high dimensional domains. Notably, our work serves
as the first computational account of the recent experimental
finding by MacDonald and Frank (2016) showing that prior
passive learning improves subsequent active learning. Our
work exemplifies how a synergistic interaction between ma-
chine learning and cognitive science helps develop effective,
human-like artificial intelligence.
Keywords: Active learning; deep neural networks; deep rein-
forcement learning; example generation

1 Introduction
Humans are not mere passive observers of their environment,
but actively search for information which helps to improve
their learning performance (Gureckis & Markant, 2012). For
example, we purposefully search for information online to
learn about a topic of interest, decide how to interact with an
unfamiliar device to learn its functionality, or ask questions
from people around us to learn more about them, helping us
to interact with them more effectively in the future. Relatedly,
past educational research shows that people learn better if the
flow of experience is under their control (e.g., Cherney, 2008;
Michael, 2006).

Although active (aka self-directed) information acquisition
is a fundamental and extensively studied topic in the educa-
tional sciences (e.g., Bruner, Jolly, & Sylva, 1976; National
Research Council, 1999), it has been comparably under-
studied in the psychological literature (Gureckis & Markant,
2012; Markant & Gureckis, 2014), with the psychologi-
cal processes underpinning this mode of learning remaining
largely unexplored (Gureckis & Markant, 2012). Experimen-
tal studies of human learning are predominantly passive in
that the experimenter tightly controls what information is pre-
sented to the learner on every trial.

A growing, but highly theoretical, research area in com-
puter science, called active learning, aims to formally charac-
terize the extent to which self-directed information acquisi-
tion can speed up learning (see Hanneke, 2014, for a survey).

Despite notable theoretical successes (e.g., Hanneke, 2016),
this research area has made little contact with the psycholog-
ical literature, primarily focused on highly abstract learning
problems amenable to theoretical investigations, and predom-
inantly investigated mathematically the performance gain ob-
tained by following specific active learning strategies, paying
no attention to the key problem of how learners learn their
active learning strategies in the first place.

Drawing on recent advances in machine learning (particu-
larly deep reinforcement learning), we present a novel neural-
network model of active learning aiming to simulate the pro-
cess of learning how to actively learn. By conceptualizing the
problem as a reinforcement learning task, our neural-network
model learns, during the passive phase of learning (wherein
the learner passively receives information from their environ-
ment) an effective active learning strategy allowing for faster
learning. As an instantiation of our active learning model,
in this work we focus on the task of category learning (aka
classification).

Our model has several notable features elevating its cog-
nitive plausibility. First, our model uses Markov-adjusted
Langevin (MAL) (Savin & Deneve, 2014; Moreno-Bote,
Knill, & Pouget, 2011; Nobandegani & Shultz, 2017, 2018),
a well-known gradient-based Markov chain Monte Carlo
(MCMC) method, allowing active search for maximally in-
formative examples in a computationally-efficient manner.
Notably, recent work in theoretical neuroscience has shown
that MAL can be implemented in a neurally-plausible manner
(Savin & Deneve, 2014; Moreno-Bote et al., 2011). MCMC
methods are a family of algorithms for sampling from a de-
sired probability distribution, and have been successful in
simulating important aspects of a wide range of cognitive
phenomena, e.g., temporal dynamics of multistable percep-
tion (Gershman, Vul, & Tenenbaum, 2012; Moreno-Bote et
al., 2011), developmental changes in cognition (Bonawitz,
Denison, Griffiths, & Gopnik, 2014), category learning (San-
born, Griffiths, & Navarro, 2010), causal reasoning in chil-
dren (Bonawitz, Denison, Gopnik, & Griffiths, 2014), and
cognitive biases (Dasgupta, Schulz, & Gershman, 2016).

Second, to improve its active learning strategy, our model
uses memory replay: the idea of accessing memories of mul-
tiple past events and integrating them to make useful predic-
tions about an action’s consequences (e.g., Káli & Dayan,
2004; Lengyel & Dayan, 2008; Momennejad, Otto, Daw,
& Norman, 2018). Mounting evidence shows that memory



replay supports reinforcement learning and planning (e.g.,
Ólafsdóttir, Bush, & Barry, 2017; Momennejad et al., 2018).

Finally, our model effectively adapts its learned active-
learning strategy as it gradually acquires more knowledge
about a learning task. This feature of our model is sup-
ported by mounting evidence suggesting that people adapt
their strategies according to their knowledge and environ-
mental conditions (e.g., Rieskamp & Otto, 2006; Hoffart,
Rieskamp, & Dutilh, 2018; Payne, Bettman, & Johnson,
1988; Bröder, 2003; Pachur, Todd, Gigerenzer, Schooler, &
Goldstein, 2011; Lieder & Griffiths, 2017).

