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Abstract

Our long-term research goal is the development of a cognitive
theory for adequately modeling human reasoning tasks. The
theory should be computational and on the other hand com-
prehensive. The Weak Completion Semantics (WCS) seems to
be a good candidate, as it has previously shown to adequately
model a wide range of human reasoning tasks. By means of
human spatial reasoning, we show here that the WCS can fully
cover all three stages of reasoning that have been suggested
by the preferred mental model theory. The contribution com-
prises aspects within the area of Computer Science and Psy-
chology. Through the formal process of modeling, in partic-
ular through the computation of alternative models within the
variation phase, we have gained new insights and put forward
assumptions that need to be verified.
Keywords: Computational Theory, Spatial Reasoning, Pre-
ferred Mental Model Theory, Weak Completion Semantics

Introduction
Our long-term research goal is the development of a cognitive
theory for adequately modeling human reasoning tasks. The
theory should be computational in that answers to queries can
be computed. The theory should be comprehensive in that
different human reasoning tasks can be modeled by the theory
without changing the theory.
Currently the Weak Completion Semantics (WCS) is a very
good, if not the best candidate for such an comprehensive and
computational cognitive theory. The WCS is based on ideas
initially proposed by Stenning and van Lambalgen (2005,
2008), but is mathematically sound: As Hölldobler and Ken-
cana Ramli (2009) have shown, the three-valued logic used
in Stenning and van Lambalgen (2008) is inadequate for the
suppression task. Surprisingly, the suppression task can be
adequately modeled if the three-valued Łukasiewicz (1920)
logic is used. Since then, the WCS has been applied to var-
ious human reasoning tasks (cf. Wason, 1968; Byrne, 1989)
summarized in Hölldobler (2015), has outperformed twelve
cognitive theories considered by Khemlani and Johnson-
Laird (2012) in syllogistic reasoning (Oliviera da Costa, Di-
etz Saldanha, Hölldobler, & Ragni, 2017), and can be im-
plemented as a neural network (Dietz Saldanha, Hölldobler,
Kencana Ramli, & Palacios Medinacelli, 2018).
Given a human reasoning task, the first step within the WCS
is to construct a logic program representing the task. The
construction of these programs is based on several princi-
ples, some of which are well-established like using licenses
for inferences, existential import (Johnson-Laird, 1983; Rips,

1994; Stenning & van Lambalgen, 2008), or Gricean im-
plicature (Grice, 1975), whereas others are novel like un-
known generalization (Oliviera da Costa et al., 2017). If in-
terpreted under the three-valued logic of Łukasiewicz (1920),
the programs have a unique supported model, which can
be computed by iterating the semantic operator introduced
by Stenning and van Lambalgen (2008). Reasoning is per-
formed and answers are computed with respect to these mod-
els. Skeptical abduction is applied if some observations in the
given human reasoning task can not be explained otherwise.

Human Spatial Reasoning
In this paper we apply the WCS to spatial reasoning. Suppose
you were given (in this sequence) the following information:

The Audi is left of the Beetle.
The Audi is left of the Cadillac.
The Cadillac is left of the Dodge.

Given these premises, what, if anything, follows for the Bee-
tle and the Dodge? A psychological finding by Ragni and
Knauff (2013) is that many human reasoners do construct the
preferred (mental) model a b c d.1

Based on the spatial representation of this preferred model, a
reasoner could infer that the Beetle is to the left of the Dodge.
In fact, most human reasoners seem to do this. Yet, the pre-
ferred model is not the only model for the given premises. If a
reasoner would construct these alternative models he/she may
find a counter-example and may answer that nothing follows.
Under First-order Logic, there might be more than one model
for the given premises of the task, letting unspecified which
one to choose as the preferred one. Ragni and Knauff (2013)
presented an algorithmic approach – the preferred mental
model theory – to construct and manipulate mental models.
Based on this theory, Dietz, Hölldobler, and Höps (2015)
modeled the preferred models for human spatial reasoning in
the WCS. They represented the relations among objects, tran-
sitivity properties, and the first-free-fit-principle suggested
by Ragni and Knauff (2013) as logic programs and showed
that the supported model in the WCS corresponds to the pre-
ferred mental model.
However, the approach of Dietz et al. (2015) is restricted to
computing and reasoning with respect to the preferred mental
model and does not cover the inspection and variation phase

