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Abstract 

In this publication an adaptation of the ACT-R visual module 
is presented based on the SEEV theory on attention allocation. 
By including this theory into the methodology of how the 
visual module works, a top-down control of attention guidance 
and bottom-up processing capabilities were implemented. The 
visual field of the model shifts according to current fixations, 
mimicking human behavior. Finally, we introduce a possibility 
of linking this new visual module with environmental sensors 
of a vehicle to generate data for the model without the need of 
a modeler generating environmental data. As of now the 
interpretation of the environment could be visualized 
differently depending on the understanding of the modeler. 
Now, the modeler benefits by having a time efficient 
reproducible source for data generation for driver modeling. 

Keywords: ACT-R; Visual Module; SEEV theory; External 
Sensory Data; Driver Modeling  

Introduction 

Cognitive architectures, which are based on theoretical 

constructs with the objective to model real-world thoughts 

and interactions, offer a possibility to abstract human 

cognition. While these architectures deploy a method to test 

applied tasks, these tasks are also required to validate the 

implemented theory (Russwinkel, et al., 2018). At the same 

time, with abstraction, there is also a loss of information 

when forcing data into the required format of these cognitive 

architectures to create cognitive models. ACT-R (Anderson, 

et al., 2004), as an established cognitive architecture, offers 

the abovementioned complexity of separated modular 

modalities. Especially the visual module, as a main modality 

delivering information to most cognitive models and 

interpreting the environment, limits the applied tasks 

significantly. Currently, visual information is presented in a 

GUI (Graphical User Interface) and needs configuration. As 

the modeler dictates the position and characteristics of 

objects in the GUI, subjective interpretation of these 

characteristics can make the environment of a model 

inherently differently. This can affect the outcome of the 

model. 

A task that has been addressed manifold in research is the 

modelling of the driving task and the ambition to model 

driver behavior (Salvucci, 2005; Salvucci & Taatgen, 2008). 

This task mainly consists of knowledge and experience that 

is applied with motoric outputs based on visual and auditory 

information. Therefore, multiple ACT-R modules are 

required to interact during modeling. Especially since 

(conditional) automated driving, Level 3, is prospected in 

near future, effects of attention and distraction (Haring, 

2012), of driver drowsiness (Gunzelmann, et al., 2011), 

multi-tasking (Kosanke & Russwinkel, 2016) as well as 

insights on non-driving related tasks (Salvucci, 2009) have 

been modeled. Ultimately, combination of a human driver 

model in ACT-R with the possibility of a direct connection to 

a vehicle, to possibly adjust vehicle behavior according to the 

needs of the driver, is a promising vision. This proposal is 

similar to the ACT-Droid approach (Doerr, et al., 2016), in 

which a direct connection of a computational model in ACT-

R to a system is configured. Also, the interpretation of 

simulation data through computer vision, ACT-CV 

(Halbrügge, 2013), has been presented as a means to develop 

visual information for ACT-R. While ACT - Droid connects 

to a self-contained system or interface, our new approach 

utilizes the vehicle as a means to monitor the real-world 

environment similarly to ACT-CV. Secondly, through the 

connection with the vehicle it is possible to model driver 

behavior and direct results to driver assistance systems, to 

increase system acceptance and possibly assist drivers in 

difficult situations. 

Building rich environments with the default ACT-R device 

system is difficult. Standard ACT-R provides too few visual 

object types, making it near impossible to build real world 

scenes without defining a notation for object connotation like 

mapping colors to semantic meaning. This makes models 

hard to understand and extend. The difficulty of designing 

interfaces within the ACT-R toolchain can be bypassed by 

using external tools to generate the world around the agent or 

the interface, such as with abovementioned ACT-Droid. Thus 

far, the implementation of vehicle environments is tedious. 

Additionally, the environmental configuration underlies 

personal interpretation of the modeler and one task can be 

programmed in multiple ways, yielding the possibility of 

different calculated results. This drawback is addressed in the 

present concept by introducing a new adaptation of the 
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ACT- R visual module. Additionally, a framework for the 

connection of ACT-R to vehicle data is presented, in which 

the data of external sensors are interpreted and scaled to allow 

to feed the visual module with information, evading the 

necessity to model the environment. A detailed description of 

this process is presented in this publication. 