Our paper is organized as follows. We begin by introducing
our neural-network model, and proceed to show the efficacy
of our model with extensive simulations. We conclude by dis-
cussing the implications of work for active learning research
and point out several fruitful lines of future work.

2 Neural Network Model
Our model consists of three neural network modules:

• Encoder Network (E-Net): This neural network module
takes a raw input xi and ouputs a corresponding state rep-
resentation si. As such, this module simulates perception
systems, mapping a stimulus to its representation in psy-
chological space.

• Classification Network (C-Net): This neural network
module takes state representation si and outputs a class la-
bel yi. As such, this module simulates information process-
ing cortices in the brain supporting concept categorization.

• Action-Value Network (Q-Net): For each representation
state si (corresponding to raw input xi), this neural network
module, parameterized by a set of weights θ, outputs an
affinity score Q(xi,θ) modeling the learner’s confidence in
choosing xi to boost learning. That is, a higher Q(xi,θ) cor-
responds to a higher confidence level. Crucially, the net-
work’s output, i.e., affinity scores, encodes information en-
abling our MCMC method, MAL, to actively search for ex-
emplars most helpful for improving the classification per-
formance of the C-Net.

When searching actively for an informative example x
which is likely to maximally improve learning accuracy, our
model samples from a target distribution π(x) given by:

π(x) ∝ exp(βQ(x,θ)) (1)

where θ denotes the parameters of the Q-network (i.e., the set
of network weights), and β ∈ R>0 is a damping factor.

By assigning higher probabilities to those examples x the
Q-network believes to maximally improve learning accuracy
(i.e., the classification accuracy of the C-Net), Eq. (1) ensures
that sampling from π(x) yields effective active learning.

To jointly train the E-Net, C-Net, and Q-Net modules of
our neural networks model, we use a novel variant of the well-
known Deep Q-learning Algorithm (Mnih et al., 2015); see

Algorithm 1. Our novel variant of the Deep Q-learning Algo-
rithm has the added advantage of incorporating MCMC in its
functionality (Algorithm 1, Line 8), ensuring that sampling
from the target distribution π(x) would likely yield informa-
tive examples x whose knowledge maximally improves the
learner’s classification accuracy, thus yielding effective active
learning.

Algorithm 1 MCMC-Enhanced Deep Q-Learning Algorithm

1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights θ

3: Initialize target action-value function Q̂ with weights θ− = θ

4: Initialize classifier C and encoder E with random weights wc and we, respectively
5: for episode = 1 to M do
6: Randomly pick an input x0 and encoded state representation s0
7: for t=1 to T do
8: With probability ε sample a random data point xt

9: Sample a new data point xt via MCMC with the affinity function:

π(xt ) ∝ exp(βQ(xi,θ))

10: Compute q0 = Q(st ,a0;θ) and q1 = Q(st ,a1;θ)

11: If q0 > q1, discard these data and go to step T +1. Otherwise, feed st into
C and update its parameters wc.

12: Do evaluation on C and obtain reward rt
13: Set st+1 = st , store transition pair (st ,at ,rt ,st+1) in memory D.
14: Sample minibatch of transitions (s j ,a j ,r j ,s j+1) from D
15: Set y j = r j + γmaxa′ Q̂(s j+1,a′, ;θ−)

16: Perform a gradient descent step on (y j−Q(s j ,a j ;θ))2 with respect to θ

17: For every NQ steps reset Q̂ = Q

The rationale behind Algorithm 1 is as follows. Line 1
initializes the memory replay capacity of our model. Lines
2-4 randomly initialize the weights of E-Net, C-Net, and Q-
Net modules. Crucially, by so doing, we assume no prior
knowledge on the part of the learner at the onset of learning.
Lines 5-9 (except Line 8) use MCMC to effectively guide the
active search toward informative samples, the knowledge of
which likely maximally improves learning performance. Line
8, for only a small fraction of times, performs random explo-
ration of the input space during the active learning phase. Be-
ing a standard approach in machine learning, Line 8 aims to
achieve an effective exploration-exploitation trade-off. Lines
10-12 compute the reward associated with each active learn-
ing episode by evaluating learning accuracy on a held-out
evaluation set: A higher reward implies that the learning per-
formance of our model has considerably improved by using
the samples recommended by the Q-Net module. Line 15 up-
dates the model parameters according to the reward obtained
in Line 12. Finally, Lines 12-17 (except Line 15) implement
the well-known Q-learning process widely used in modeling
model-free reinforcement learning in the machine learning,
psychology, and neuroscience literatures (Watkins & Dayan,
1992).