1a denotes Audi, b Beetle, c Cadillac, and d Dodge.



reported by Ragni and Knauff (2013). More generally, it does
not cover the flesh-out process after the initial mental model
has been constructed. The goal of this paper is to show that
the whole process – construction of an initial mental model,
inspection, and variation – can be modeled by the WCS in the
context of spatial reasoning.

Programs
Here, we consider programs similar to the ones introduced
by Dietz Saldanha, Hölldobler, and Pereira (2017). A (con-
textual logic) program is a finite set of (positive) facts of the
form A← >, (negative) assumptions of the form A←⊥ and
rules of the form A ← L1 ∧ ·· · ∧ Lm ∧ (¬)ctxtLm+1 ∧ ·· · ∧
(¬)ctxtLm+p, where A is an atom, Li, 1≤ i≤m+ p, are liter-
als (i.e. Li is an atom or a negated atom), > denotes truth, ⊥
denotes falsehood, and ctxt is a unary context operator. The
interpretation of the connectives is given in Table 1.
The ctxt operator is similar to negation as failure (Clark,
1978) or default negation locally, and helps to provide a nat-
ural formalization of defeasible rules. To explain its behavior
let us return to the spatial reasoning problem in the introduc-
tion. After reading the first premise, most participants seem
to assume that the space right of the Beetle is not occupied.
However, (classical) logically, it can neither be proven that
the space is occupied, nor that it is not. Here, the application
of ctxt allows us to conclude that the space is not occupied.
The example from the introduction can be represented by the
facts left(a,b)←>, left(a,c)←>, left(c,d)←>. In addi-
tion, the rule right(X ,Y )← left(Y,X) denotes the symmetry
of left and right. Such a rule is considered to be a schema.
Ground instances of this rule are obtained by replacing the
variables occurring in it by the constants occurring in the pro-
gram. In this example, these are a, b, c, and d. Let P be a
program. gP denotes the set of ground instances of clauses
occurring in P .

Computation of Supported Models
The connectives in Table 1 can be read as not (¬), and (∧),
or (∨), if (←), only if (↔) and not, if not true (ctxt). It re-
mains to specify the meaning of ground atoms. A ground
atom A may be true (>), false (⊥), or unknown (U). An in-
terpretation I can be represented by a pair 〈I>, I⊥〉, where
I> = {A | I(A) =>} and I⊥ = {A | I(A) =⊥}. As interpreta-
tions are mappings, I> and I⊥ must be disjoint. Ground atoms
which do not occur in I>∪ I⊥ are mapped to U. I is a model
for a program P if and only if I maps all ground instances of
clauses occurring in P to true.
Under the WCS a program P may admit a unique supported
model which can be computed by iterating the semantic oper-
ator ΦP on the space of interpretations provided by Stenning
and van Lambalgen (2008). Let I be an interpretation, then
ΦP (I) = 〈J>,J⊥〉, where

J> = {A | there is A← body ∈ gP such that I(body) =>},
J⊥ = {A | there is A← body ∈ gP and

for all A← body ∈ gP , we find I(body) =⊥}.

Under certain conditions ΦP has a unique fixed point which
can be computed by iterating the operator starting with an ar-
bitrary interpretation.2 In this case, this fixed point is the sup-
ported model of the weak completion of the given program P .
For example, considering the program presented in the previ-
ous section and starting with the empty interpretation 〈 /0, /0〉
the fixed point 〈I>, /0〉 is reached after two iterations, where

I> = {left(a,b), left(a,c), left(c,d)}
∪ {right(b,a), right(c,a), right(d,c)}.