A new vision module – SEEV-VM 

Perceiving real world scenes is a hard task for a cognitive 

model. It requires the model to comprehend the scene, extract 

meaning and make assumptions about location and type of 

information. There is a lot of uncertainty involved, where to 

precisely find requested information or whether it is present 

at all. Henderson (2003) identified three different kinds of 

knowledge that are involved in a gaze guiding mechanism. 

That are: episodic scene knowledge, remembering where 

objects were seen lastly or, on a long term, where to expect 

task-relevant information, but about a specific scene. Scene-

schema knowledge provides generalized semantic and 

context information, e.g. we know how car interfaces look 

like and can easily orientate oneself in a yet unknown car 

cockpit. The third is task-related knowledge. This type of 

knowledge includes learned fixation sequences, e.g. 

monitoring traffic before and while changing lanes with a car. 

They have in common that they encode a location with a 

meaning. This idea, also present in the works of (Oliva, et al., 

2003), constitutes the foundation of our proposed visual 

module: SEEV-VM.  

The SEEV approach (Wickens, 2015) can predict a scan path 

in rich visual environments like airplane cockpits. The visual 

workspace consists of displays, also called areas of interest 

that attract attention and contain task relevant information. 

Every display is defined by four numeric factors: salience, 

effort, expectancy and value. The SEEV algorithm decides 

which display will be attended by summing up factors for all 

displays and comparing the results. This approach combines 

bottom-up and top-down factors. Wickens (2015) describes 

salience as the physical properties of a display that increase 

its attraction for the human eye, e.g. high contrasts or bright 

colors. Effort correlates to the distance between the target 

display and the current point of fixation. Expectancy and 

value form the top-down factors: value describes the 

relevance of information in a display and expectancy the 

frequency with which information updates. I.e. a high 

frequency and a high value display will be attended more 

often, because its information is important and changes 

frequently, therefore needs to be sampled often.  

The proposed visual module (SEEV-VM) is based on the 

ideas of the SEEV theory and existing vision modules like 

EMMA (Salvucci, 2000) and PAAV (Nyamsuren & Taatgen, 

2013). EMMA extends ACT-R with realistic eye movements 

by integrating physiological constraints of the human eye. 

PAAV extends the attention guidance mechanism itself. It 

integrates bottom-up factors into the existing top-down 

control of attention. 

The SEEV theory provides not only an algorithm for guiding 

visual attention, but also a representation for top-down 

control of the attention guidance mechanism. Information is 

expected to be found in certain places in the environment. In 

the SEEV-VM these locations are called areas of relevance 

(AoR) to differentiate from AoI in eye tracking experimental 

set ups. Both PAAV and SEEV integrate top-down and 

bottom-up processing into their algorithms, both use numeric 

values and calculate an attraction value (SEEV) or an 

activation value (PAAV). It is a reoccurring idea to fuse all 

factors into a single parameter to base an attention selection 

decision on. The SEEV-VM module uses a very similar 

approach and calculates a guidance value for each visual 

object and AoRs.  

The algorithm selects an object to attend based on the 

guidance values, see Figure 1, then shifts attention towards 

this object and starts encoding. After encoding, the algorithm 

immediately repeats the process, searching for an object to 

fixate. This mechanism runs in an endless loop without 

directing instructions through the buffer interface. It is 

assumed that the human eyes always look at something and 

provide information about the visually perceivable 

environment. Only when the production system accesses this 

information, which is using the vision module buffer content, 

attention is directed at the given object. 

Arbitrary visual objects  

SEEV-VM supports two different modes of operation: In the 

traditional mode of operation, the SEEV-VM module 

manages visual objects with function calls. Functions can 

create, modify (also their semantic meaning, e.g. a traffic 

Figure 1: For the module to work, it needs some input data. In this case an annotated camera image. The field of 

view (red) does not span the entire image. The agent only perceives the color-coded parts, i.e. road surface is 

invisible to it. The first step is to setup a world simulation and stream data into the ACT-R runtime.  

The cognitive model manages AoRs (orange). Together they move attention to a car in front (white). 



light can turn green) and remove objects (removing an object 

makes it invisible to the vision module). The attention 

guidance algorithm works the same in both modes. The 

difference is, that in this mode the algorithm iterates over all 

objects, checking whether an object is inside the current field 

of view and calculating attraction values. This mode does not 

support occlusion of objects, if an object is added, it should 

be visible. For very complex 3D environments, another mode 

was implemented. In the pixel-based mode the module 

receives a semantically annotated map of the world that 

matches the current field of view of the agent. The external 

data source produces images (like in a video game), but 

instead of pixels with color values, every pixel contains a 

numeric object identifier. Sensors, such as vehicular external 

sensors, with internal object identification algorithms can 

provide this information.  