3 Simulations
In this section, we demonstrate with simulations the effi-
cacy of our neural network model in learning how to actively
learn. We tackle several learning tasks, ranging from simple
(the continuous-XOR Problem) to moderate (the Two-Spirals



Problem) to quite demanding (recognizing high-dimensional
images of hand-written digits).

To experimentally investigate optimal scheduling for the
active learning phase (i.e., the phase in which the learner be-
gins actively looking for informative examples to improve
learning performance), we simulate three types of active
learners: Early-Starter, Intermediate-Starter, and Late-Starter.
As a learner, by definition, has no control over the informa-
tion provided passively by the environment, and this passive
flow of information can continue indefinitely, we assume that
these three types of active learners are constantly engaged
in passive learning; that is, they are constantly engaged in
improving their learning performance using the information
that is passively, yet constantly, provided by the environ-
ment. The Early-Starter begins the active learning phase right
at the start, together with the passive learning phase. The
Intermediate-Starter begins the active learning phase with
some delay, at an intermediate stage of passive learning (i.e.,
when the learner has already acquired some knowledge of the
learning task of interest). Finally, the Late-Starter does not
begin the active learning phase until a very late stage of pas-
sive learning (i.e., when the learner has nearly mastered the
learning task at hand). As such, the Early-, Intermediate-, and
Late-Starters are constantly engaged in passive learning (us-
ing the information passively provided by the environment)
even during their active learning phase—they only differ in
terms of when their active learning phase begins.

Although being simultaneously engaged in both passive
and active learning (as our three Early-Starter, Intermediate-
Starter, and Late-Starter learners are) is a more psycholog-
ically plausible assumption—compared to having learners
who either only perform pure active learning or pure pas-
sive learning—the foregoing three learners, due to benefiting
from different amounts of information, do not provide a fair
characterization of the potential boost in learning accuracy
afforded by active vs. passive learning.

To provide a completely fair comparison between active

and passive modes of learning, and, furthermore, to theoret-
ically corroborate several experimental findings on the effi-
cacy of active learning, in Sec. 3.3 we simulate two new learn-
ers (the Active-Passive (AP) learner and Passive-Active (PA)
learner), allowing us to directly investigate how active learn-
ing fares against passive learning.

3.1 Continuous-XOR Problem
As our first learning task, in this subsection we consider the
continuous-XOR classification problem (see Fig. 1(a)). For
the passive learning phase, the training set consists of 1000
samples, generated uniformly at random, in the input square
[0,1]2, paired with their corresponding labels. The learner
receives these training samples in the form of batches of size
32. We implement the C-Net module by a 3-layer perceptron
neural network (Rumelhart, Hinton, & Williams, 1985).

a) b)

Figure 1: (a) The continuous-XOR learning task. the two
blue quadrants correspond to the positive category and the
two white quadrants correspond to the negative category, with
the two solid black lines indicating the boundaries of the two
categories. (b) The two-spirals learning task. The solid black
spiral corresponds to the negative category and the dashed
blue spiral corresponds to the positive category.

To quantitatively evaluate the efficacy of our model
in learning to actively learn, we simulate the Early-,

a) b) c)

Figure 2: Classification accuracy on a held-out evaluation set by the Early-Starter, Intermediate-Starter, Late-Starter, and a
purely passive learner. In each subfigure, the leftmost and the rightmost vertical dashed lines indicate the onset of the active
learning phase for the Intermediate-Starter and Later-Starter, respectively. Error bars indicate ± 1 SEM. (a) The continuous-
XOR problem. (b) The two-spirals problem. (c) The MNIST hand-written digits recognition task.
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Figure 3: Left: An intermediate learning stage of the Intermediate-Starter learner in the continuous-XOR task. Red and green
dots indicate examples that the learner classifies as negative and positive patterns, respectively. Right: The guidance provided
by the Q-Net module at the stage of learning indicated in the Left subfigure. By assigning higher affinity scores (indicated by
darker blue dots) to those regions of the input space about which the knowledge of the C-Net is lacking/incorrect, the Q-Net
ensures that, by actively selecting those darker blue dots, the learning performance of the C-Net module likely improves.