All instances of left are added in the first iteration, whereas
all instances of right are added in the second iteration.
A formula F follows from P under the WCS (P |=wcs F) if
and only if the supported model of P maps F to true.

Construction/ Inspection for Preferred Models
Relations between objects can be easily represented in pro-
grams. However, there is no straightforward way in which
we can express the order in which the premises are given.
But exactly this information is crucial if we want to formal-
ize the preferred mental model theory. For this purpose, we
explicitly express phases, where each premise is read at one
particular phase.
Let S be a spatial reasoning problem consisting of a finite
sequence of premises and a conclusion. The program PS
represents the premises of S and the necessary background
knowledge in order to construct the preferred mental model.
Within PS we will use the following relations, whose infor-
mal meanings are as follows:

l(X ,Y, I) in phase I, X is placed to the left of Y ,
nl(X ,Y, I) in phase I, X is the left neighbor of Y ,
ol(X , I) in phase I, directly left of X is occupied,
or(X , I) in phase I, directly right of X is occupied,

where I ∈ [1,n], n is the number of premises, and X and Y are
objects. The construction of the program PS is initialized by
specifying all premises of S as facts of the form

l(u,v, i) ← >, (1)

given that the i-th premise of S was object u is left of object v.
Thereafter, the following rules are added:3

nl(X ,Y, I)← ctxt l(X ,Y, I) (2)
∧ ctxtol(Y, I)∧ ctxtor(X , I).

nl(X ,Y,J+1)← nl(X ,Y,J). (3)
ol(Y,J+1)← nl(X ,Y,J). (4)
or(X ,J+1)← nl(X ,Y,J).

l(X ,Z,J+1)← l(X ,Y,J+1)∧nl(Z,Y,J). (5)
l(Z,Y,J+1)← l(X ,Y,J+1)∧nl(X ,Z,J).

left(X ,Y )← nl(X ,Y,n). (6)
left(X ,Z)← left(X ,Y )∧ left(Y,Z). (7)
right(X ,Y )← left(Y,X). (8)

2See, Dietz Saldanha et al. (2017) for details. For each pro-
gram P presented in this paper ΦP has a unique fixed point.

3Here and in the sequel, ctxt is used as abbreviation for ¬ctxt.



Table 1: Three-valued Łukasiewicz logic with ctxt. F is a formula, L a literal, and>,⊥, and U denote true, false, and unknown, respectively.

F ¬F

> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U > >
⊥ ⊥ U >

↔ > U ⊥
> > U ⊥
U U > U
⊥ ⊥ U >

L ctxtL

> >
⊥ ⊥
U ⊥

These rules are schemas and need to be instantiated such that
I ∈ [1,n], J ∈ [1,n−1], and X ,Y,Z are different constants de-
noting the objects occurring in the premises of S . We assume
that the addition J +1 is computed while instantiating a rule.
The rule in (2) states that if in phase I object X should be
placed to the left of Y and the space to the left of X as well as
the space to the right of X are empty, then X is placed as the
left neighbor of Y . The rule in (3) keeps neighbors for suc-
ceeding phases. The rules in (4) ensure that neighbors take
space, i.e., if X has become the left neighbor of Y in phase J,
then the space to the left of Y as well as the space to the right
of X are occupied in phase J +1. The rules in (5) implement
the first free fit technique from (Ragni & Knauff, 2013), thus
if X should be placed to the left of Y but there is already a
left neighbor Z of Y , then X is placed to the left of Z. Like-
wise, if X should be placed to the left of Y but X is already the
left neighbor of some other object Z, then Z should be placed
to the left of Y . The final neighbors are derived by the rule
in (6): If X is left neighbor of Y after processing all premises,
then X is (finally) to the left of Y . The rules in (7) and (8)
express that left is transitive and right is the inverse of left.
In each phase, one premise is processed and understood as
a request to place the mentioned objects in the required or-
der. Objects are placed in the first available space like in
PRISM (see, Ragni & Knauff, 2013). Once the fixed point
of ΦPS is computed the preferred model can be identified:
Given a problem S , X is the left neighbor of Y if and only if it
holds that PS |=wcs nl(X ,Y,n). Queries involving the left and
right relation can be answered with respect to the preferred
model of S .