As of the time of implementation, the ACT-R architecture did 

not provide a standardized and easy way to integrate external 

data into the simulation runtime. Hence, the SEEV-VM 

module provides its own communication protocol. The world 

simulation is linked bidirectional with the vision module, as 

the SEEV-VM module interacts directly with the world by 

moving the field of view.  

The SEEV-VM module allows a modeler to define visual 

objects that are not bound to a limited number of categories 

such as geometric forms, text or buttons. A visual object can 

be everything, ranging from a smartphone display or other 

complex objects to its content like icons or lines. The result 

of the encoding process is a chunk that is placed into the 

vision modules buffer. This chunk holds characteristics that 

the modeler can define and physical properties of the object 

(i.e. location and dimension). The chunk can contain 

information like distance to the object or other information 

that is expected to be processed or calculated by the vision 

system. Figure 1 displays an exemplary scenario of a head-

mounted camera with an automatic object recognition that 

can be passed to the SEEV-VM module. The module can 

process every color-coded object. The red dot is the center of 

fixation, the red box the field of view. Orange boxes show 

areas of relevance. In the example, the vision system manages 

AoRs to monitor the traffic in front of the car, the instruments 

and a display for a non-driving related task.  

The encoding time is the amount of time the vision system 

fixates an object until it can place its chunk into the buffer. A 

modeler can also choose to set this value. This allows the 

module to adapt to the scope of the simulation. The 

environment can be made up of several displays that take 

longer to encode but also provide more information; similar 

to SEEV approach it takes one long fixation to sample a 

display. Or, in a more detailed simulation, the content of each 

display is modelled, these items take less time to encode but 

only provide their information (their semantic chunks). That 

means to sample all information of a display, every object of 

this display needs to be attended. 

In order to enable the module to function properly, the 

modeler must define salience values of objects. Unlike the 

PAAV module salience is not calculated by the module, 

because not every object has features like color or shape. It’s 

optional to specify these features. The vision system can be 

instructed to look for certain features, but there is no 

guarantee that only objects that match are attended. This 

works very similar to the PAAV module: feature selection is 

one factor of many that form the guidance value. 

Figure 2: Same situation as in figure 1. Field of view is red, AoRs are orange, additionally relevance values of every AoR 

are shown next to the AoR. Numbers show the relevance before attention is shifted; red dot shows the result of the attention 

shift. In the example, attention is directed at the white car in front, reducing relevance value of its AoR to 0.7. After the 

white car was encoded, the attention guidance mechanism starts again. Inhibition of return prevents the module from looking 

at the same object again, hence the orange car is attended. On the last part, a production fired that increases relevance of the 

instruments AoR. Based on salience and effort influences, attention is directed at the speed indicator instead of other 

instruments. 

 



Using SEEV-VM 

The SEEV-VM requires an external world simulation, the 

device interface is no longer used for vision. This world 

simulation can use many ways to produce semantically 

annotated maps or lists of objects, that are then 

communicated with the ACT-R environment and translated 

to function calls (adding, modifying or removing objects). 

E.g., the world simulation can use computer vision 

algorithms to annotate camera images or be a virtual world 

entirely, similar to ACT-CV (Halbrügge, 2013).  

The communication protocol guarantees that both cognitive 

model and world simulation are synchronized. Hence, 

besides object extraction, the simulation must allow to stop 

and advance simulation time. 

