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Abstract

Toward the realization of cognitive agents that interact with
humans, this research attempts to integrate the cognitive ar-
chitecture ACT-R and a 3D game engine. We built a hierar-
chical architecture in which ACT-R and the game engine were
connected through a blackboard server, and we constructed a
cognitive model for searching the 3D environment. The con-
structed model reproduced behavioral differences by following
parameters of the cognitive model. We also made interesting
errors related to the brain-body connection. From these re-
sults, it is suggested that the method of cognitive modeling is
useful for constructing agents that imitate human behaviors in
3D space.
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Introduction
There are several approaches to the ultimate goal of build-
ing human or animal-like artificial agents. In the field of
human-agent interaction (HAI), researchers have attempted
to achieve this goal by focusing on interactions between ar-
tificial agents and human users. By considering intelligence
as emergent properties of interactions, researchers have de-
veloped physical robots and virtual agents that can interact
with humans, and they have conducted psychological ex-
periments to examine human reactions to the implemented
agents. Throughout these efforts, researchers have tended to
emphasize visual appearance (Minato, Shimada, Ishiguro, &
Itakura, 2004) or social relationships (Reeves & Nass, 1996)
rather than the internal representation and internal processing
of agents.

Meanwhile, the method of implementing human nature
into internal representations and processing them into arti-
ficial agents has been traditionally studied in the commu-
nity of cognitive modeling, which is a traditional research
approach that combines artificial intelligence researches and
psychological studies in the field of cognitive science. In this
community, cognitive models are assumed to be hypotheses
of a human’s internal processing, which are represented as
a computational system. Unlike other artificial intelligence
researches, the study of cognitive modeling focuses on repro-
ducing human errors, biases, and bounded rationality (Simon,
1996) found in psychological studies, which are evaluated by
simulation studies reproducing the results of psychological
experiments.

Despite dealing with similar topics, not much knowledge
has been exchanged between the two communities. For HAI

researchers dealing with human response to agents as the
main data, deep internal processing might not be of interest.
However, in the future, when HAI handles complicated and
long-term interaction series more often, the development of
agents that include internal processing, as dealt with in cog-
nitive modeling, will be required.

From the above recognition, the authors explored the de-
velopment method of an interactive agent that involved a cog-
nitive modeling approach. In particular, this paper aims to
discuss approaches toward this goal and research topics de-
rived from the developed approach. In the following sections,
we first discuss the approach of integrating HAI and cognitive
modeling along with previous findings in the related fields.
Based on this approach, we then present our system and a pre-
liminarily experiment to discuss its usefulness in HAI studies.

Integrating HAI and Cognitive Modeling
Cognitive Architecture
In the cognitive modeling community, the role of cognitive
architectures has become increasingly important. Cognitive
architectures are the basis for integrating methods developed
in individual studies of cognitive modeling. By accumulating
the findings obtained from individual model development, it
is thought that the structure of a universal cognitive system
can be approached (Newell, 1990). Several cognitive archi-
tectures have been developed so far. In the current research,
we focused on ACT-R (Anderson, 2007). ACT-R has been
developed in the community, where many researchers partic-
ipate. In addition, psychological and physiological studies
have been conducted to associate the modules and parameters
of the architecture with the brain structure (Anderson, 2007)
and physiological functions (Dancy, Ritter, Berry, & Klein,
2015). Although the original ACT-R is described in Lisp,
there are also implementations in multiple programming lan-
guages, including Java (Harrison, 2002) and Python (Stewart
& West, 2005), making it possible for it to be developed flex-
ibly depending on each individual developer’s environment.

Connect to the Virtual World
ACT-R has several modules that are not only related to in-
ternal processing, including goal, declarative, and imaginal,
but also used for interaction with the external environment,
including perception and motors. However, these interactive



modules do not include sensors that acquire physical signals
or actuators that interact directly with the physical world. In
other words, to construct an interactive agent using ACT-R, it
is necessary to prepare a separate body to be connected with
ACT-R. Regarding this problem, Trafton et al. (2012) imple-
mented ACT-R on a humanoid robot that was able to interact
with humans in the real world although its interactions are
limited because of hardware limitations.

Considering such implementation difficulties, the current
research adopts a virtual agent in a three-dimentional (3D)
world instead of physical robot. To build a 3D virtual world,
we used a game engine. Many game engines developed in
recent years include sophisticated physical engines and body
models, and they can build worlds with high reality. Recently,
several studies linking these 3D environments and ACT-R
have appeared. One study has developed a virtual humanoid
robot that determines simple actions, such as walking and
rotation, according to its perception of the 3D environment
(Somers, 2016), and another study has developed a virtual
robot that searches a maze environment in the virtual world
while constructing a map of its environment (Smart, Scutt,
Sycara, & Shadbolt, 2016). Based on the findings of the pre-
vious studies, the current research extends the scope of ap-
plication while developing a novel architecture that links an
ACT-R model with the virtual world.