Variation/ Inspection for Alternative Models
We now present the main result of this paper, viz. an approach
to the model variation phase. Figure 1 shows the modeling
process of the variation phase, which consists of several steps:
First, all initial left placement requests (il), all positive neigh-
borhood left relations (nl), and all positive ambiguous rela-
tions from the preferred model are extracted (Extract rele-
vant information from preferred mental model). Thereafter,
the program is constructed (Create program). Based on all
extracted ambiguities, all permutations of all length are com-
puted (Compute all permutations). The order of the items in
each permutation is kept by the variation program through
the phase-indices in the relations: The first item in a per-
mutation is assigned the phase-index 1 and the last item the
phase-index v. All different ways of swapping ambiguous
objects are simulated. Considering all permutations, all al-
ternative models of the spatial reasoning problem S can be
found. Until all permutation have been processed, the fol-

Figure 1: Flowchart of the variation phase.

lowing is done (Iteration through list of permutations): One
trial of swapping objects is done per iteration, by swapping
objects through ambiguous relations (Program construction).
This is realized by adding the ambiguous relations of the cur-
rent permutation as positive facts to the program (see (14)
below). Moreover, the program needs to know which objects
are affected by these swap-requests. Therefore, the imple-
mentation adds two positive facts for each added ambiguous
fact, encoding that the objects in question need to be adjusted
(see (13) below). Thereafter, it is checked whether the rela-
tion encoding the conclusion of the spatial reasoning problem
is mapped to true or false in the fixed point of the semantic
operator (Compute fixed point). The answer is saved, pro-
vided that the model is not marked as abnormal (see (21) and
(22)). The program is reset, which includes deleting all facts
regarding the ambiguous and adjust relations and resetting all
atoms occurring in the program to unknown (Reset program).
The iteration continues until all permutations have been pro-
cessed. The final answer is given by checking whether the
list of collected answers contains the answer “No” (Final an-
swer). If that is the case, the final answer to the query is “No”
because an alternative model has been found that does not
support the conclusion. Otherwise, the final answer is “Yes”.



Ambiguity Identification
We first record the set of initial placements of the spatial rea-
soning problem by replacing each fact of the form (1) by

il(X ,Y ) ← >. (9)

We extend PS to mark ambiguities in the model construction:

amb(Z,X ,J+1)← l(Z,Y,J+1)∧nl(X ,Y,J). (10)
amb(Z,Y,J+1)← l(X ,Z,J+1)∧nl(X ,Y,J).

amb(Z,X , I)← l(Z,Y, I)∧amb(X ,Y,J+1). (11)
amb(Z,Y, I)← l(X ,Z, I)∧amb(X ,Y,J+1).

X , Y , Z, I, and J must be instantiated as before and we assume
that I > J. Let AS be the program consisting of all ground
instances of clauses mentioned in this paragraph.
The rules in (10) record the ambiguities from neighbors: if
object X is the direct left neighbor of object Y in phase I and
there is a request to place a new object Z to the left of Y ,
then there is an ambiguity between Z and X , because both
could possibly be the direct left neighbor of Y . Similarly,
if X should be placed to the left of the new object Z, but X
and Y are already in a direct left neighborhood, then Z and
Y are ambiguous and could be swapped in order to obtain an
alternative model. The rules in (11) record the inherited am-
biguities: If a new object Z is requested to be set to the left
of Y , but Y is already marked as ambiguous with respect to
another object X , then Z is ambiguous with respect to X , too.
Likewise, in case X is requested to be placed to the left of a
new object Z with X and Y already being marked as ambigu-
ous objects, then Z will also be ambiguous with respect to Y .
It is important to note that these clauses need to be created
for all phases I and J with I > J. This means that the amb-
relation with phase index J does not necessarily need to be in
the phase directly before I, but it can also be that I = J+2.