On the cognitive model side, the visual organization buffer 

allows to instruct the visual system by providing chunks to 

create, modify or remove areas of relevance and to set a 

feature search vector. AoRs have a location and a dimension, 

they form a rectangular space (orange AoRs in Figure 2), 

have a relevance value and two additional values that 

correspond closely to the expectancy value of the SEEV 

theory. It is possible that an AoR encompasses multiple 

objects. To sample all information inside this AoR all objects 

need to be attended. Unlike the original SEEV approach, 

relevance (in the SEEV approach called value) here changes 

over time: once an object is attended, relevance of its AoR is 

reduced (or consumed) for a certain amount of time (based 

on its refresh rate). The consumption value relates to the 

number of expected objects, the refresh value to the 

frequency with which changes are expected. These values are 

optional. By setting these values to zero the module will not 

update relevance values of AoRs, but relevance values can be 

updated via the production system. The SEEV approach is an 

abstraction of the whole cognitive process, in ACT-R this 

process is subdivided into smaller, parallel executable 

processes. Therefore, it is possible to update relevance of an 

AoR once all information is sampled. This is done by 

defining productions that count the number of objects in a 

given AoR. After a certain number of objects attended, 

another production reduces this AoRs relevance via the visual 

organization buffer. Later a production fires that increases 

relevance value again. This approach is more akin to the 

ACT-R way of modelling cognition. And requires a very 

detailed modelling of involved processes. 

The attention guiding functionality works in three steps: (1) 

a guidance value is calculated for every visual object and 

AoR by adding up salience, relevance, feature weights, 

inhibition of return and effort. (2) A guidance value race 

determines the object with the highest guidance value. This 

allows the agent to look at areas that are not currently in the 

field of view, e.g. to look at the passenger’s door mirror (see 

Figure 2). (3) An attention shift is then initiated, it follows the 

EMMA model in three stages: (1) preparation of a saccade, 

(2) execution of the saccade and (3) encoding of the object. 

Figure 3 shows the workflow of the module. 

Attending an AoR forms a special case, which allows the 

agent to look at an area that is not currently visible. Because 

there is no object to encode, the module immediately starts to 

search for objects to attend. The algorithm can initiate a head 

movement, as the default motor module of the ACT-R system 

cannot move the agents head, the vision module simulates 

head movements. A shift of the field of view (red bounding 

box in Figure 2) simulates this movement. In some cases, a 

movement of the whole body is needed to look at certain 

locations; in these cases, the module assumes that it can 

control the body entirely. This allows the model to visually 

perceive rich 3D environments regardless of these missing 

functionalities. SEEV-VM uses parameters to control when 

to make a head or body movement and how fast these 

movements are executed.  

Vehicular data generation 

As described previously, complex 3D environments are 

difficult to model and the proposed second mode SEEV-VM 

can receive semantically annotated maps. Modern vehicles 

Figure 3: Process diagram of the attention guidance algorithm. The algorithm starts with a recalculation of relevance and 

inhibition. Inhibition decays over time and relevance increases over time. In the example, an object won the guidance value 

race, that is a comparison of all guidance values, and an eye movement is necessary to reach its location. 
 



are equipped with multiple internal and external sensors to 

allow advanced driver assistance systems to function. This 

information is available within a vehicle on CAN-Bus (ISO 

11898-1:2015), Ethernet or FlexRay (ISO 17458-1:2013, 

2013) networks for microcontroller communication and 

holds semantic information about surrounding objects. 

Depending on the sensor and data definition, multiple value 

signals are calculated and retrievable within these networks. 

Sensor types that can observe and classify objects in the 

proximity of the vehicle are radar, lidars and cameras. These 

sensors function as the ‘eyes’ of modern vehicles to provide 

environmental data for assistance systems (e.g. Adaptive 

Cruise Control, Lane Keep Assist and Emergency Brake 

Assistance). 

Typically, these sensors are capable of identifying several 

vehicles, objects or pedestrians during driving, similarly to 

the way ACT-R models these objects in its environment. 

Apart from the classification, precise speed, distance and 

trajectories are calculated as properties of the objects. This 

information is communicated within the networks and 

updated rapidly (approximately 0.01-0.1 seconds). In order to 

model driver behavior, it would be ideal to make this data 

available to ACT-R. This has three major benefits: (1) 

modelling of environmental objects would be automated and 

several different scenarios could be analyzed through the 

proposed second mode of SEEV-VM operation. (2) Obtained 

data would only vary depending on sensor setups and are 

reproducible (attributes are not defined by modelers). (3) A 

framework could work with offline data after drives or online 

with a model predicting driver behavior. 

 
Figure 4: Adapted ACT-R framework with direct link to 

vehicle and modified visual module. 

 

The adaptations of the proposed data generation enable 

interpretation of environmental data through sensors of a 

vehicle, airplane or robot, as presented in Figure 4. In this 

form, the bus data is interpreted and is available as CSV-files 

(Comma Separated Values). These CSV-files include the 

relevant data in lists with timestamps and the values of sensor 

data (e.g. distance to object, object type, speed of object). 