Intermediate-, and Late-Starter learners, and compare their
learning accuracy against a purely passive learner (as a base-
line condition); see Fig. 2(a). As a measure of learning ac-
curacy, we report percent of correct classification on a held-
out evaluation set of size 100. The evaluation set comprises
100 samples, selected uniformly at random from the input
square [0,1]2. Note that the training and evaluation sets do
not overlap—their intersection is an empty set.

As Fig.2(a) shows, the Early-Starter predominantly ob-
tains the highest learning accuracy; this performance is later
matched by the Intermediate-Starter when it begins its active
learning phase. Fig. 2(a) also suggests that any form of ac-
tive learner (Early-, Intermediate, or Late-Starter) generally
outperforms, in learning accuracy, a purely passive learner.

Next, we provide intuition into how the Q-Net module
helps the C-Net improves its classification accuracy, by ac-
tively guiding the C-Net module toward those input re-
gions the knowledge of which likely maximally improves the
learner’s classification accuracy. Fig. 3(left) depicts an in-
termediate learning stage of the Intermediate-Starter learner.
As Fig. 3(left) shows, our classifier, i.e., the C-Net module,
has already learned some knowledge about the task (that, the
top-left quadrant likely corresponds to the negative patterns),
but its knowledge about the decision boundaries is still lack-
ing. Fig.3(right) shows the guidance provided by the Q-Net
module at this stage of learning: By assigning higher affin-
ity scores (indicated by darker blue dots) to those regions of
the input space about which the knowledge of the C-Net is
lacking/incorrect, the Q-Net ensures that, by actively select-
ing those darker blue dots, the learning performance of the
C-Net module improves.

3.2 Two-Spirals Problem
As our second learning task, in this subsection we consider
the famously difficult Two-Spirals classification problem (see
Fig. 1(b)). For the passive learning phase, the training set
consists of 2000 samples (1000 samples per spiral), selected
uniformly at random, on the two input spirals. The learner
receives these training samples in the form of batches of size
32. As was the case in the previous subsection, we imple-
ment the C-Net module by a 3-layer perceptron neural net-
work (Rumelhart, Hinton, & Williams, 1985).

To quantitatively evaluate the efficacy of our model
in learning to actively learn, we simulate the Early-,
Intermediate-, and Late-Starter learners, and compare their
learning accuracy against a purely passive learner (as a base-
line condition); see Fig. 2(b). As a measure of learning ac-
curacy, we report percent of correct classification on a held-
out evaluation set of size 100. The evaluation set comprises
100 samples, selected uniformly at random on the two in-
put spirals. Note that the training and evaluation sets do not
overlap—their intersection is an empty set.

As Fig.2(b) shows, the Early-Starter predominantly ob-
tains the highest learning accuracy; this performance is later
matched by the Intermediate-Starter when it begins its active
learning phase. Fig. 2(b) also suggests that any form of ac-
tive learner (Early-, Intermediate, or Late-Starter) generally
outperforms in learning accuracy a purely passive learner.

3.3 Hand-written Digits Recognition Task
As our last (and hardest) learning task, in this subsection we
consider the problem of recognizing high-dimensional im-
ages of hand-written digits, using the MNIST dataset, a pop-
ular dataset in the deep learning community (Fig. 4). For the
passive learning phase, the training set consists of 60,000 ex-
amples of 28× 28-pixel hand-written digits. The learner re-



Figure 4: Hand-written digit examples from the widely used
MNIST dataset.

ceives these training samples in the form of batches of size 32.
We implement the C-Net module by a 6-layer convolutional
neural network (LeCun & Bengio, 1995).

Figure 5: A 28×28-pixel digit actively selected by our model
to improve learning performance. More precisely, the Q-Net
believes that the classification accuracy of the C-Net can be
improved by informing the C-Net that the shown 28× 28-
pixel image (as a whole) is a 5. Numbers on the vertical and
horizontal axes indicate pixel number.

Fig. 5 shows an example produced in the active learning
phase of our model; our model believes that, at this stage of
learning, informing the C-Net about this example (i.e., that
this 28× 28-pixel image, as a whole, belongs to the class of
Digit 5) significantly boosts the classification accuracy of the
C-Net module. To visualize the example depicted in Fig. 5,
we used a decoder neural-network module, allowing us to
map the corresponding representation from the psychological
space into the original 28× 28-dimensional space of hand-
written digits.

To quantitatively evaluate the efficacy of our model

in learning to actively learn, we simulate the Early-,
Intermediate-, and Late-Starter learners, and compare their
learning accuracy against a purely passive learner (as a base-
line condition); see Fig. 2(c). As a measure of learning ac-
curacy, we report percent of correct classification on a held-
out evaluation set of size 1000. The evaluation set comprises
1000 samples, selected uniformly at random from the origi-
nal MNIST test set of size 10,000. Note that the training and
evaluation sets do not overlap.