Program Construction for Alternative Models
Likewise to the construction of the program for the preferred
model, the construction of the programs during variation uses
phases as well. The neighbor left relations that have been gen-
erated by the preferred model will be used as starting point:

{nl(X ,Y,n)←> | PS |=wcs nl(X ,Y,n)}. (12)

First, the number of programs for the computation of alter-
native models (i.e. one program for one alternative model) is
specified by the number of amb relations in the fixed point
of ΦAS∪PS :

#perm =
|amb|

∑
i=1

i

∏
k=1

(|amb|− k+1),

where

|amb|= |{amb(X ,Y, I) | AS ∪PS |=wcs amb(X ,Y, I), I ∈ [2,n]}|.

The amount of phases v for each program depends on the
number of ambiguous-relations with respect to the current
permutation pm, i.e.

vpm = |{amb(X ,Y, I) | amb(X ,Y, I) ∈ pm, I ∈ [1, |pm|]}.

Second, the amb relations of the current permutation pm tells
us which objects can be adjusted within the variation phase:

{adj(X , I)←> | amb(X ,Y, I) ∈ pm, I ∈ [1, |pm|]} ∪ (13)
{adj(Y, I)←> | amb(X ,Y, I) ∈ pm, I ∈ [1, |pm|]}.

In each phase I of the variation, two objects X , Y are swapped
according to a swap-request of the form amb(X ,Y, I)← >.
Accordingly, the maximum phase index v refers to the num-
ber of phases in the variation process and the phase index n
refers to the number of phases in the construction process of
the preferred model. Since the model variation starts with
the preferred model, that is, the last phase n of the preferred
model, the last overall phase in the variation program is n+v.
Together with the fact in (9), which will serve as constraint to
prevent violating the premises of the given spatial reasoning
problem, the set of neighbor relations in (12) of the preferred
model, and the objects in (13) that have to be adjusted, each
program varPS with its according considered permutation pm,
where I ∈ [1, |pm|] , consists of the following clauses:

amb(X ,Y, I)←>. (14)
amb(Y,X , I)← amb(X ,Y, I). (15)
left(X ,Y )← nl(X ,Y,n+ v). (16)
left(X ,Z)← ctxt left(X ,Y )∧ ctxt left(Y,Z). (17)
right(X ,Y )← left(Y,X). (18)
nl(X ,Y,Q)← nl(X ,Y,P)∧ ctxtadj(X , I)∧ ctxtadj(Y, I). (19)
nl(X ,Y,Q)← ctxtamb(Y,X , I) (20)

∧ nl(Y,X ,P)∧ ctxt il(Y,X).

nl(X ,Y,Q)← ctxtamb(Z,X , I)∧nl(Z,Y,P)∧ ctxt il(Y,X).

nl(X ,Y,Q)← ctxtamb(Y,Z, I)∧nl(X ,Z,P)∧ ctxt il(Y,X).

X , Y , Z, I, and J must be instantiated as before, n is the num-
ber of premises, v is the last phase in the variation model con-
struction, P = n−1+ I, and Q = n+ I.
The fact in (14) ensures that all amb-relations from the current
permutation are added as facts. The permutation order within
a permutation pm is specified by the phase index I, starting
from 1 to |pm|. These facts are requests to swap two objects
in phase I. The rule in (15) expresses that the order of objects
in an ambiguous-relation is irrelevant, as all orders lead to the
same result. The rule in (16) specifies final neighbors. The
rules in (17-18) are analogous to (7-8). The rule in (19) is
similar to (3) except to the additional constraint that none of
the concerned objects has to be adjusted in the current phase I.
The rules in (20) encode the actual swapping of two objects.
Altogether, there are three different cases how two objects
can be swapped: Either the objects to be swapped are in the
same nl-relation, or the left object in the nl-relation has to be
swapped, or the right object in the nl-relation is requested to
be swapped.



