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Introduction 
In a world that is uncertain and noisy, human perception 
makes use of optimization procedures to reduce the 
influence of moment-to-moment noise by incorporating 
statistical properties of previous experiences. This 
observation holds for the perception of many 
psychophysical quantities, ranging from light intensity to 
interval timing, the focus of the current study. These types 
of optimization procedures assume that when a specific 
interval needs to be reproduced, observers do not only take 
the current percept into account but also use their prior 
knowledge of previous similar incidents to form an internal 
estimate of the just perceived interval, yielding a central 
tendency effect (Hollingworth, 1910). That is, in a 
reproduction task in which different durations have to be 
reproduced, the shorter intervals will be overestimated and 
the longer durations underestimated yielding a regression 
towards the mean. A formal account of this phenomenon 
has only recently been proposed. In 2010, Jazayeri and 
Shadlen formulated a mathematical framework in which a 
Bayesian observer is assumed to combine the noisiness 
associated with time perception with a probability 
distribution representing the earlier observed durations. The 
actual reproduction is based on the posterior distribution, 
which consist of the integration of a Gaussian-distributed 
likelihood, representing the observed duration, with a 
uniform prior, representing the experimental history. 
Jazayeri and Shadlen demonstrated that the mean of the 
posterior distribution captures a number of important 
empirical phenomena, including the central tendency effect. 
    To account for individual differences in the magnitude of 
the central tendency effect, they assumed differences in the 
variability of the temporal percept, represented in the width 
of the likelihood (see https://vanrijn.shinyapps.io/MaassVan 
MaanenVanRijn2019/ for a simulation). Note that after a 
value has been sampled from the posterior distribution, 
Gaussian-shaped production noise is applied to map the 
posterior-based estimation to the actually reproduced 

duration. Similar Bayesian observer models have been 
shown to accurately reproduce human behavior in a number 
of timing tasks (see, e.g., Shi, Church, & Meck, 2013). 
    From a theoretical or conceptual perspective, however, 
one can question certain implementation decisions 
underlying this Bayesian Observer Model. Firstly, the prior 
with which the likelihood is convolved is assumed to be a 
uniform distribution precisely spanning the range of the 
presented durations. Even though this provides 
computational simplicity, its theoretical suitability can be 
questioned as the average of the resulting posterior 
distributions will, because of the central tendency, have a 
higher mass around the center of the distribution. Following 
the assumption that the prior is based on previous posteriors, 
the prior should reflect this bias towards the mean. This 
example of the central limit theorem would suggest a more 
Gaussian-like distributed prior which also naturally results 
from instance-based explanations of the role of memory 
processes in interval timing (for a review, see Van Rijn, 
2016). Cicchini et al. (2012) addressed the issue of the 
uniform prior, and proposed to use a truncated normal 
distribution to represent the prior. Where Jazayeri and 
Shadlen (2010) focused on the width of the likelihoods, 
resembling clock precision, to account for the variability 
between participants in observed central tendency effects, 
Cicchini et al. (2012) argued that the prior might also differ 
on a per participant basis. To tear apart the contribution of 
the likelihood and prior, they estimated clock variability 
using a secondary task. With the likelihood fixed on a per 
participant basis, they demonstrated that the width of a 
truncated normal distribution varied over participants. 
    Even though a Gaussian-like distribution is theoretically 
more plausible than a uniform prior, its theoretical elegance 
is affected by the necessity to constrain its range to prevent 
it extending to negative values, nor does it match the heavier 
right tail observed in empirical data. In addition, the 
proposed symmetrical, Gaussian prior does not match the 
stronger central tendency bias for the longer compared to 
the shorter durations: As the mass of the average posteriors 
associated with the longer durations is more pulled towards 
the mean of all presented durations than the average of the 



posteriors associated with the shorter durations, a skewed 
Gaussian distribution would be theoretically more plausible. 
A second theoretical challenge for these Bayesian observer 
models is that they incorporate two independent sources of 
noise, one associated with the perceptual phase (wm), 
determining the width of the likelihood, and one associated 
with the reproduction of a duration which is based on the 
posterior (wp). Whereas wm captures the perceptual noise 
associated with perceiving the onset and offset of the 
presented duration, as well as the clock noise associated 
with the actual timing of the interval, wp captures the 
perceptual noise for the onset of the reproduction phase, the 
clock noise, and the motor noise associated with the motor 
movement to mark the end of the reproduction phase (by a 
key press). Assuming perceptual noise to be smaller than 
motor noise, and clock noise to be the dominant source of 
noise (e.g., Taatgen, Van Rijn, & Anderson, 2007), wp 
should always be larger than wm. Additionally, as clock 
noise can be assumed to be the largest source of variability 
in both wm and wp, it follows to estimate wm and estimate 
Δwp that expresses the difference in noise between a 
perception and motor action (i.e., the reproduction noise, wp, 
is defined as wm + Δwp). As both parameters were fit 
independently in Jazayeri and Shadlen’s Bayesian Observer 
model, wp could be estimated at a smaller value than wm and 
no correlation between both parameters was instantiated. In 
contrast, no parameters were estimated in Cicchini’s et al. 
(2012) model. Their model incorporated an estimate for wm 
based on each participant’s performance on a secondary 
task, and wp was fixed for all participants at a value that fell 
within the range of values that were determined for wm. 
Thus, this model did not adhere to the notion that wm should 
be larger than wp, and it assumed that all sources of noise, 
including clock noise, were identical for all participants 
during reproduction. 
    Here we present Bayesian Observer models with different 
assumptions with respect to the source of the individual 
differences, by considering individual differences in clock 
noise and memory: We will independently estimate wm and 
Δwp assuming priors based on either a fixed uniform prior 
distribution, or normal and log-normal shaped prior 
distributions of which the variance will be estimated. To 
assess the goodness of fit of these models, we will estimate 
fit measures for 15 aged participants with the diagnosis of 
amnestic Mild-Cognitive Impairment (aMCI) and 44 
healthy aged controls. Whereas the first group showed 
strong central tendency effects, the latter group showed 
weaker effects (Maaß, Riemer, Wolbers, & Van Rijn, 
submitted). will be compared. Interestingly, measures of 
memory functioning predicted the magnitude of the central 
tendency effect, even in the healthy aged control group. 
Additionally, we will use 1-second task data (Maaß & Van 
Rijn, 2018) to assess clock variability. The results suggested 
that neither age (cf. Paraskevoudi, Balcı, & Vatakis, 2018), 
nor clinical status (cf. Rueda & Schmitter-Edgecomb, 2009) 
influenced clock time variability, but that aMCI patients 
more strongly weigh prior experiences than healthy, age-

matched controls, resulting in stronger central tendency 
effects. By fitting Bayesian Observer models to the 
empirical data from these (sub)populations, we aim to 
understand the contributions of likelihood and prior on 
temporal reproduction in healthy and memory-impaired 
individuals. 
    In sum, we will (1) assess whether one type of prior is 
preferred, (2) whether estimated values that mostly reflect 
clock noise (i.e., wm) correlates to the collected clock-
variability measures, and (3) whether the estimated prior 
parameters provide a sensible theoretical interpretation of 
the empirical phenomena. 
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