Data is interpreted through a parser to translate the data into 

the three function types included in the SEEV-VM (i.e. add-

visual-object, modify-visual-object and remove-visual-

object). The adapted ACT-R framework does not connect the 

motor module to the environment and motoric actions do not 

alter the environment. This is because the ACT-R motoric 

module would need an upgrade to allow for extensive motoric 

control needed during driving. However, if an online 

interface were implemented the possibility of connecting 

ACT-R to a prototypic vehicle would be possibly. 

Nevertheless, the integration of external sensory data does 

allow simpler modeling of real-world environments with 

reproducible interpretation of data according the SEEV 

theory. 

Discussion 

SEEV-VM is far from finished, there are still some open 

issues. The module does not support some features found in 

the default ACT-R vision module. E.g. it has no explicit 

attended field but introduces inhibition of return to reduce 

changes to fixate the same object repeatedly. SEEV-VM aims 

to offer a less precise way to instruct visual attention, giving 

the model more flexibility to react to variations and dynamics 

in known situations. As an example, the model does not know 

precisely where a traffic light is located, but it knows where 

to expect one. Combined with bottom-up processing 

capabilities the vision system will find a certain traffic light. 

The productions can work with a special chunk for the object 

type of a traffic light, reducing the burden to share 

productions with different models. It is possible to establish 

a library of object chunk definitions.  

Arbitrary vision chunks not only increase maintainability 

of a model, but also allow vastly different simulation 

environments and affordances to connect to an ACT-R agent. 

This flexibility might also have a downside, as it does not 

restrict modelers to plausible models: A vision object chunk 

can contain unrealistically complex information. 

In a future version, we plan to standardize the 

communication protocol to provide an easy to use API to 

establish a connection between SEEV-VM and simulation 

environments. It can be envisioned that many different 

modules (motor, audio) connect to the same simulation 

server, that delegate commands and information between 

agent and world. JNI (Hope, Schoelles & Gray, 2014) already 

provides this functionality and could be modified to support 

SEEV-VM. 

The module has not yet been validated. The SEEV model 

works well (Wickens, McCarley & Steelman-Allen, 2009), 

but it’s less detailed than its SEEV-VM adaption. In SEEV-

VM attention is directed at objects and not at displays that 

could span entire scenes (e.g. rear window of a car). The 

module is able to work in the same way, but in regard to ACT-

R, cognition is modelled on a finer resolution, requiring 

chunks of information at a certain point in time. The next step 

will be to conduct a validation study to evaluate SEEV-VMs 

approach to modelling visual attention. 

Predicting a scan path is essential in determining whether 

unexpected visual stimuli were recognized or not. In the 

module, it is very easy to guide attention towards a visual 

location (not necessary towards an object) by setting 



relevance of an AoR. However, finding plausible relevance 

values is not trivial. Relevance and expectancy (consumption 

and refresh values) can be seen as results of a learning 

process, allowing to model experts and novices. In a future 

work, SEEV-VM has to be validated and we expect to change 

some parts of the implementation like the default set of 

parameters. While the SEEV-VM benefits from large 

flexibility, the subsymbolic parameters need to restrain it in 

such a way that realistic behavior is generated. 

Conclusions 

The SEEV-VM module adaptation offers unique 

development by incorporating the SEEV theory as a 

foundation for visual attention in ACT-R. While the modeler 

holds the task of attributing the salience of objects in the 

environment, SEEV-VM enables ACT-R modes to perceive 

semantically annotated real-world scenes. By integrating top-

down and bottom-up processing it allows the model to react 

to unexpected events. Setting up AoRs is an easy and abstract 

way to instruct the visual system, thereby allowing the model 

to see unexpected things or process objects that are not 

explicitly represented by productions.  

The current substantial effort necessary of modeling visual 

information in ACT-R needs to be improved to increase the 

applicability of cognitive modeling to real-world usability 

testing and to integrate it into applications. Especially tasks 

and environments that require a lot of visual information are 

thus far difficult to analyze with ACT-R. This includes the 

automotive sector in which rich environments can influence 

drivers in a plethora of facets. The SEEV-VM module 

adaptation provides the possibility of connecting vehicular 

BUS-communication to ACT-R and therein deliver semantic 

data from the surrounding. Multiple and quickly changing 

scenes are far easier to incorporate into cognitive models, 

offering the possibility of modeling human-machine-

interaction in the vehicular context. 
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