Incomplete Model or Constraint Violation
As the models constructed in the variation may be incomplete
due to violated constraints, we include abnormality clauses in
order to consider only normal models for computing answers
with respect to the given problem query:

chain← left(X1,X2)∧ left(X3,X4)∧·· ·∧ left(Xn−1,Xn). (21)
ab←¬chain.

ab← left(X ,Y )∧ ctxt(il(Y,X)). (22)

X ,Y,X1, . . . ,Xn ∈ con(initP rem) and X ,Y,X1, . . . ,Xn are differ-
ent to each other. The rules in (21) denote the case when the
alternative model is not complete: If no chain can be con-
structed from the left-relations, then this model is marked as
abnormal. The rule in (22) denotes the case when the alter-
native model violates some constraint. The case of constraint
violation only concerns big, non-deterministic problems with
five or more objects, for which the constraints contained in
the bodies of the rules in (20) cannot prevent some of the vi-
olating swaps anymore.
In each phase of the model variation, two objects are swapped
according to the swap-requests (by amb(X ,Y, i)), until all re-
quests in the current permutation have been processed. Like-
wise to the preferred model construction, the variation pro-
gram will then proceed with mapping the nl-relations to left-
and right-relations by the rules in (16), (17) and (18). After
all left- and right-relations are determined, we can check in
the alternative model whether there are any abnormalities. As
soon as the fixed point of Φ with respect to the given program
is computed, the alternative model can be identified, provided
that the model is not abnormal, i.e. the atom ab is false.

Is the beetle (necessarily) left of the dodge?
Consider again the example from the introduction, where the
preferred model is a b c d.
This example has additionally two valid alternative models.
Due to the limited space, we do not show the complete com-
putation of the preferred mental model with marking ambi-
guities. The result of the computation are two marked ambi-
guities, one between the objects c and b and one between d
and b. For a detailed explanation on what happens in each
iteration when computing preferred models under the WCS,
see the examples in Dietz et al. (2015).
The implementation determines four different permutations
of the two ambiguous-relations, which are (1) amb(c,b,1),
(2) amb(d,b,1), (3) amb(c,b,1) and amb(d,b,2), and (4)
amb(d,b,1) and amb(c,b,2). We show the variation pro-
gram exemplary for permutation (3) in Table 2, starting with
the empty interpretation, leading to the alternative and valid
model a c d b.
The atoms ambiguous and adjust are abbreviated to amb and
adj to fit the table. Furthermore, Table 2 only shows the atoms
that appear in I> and I⊥ for the first time to maintain read-
ability, as was done in Dietz et al. (2015). The column on the
right side of the table signifies the clause which leads to the
atoms shown in the respective row.

In iteration 2 and 3 in Table 2, the model obtained af-
ter processing the first swap-request is computed, which is
a c b d (phase 4).
Thereafter the final alte rnative model is computed
a c d b, determining all nl-relations that hold in the
model, as can be seen in iteration 3 and 4 (phase 5).
The answer to the query of the problem, left(b,d) is deter-
mined in iteration 4. Since left(b,d) is False in the fixed point
of ΦP , this relation does not hold in the alternative model. It
does however hold in the preferred model a b c d.
Conclusively, the final answer of our implementation is “No”,
because there was at least one model in which the relation de-
scribed in the query did not hold.

Table 2: Alternative model computation with two swaps.