As Fig.2(c) shows, the Early-Starter predominantly ob-
tains the highest learning accuracy; this performance is later
matched by the Intermediate-Starter when it begins its active
learning phase. Fig. 2(c) also suggests that any form of ac-
tive learner (Early-, Intermediate, or Late-Starter) generally
outperforms a purely passive learner in learning accuracy.

Recently, MacDonald and Frank (2016) showed that
passive-first learning yields better learning performance com-
pared to active-first learning. More specifically, they showed
that a passive learning phased followed by an active learn-
ing phase yields better ultimate learning performance, com-
pared to the reversed order. As our three Early-, Intermediate-
, and Late-Starter learners are constantly engaged in passive
learning, even during their active learning phase, we cannot
directly investigate the key question of which sequence of
passive/active learning would ultimately yield better learning
performance.

Next, we directly test the effect of passive/active learn-
ing sequence on learning. To this end, a la MacDonald
and Frank (2016), we simulate two new types of learners:
Passive-Active (PA) and Active-Passive (AP). PA performs
passive learning during the first stage of his learning and then
switches into a purely active learning phase (wherein PA only
considers the samples recommended by the Q-Net module).
Conversely, AP performs purely active learning during the
first stage of his learning and then switches into a passive
learning phase.

Fig. 6 clearly shows the superiority of PA, in learning ac-
curacy, over AP. This finding theoretically corroborates, and
serves as the first computational account of, the experimental
finding by MacDonald and Frank (2016) showing that prior
passive learning improves subsequent active learning.

Additionally, our finding that, during the first block of
learning (Fig. 6, on the left-hand side of the vertical dashed
line), AP performs worse, in learning accuracy compared to
PA, is supported by the recent experimental study by Markant
and Gureckis (2014) revealing that the quality of active learn-
ing is sub-optimal early in learning.

4 General Discussion
Humans are not mere passive observers of their environment,
but actively search for information which helps to improve
their learning performance. Despite being a hallmark of hu-
man cognition, the computational underpinnings of this ac-
tive (or self-directed) mode of learning have remained largely
unexplored (Gureckis & Markant, 2012).



𝑡 19 = 5.4275
𝑃 < .001
Cohen’s 𝑑 = 1.2136

𝑡 19 = 13.9471
𝑃 < .001
Cohen’s 𝑑 = 3.1187

Figure 6: Investigating the effect of passive/active learning
sequence on learning. Passive-Active (PA) performs pas-
sive learning first and then switches to active learning. Con-
versely, Active-Passive (AP) performs active learning first
and then switches to passive learning. The vertical dashed
line indicates the onset of the transition from one mode of
learning to the other. Error bars indicate ± 1 SEM.

Building on recent advances in machine learning, particu-
larly deep reinforcement learning, we present a novel neural-
network model simulating the process of learning how to ac-
tively learn. Importantly, our neural-network model starts
from scratch, having no a priori knowledge of the learning
task, nor having any preset active learning heuristic(s) to
choose from or to follow. To the contrary, by conceptualiz-
ing the problem as a reinforcement learning task, our neural-
network model learns, during the passive phase of learning,
an effective active learning strategy allowing for faster learn-
ing. Extensive simulations demonstrate the efficacy of our
model, particularly in handling the high-dimensional learn-
ing task of MNIST hand-written digits.

Additionally, our model serves as the first computational
account of the recent experimental finding by MacDonald and
Frank (2016) showing that prior passive learning improves
subsequent active learning, and provides a mechanistic ex-
planation of why the quality of active learning is sub-optimal
early in learning, as experimentally demonstrated by Markant
and Gureckis (2014).

Markant and Gureckis (2014) also showed that passive
learners did not benefit from being “yoked" to active learn-
ers’ data. Future work should investigate whether our model
can also account for this finding.

There is a growing consensus in the artificial intelligence
and cognitive science communities that the two fields should
establish stronger ties, much like at the dawn of the two fields.
Several articles have recently called for bringing the fields
of artificial intelligence, cognitive science, and neuroscience
closer together (Hassabis et al., 2017, Gershman et al., 2015).
Pursuing this approach, our work, like the work of many be-
fore us, attests to the effectiveness of this idea by exemplify-

ing how a synergistic interaction between machine learning
and cognitive science helps develop effective, human-like ar-
tificial intelligence.
Acknowledgments: This works was supported by an operating
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Council of Canada (NSERC).
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