Integrating Cognitive Architecture and the Virtual World
When connecting ACT-R to the virtual world, we need to
solve a problem derived from different time scales of the two
systems. In the virtual world, multiple independent events
usually proceed in real time. By contrast, the process occur-
ring within ACT-R is sequential. Therefore, for the integra-
tion of ACT-R and the virtual world, a framework such as the
Subsumption Architecture (Brooks, 1986), which organizes
sub-behaviors into hierarchical layers, is required to run pro-
cesses of different layers in parallel. In other words, the con-
trol of body movement in the virtual world occurs in the lower
layer, and decision making based on knowledge representa-
tion by ACT-R occurs in the upper layer. Both of these layers
operate in parallel while communicating at regular intervals.
The upper layer decides upon an action based on inference
with a knowledge base while inputting the perceptual infor-
mation acquired in the lower layer. The lower layer receives
the decision of the upper layer as a command and transforms
it to perform low-level body movement (walking, changing
posture, turning around, etc.).

System
Architecture
We implemented a prototype hierarchical system that con-
nects ACT-R (Python ACT-R) and a game engine (Unreal
Engine 4) via a blackboard server (Figure 1). The server
was implemented in C language, and had slots for storing ac-
tion commands from agents and slots for storing visual infor-
mation obtained from the environment. The value of each
slot was updated via periodic socket communication from

Figure 1: Architecture connecting ACT-R and the virtual
world.

the game engine or ACT-R. With reference to past research
(Somers, 2016; Smart et al., 2016), the data format used
for communication was unified to JavaScript Object Notation
(JSON).

According to Anderson (2007), the ACT-R modules corre-
spond to brain regions: the production module to the basal
ganglia, the visual module to the visual cortex, the motor
module to the motor cortex, the imaginal module to the pari-
etal lob, the goal module to the anterior cingulate cortex, and
the declarative module to the prefrontal cortex. Therefore,
in this architecture, we assumed that the server corresponds
to the brainstem connected to the brain model (ACT-R) with
the virtual body, which have several movement patterns. The
ACT-R architecture communicates with the server to mon-
itor the state of the body, and to send a command for the
next movement pattern, and to interrupt the current move-
ment when necessary.

Task and Model

To test the above architecture, we implemented an agent that
performs a simple environment search with the constructed
architecture. Figure 2 shows the 3D environment in which the
agent is located. A bird’s-eye view is shown in the upper left,
and a visual perspective of the agent is shown in the lower



Figure 2: Task environment. The upper left window shows a
view from a bird’s-eye view camera, and the bottom window
shows a view from the agent. The blue-colored objects are in
the agent’ s field of view. The white-colored objects are out
of sight.

right. The task of the agent in this environment is to collect
all the blue objects in as short a time as possible. However,
with this agent, we did not aim to search for the shortest path
connecting the positions of the objects. At each time point,
the agent repeated a forward chaining search toward the near-
est object.

Figure 3 is a flow chart showing the operation of the agent.
Before collecting each object, the agent rotates its body and
searches for objects in the environment. When the agent pays
attention to one of the objects, it perceives the distance from
it. When there are multiple objects in the field of view, one
of the objects is selected according to the saliency values set
for the object (Stewart & West, 2005). In the current agent,
the saliency values were determined by the size of the object
projected in the field of view, which corresponds to the dis-
tance from the agent. Based on the distance of the object to
which its attention is directed, the agent updates the “nearest
distance object” in the goal buffer.

At the blue triangle in Figure 3, the rule for searching for
objects in the environment (the searching rule represented in
the right-directed arrow from the triangle) conflicts with the
rule for finishing the search (the finishing rule represented in
the downward arrow from the triangle). Depending on the
result of this choice, two types of errors might occur: in-
correctly going to the non-nearest objects or continuing the
search even after all objects were checked. In ACT-R, the
frequency of these errors is controlled by conflict resolution.
When the utility (priority) of the searching rule is higher than
the utility of the finishing rule, the agent carefully checks the
nearest object. Otherwise, the possibility of the other type of
error (heading to the non-nearest object) is increased.

Experiment

We considered that one of the benefits of incorporating a cog-
nitive modeling approach to HAI research is representing the
individual difference between agents at a behavioral level.