ΦP I> I⊥ clause nr./ program

↑ 1 il(a,b), il(a,c), (9)
il(c,d), (9)
nl(a,b,3),nl(b,c,3), (12)
nl(c,d,3) (12)
amb(c,b,1), (14)
amb(d,b,2), (14)
adj(b,3),adj(c,3), (13)
adj(b,4),adj(d,4), (13)

↑ 2 amb(b,c,1), (15)
amb(b,d,2), (15)

nl(a,b,4),nl(b,a,4),nl(c,a,4), (19)
nl(c,b,4),nl(c,d,4),nl(d,b,4), (19)
nl(d,c,4),nl(a,b,5),nl(b,a,5), (19)
nl(c,b,5),nl(d,a,5),nl(d,b,5), (19)
nl(d,c,5), (19)

nl(b,d,4), (20)
nl(a,c,4) (20)

↑ 3 left(a,b), left(b,a), left(c,b), (16)
left(d,a), left(d,b), left(d,c) (16)

nl(a, c, 5), nl(a,d,5),nl(b,c,5), ln(b,d,5), (19)
nl(c,a,5), ,nl(c,d,5) (19)

nl(c,b,4), (20)
nl(d, b, 5) (20)

↑ 4 left(a,c), left(a,d), left(b,c), left(b, d), (16)
left(d,b), left(c,a), left(c,d), (16)

right(a,b),right(a,d),right(b,a), (18)
right(b,c), left(b,d),right(c,d) (18)

nl(c, d, 5) (20)

↑ 5 left(c,d), (16)
right(c,a), right(a,c),right(c,b),right(d,a), (18)
right(b,d), right(d,b),right(d,c) (18)

chain (21)

↑ 6 left(a,d), (17)
left(c,b), (17)
right(d,c), (18)
chain (21)
ab (21)

↑ 7 left(a,b), (17)
right(d,a), (18)
right(b,c) (18)

ab (21)

↑ 8 right(b,a) (18)



Discussion and Conclusions
The contribution of this paper comprises various aspects
within both the area of Computer Science and Psychology.
Through the formal process of modeling the spatial reason-
ing task, we have had to put forward new hypotheses on the
model variation phase which need to be verified in the future:

Cognitive complexity of alternative models The variation
phase starts with the information provided on the preferred
model. How is this related to the cognitive complexity for
the construction of the individual alternative models?

List of permutations Is the list of permutations cognitively
adequate? Do humans keep track of such a list, or does one
permutation trigger the next one? If humans keep such a
list, how likely do they make mistakes? Are these mistakes
related to the distance of the preferred model?

Ambiguity identification We suggested to rigorously iden-
tify ambiguities within the task. Yet, humans might be
sloppy in the sense that they recognize certain ambiguities
more easily. If so, which are the selection criteria?

Default and explicit knowledge Two notions of negation,
weak and strong negation, were necessary for modeling
this task. How does this distinction relate to other tasks?

The Weak Completion Semantics has shown again to be a
good candidate for a comprehensive and computational cog-
nitive theory, as it seems to adequately model yet other as-
pects of human reasoning task not considered so far. The
WCS can fully cover all three stages of reasoning that have
been suggested by the preferred mental model theory. This
is novel as the WCS has previously never been considered
to model the variation phase or alternative models in such
a rigorous way. In particular, it seems that only few ap-
proaches (e.g., mReasoner Khemlani & Johnson-Laird, 2013)
deal with the processes of alternative model construction.
From a cognitive point of view, this is a central step if we in-
tend to understand actual human reasoning, as one main part
of it is concerned with the construction of counter examples.
Future work includes the application of the current approach
to other human reasoning tasks, such as syllogistic reasoning
and reasoning with (counterfactual) conditionals. Further-
more, a metric among the alternative models and with respect
to the model transformation should be specified. Possibly this
could depend on the cardinality of the list of permutations or,
more interestingly, on the amount of steps within the fixed
point computation of the Φ operator. An interesting starting
point of investigation would be whether a certain experimen-
tal setup could make it possible to mimic the operator itera-
tion, by providing participants the information sequentially.
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