Figure 3: Flowchart of the environment search model.

Recently, in the cognitive modeling community, the explo-
ration of model parameters that represent personal traits is
a major topic (Rehling, Lovett, Lebiere, & an B. Demiral,
2004; Anderson, Bothell, Fincham, & Moon, 2016). Using
parameters implemented in ACT-R, some researchers have
also constructed models of atypical personal traits, such as
depression (van Vugt & van der Velde, 2018) and autism
(Morita et al., 2017). Utilizing these studies, it is possible
to create various types of agent manipulating parameters that
can be implemented in the model and architecture. In the
case of our model, the agent that has a high utility value for
the finishing rule can be regarded as the reckless agent, while
the agent that has a high utility value for the searching rule
can be regarded as the careful agent.

To demonstrate the difference between the behaviors of
such agents, we conducted a simple experiment in which the
utility values of the two rules in Figure 3 were varied. We
prepared five conditions of 1:5, 2:4, 3:3, 4:2, and 5:1. The
numbers on the left and right indicate the utility values of
the searching rule and the finishing rule, respectively. In the
simulation, transient noise (s = 0.5) was added to each util-
ity value. The agent, whose walking speed was 450 cm/s,
searched the environment presented in Figure 4 ten times for
each condition. Figure 5 shows the completion time of each
condition in box plots. From this figure, we can observe dif-
ferences between the behaviors of each agent. Compared to
the careful agents (the box plots toward the right), the reckless
agents (the box plots toward the left) indicated better perfor-
mance. However, we are not intending to conclude on the su-
periority of reckless decisions. There is a possibility that this



Figure 4: Arrangement of objects in the experiment.

result may change depending on the simulation settings (the
map or the parameters of the agent such as walking speed).
The key point is that by manipulating the parameters of the
ACT-R model, we can easily represent a variability of the be-
havior in the 3D environment.

In addition to the above quantitative result, we found that
the qualitative result indicating the potential of our architec-
ture to replicate human-like behavior. In our architecture,
the game engine and ACT-R regularly communicate via a
blackboard server (Figure 1). During this process, the ACT-R
model sometimes overlooked the update from the blackboard
server due to mismatches between the communication rate
and movement speed of the virtual agent. When such a com-
munication error occurred, the current agent typically failed
to be aware of finishing its own behavior keeping searching
for the object even though it has already gotten (Figure 6).
From an engineering point of view, such an error is regarded
as a bug that should be fixed. However, in cognitive model-
ing or when building a human-like agent, we should evaluate
such agent behaviors based on their correspondence to human
behaviors. With regard to this error, we can find similar errors
in the literature, in ecological psychology, called microslips
in which an erroneous action is initiated but aborted (Reed &
Schoenherr, 1992). The similarity between the human error
pointed out in this psychological study and our agent shows
that there is a certain validity in the structure of this architec-
ture.

Conclusion
In this research, we constructed a mechanism to integrate
cognitive modeling with the 3D virtual world. This was not
the first time that it has been attempted to connect a game en-
gine and ACT-R cognitive model. However, our architecture

Figure 5: Results of the experiment.

Figure 6: Schematic presentation of microslip error.

was different from the previous research in using a black-
board server (Figure 1) and not connecting the ACT-R and
game engine with peer-to-peer. Due to this mechanism, novel
agent behaviors, such as the microslip mentioned at the end
of the previous section, emerged, and these were caused by
ACT-R and the game engine operating in parallel.

Thus, the architecture constructed in this research may lead
to the modeling of cognitive processes that have been over-
looked in previous research. Many of the conventional cog-
nitive models do not have a body and deal with the problems
of a simple system closed in the brain. By giving a body in
the virtual space to the cognitive model, there is a possibility
of simulating important phenomena related to the interaction
between the body and brain. In addition, the architecture of
this research also has advantages in terms of being extended
to a multi-agent environment. Considering this advantage, in
the future, we plan to model interactions between groups with
multiple embodied agents in the virtual world.

In addition, visualization of the virtual world using game
engines has the advantage of making it possible to interact
with agents operating using the ACT-R cognitive model and
human users. The advantage of such interactive agent de-



velopment with ACT-R is systematic diversion of research
knowledge accumulated in cognitive modeling research. Fur-
thermore, visualizing the behavior of interpersonal agents in
the virtual world may also lead to a new methodology of vali-
dating hypotheses behind the implemented internal process in
a cognitive model. In this way, the integrated approach that
this research aimed for may lead to new HAI and cognitive
modeling research methods.
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