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Abstract 

The mechanisms behind the ability to retrieve all exemplars in 
a class when presented a specific contextual cue, have puzzled 
the world of cognition. Various approaches have been used to 
better understand this concept, especially in the field of 
artificial neural networks. That being said, very few models can 
enumerate all exemplars associated to multiple lists in a 
cognitively plausible way. This is mostly due to the problem of 
multiple One-to-Many Associations (OMA)s where various 
exemplars can belong to different lists. To resolve this issue, 
different approaches have been used; from deep learning and 
natural language processing to time delayed contextual units. 
However, none of them is satisfying for a biologically based 
computational model of cognition. A promising solution is 
using the class label as context and associates it with each 
exemplar of the corresponding class. This allows each input to 
be unique and the problem becomes a standard association one. 
This strategy has been implemented within the neurodynamic 
perspective using a bidirectional associative memory. The 
simulations consisted of learning three arbitrary sequences of 
various lengths containing multiple intertwined exemplars. 
Results showed that it was possible to enumerate all associated 
exemplars from a class simply by presenting the corresponding 
contextual label. These findings are an important step towards 
developing cognitively plausible neural implementation of 
multi-step patterns as well as semantic networks in order to 
develop generalized artificial intelligence. 
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Introduction 
When presented with a class label, the brain has no difficulty 
in enumerating all associated exemplar. This cognitive ability 
is remarkable since learned exemplars are rarely exclusive to 
a single class; they can have multiple associations (also 
referred as One-to-Many Associations; OMAs). A simple 
example to illustrate this would be to enumerate all actions 
(exemplars) needed to score in a specific sport. In soccer a 
sequence may resemble, kick off, pass, dribble, run, and kick; 
while in hockey: face off, pass, dribble, skate and slap; and 
finally, in basketball: jump ball, pass, dribble, run and throw. 
Depending on the class of the sport (soccer, hockey or 

basketball), different exemplars (kick, slap and throw) and 
identical ones can be found (pass, dribble). Thus, in such a 
case, when enumerating exemplars from a class, it is easily 
seen that these exemplars can be associated to a single or 
multiple classes (OMA). Furthermore, when enumerating a 
list, it may always follow a specific sequence (ex. opening a 
door) or, in the case of semantic memory, may not (ex: free 
association task; Nelson, McEvoy & Schreiber, 2004). 

 Many formal models in cognitive sciences have been 
proposed over the years that can accomplish this listing task. 
Models, such as the Semantic memory models, are known to 
predict human performances accurately (Jones, Willits, 
Dennis, & Jones, 2015) but remain limited for neural 
implementation.  

Artificial neural networks have also been used to perform 
this listing task with most using the multi-layer Perceptron 
approach (Collobert et al., 2011; Elman, 1990; Jordan, 1997; 
Neville, 2008). Although these are all interesting models, 
they are limited in meeting the requirements to be consider 
biologically based computational models of cognition 
(O’Reily, 1998). One such class of models that fills these 
requirements are the Recurrent Associative Memory (RAMs) 
that belong to the neurodynamic approach (Haykin, 2009). 
Associative memory consists of learning and storing pairs of 
identical (auto-association) or different (hetero-association) 
exemplars. This has been popularized by Hopfield (1982) for 
auto-association and generalized to Bidirectional Associative 
Memory (BAM) by Kosko (1988) for hetero-association. 
Since then, BAMs have seen many modifications allowing 
them to perform various tasks with better performances; see 
Acevedo-Mosqueda, Yanez-Marquez & Acevedo-Mosqueda 
(2013) for a review. Previous studies have shown that RAMs 
are able to enumerate simple independent lists of exemplars 
(Chartier & Boukadoum, 2006). However, in the presence of 
overlapping list of exemplars, like the initial example, they 
are not able to accomplish the task. This is due to the fact that 
they must deal with several OMAs. In other words, there are 
dealing with a relationship instead of a function.  

An early solution to solve OMA following findings in 
cognition (Clarke, 2017; Spillers & Unsworth, 2011; Stoet & 
Snyder, 2007) was the use of time delayed (context) units 



(Elman, 1990). This method integrated previous output(s) 
with the current input in order to accurately predict the next 
exemplar in the list (ex. Collobert et al. 2011). Therefore, the 
one-to-many association was transformed into a one-to-one 
association. Unfortunately, this solution of delay units (or 
surrounding context) requires the global knowledge of the 
number of contextual units prior to learning. Furthermore, it 
does not really help towards the original task itself; time 
delayed units (context) are not representative of the class but 
only of the previous exemplars. 

 A more interesting solution in machine learning was 
introduced by Jordan (1997) which used context as a label to 
modify each exemplar for the enumeration of a given class. 
Therefore, this contextual label also modifies each exemplar 
to make them unique without any prior global knowledge. 

A second problem may also arise in RAMs if the OMAs are 
overlapping. In this case there is the possibility that the task 
becomes a non-linearly separable one. Unfortunately, 
standard BAMs are not able to solve this unless the model is 
complexified with a wide range of arbitrary parameters, thus 
losing its simplistic nature. However, recent studies have 
shown that an unsupervised version of the BAM can be used 
to increase the dimensionality of the inputs and therefore, a 
linear solution can be found when combined with the BAM 
(ex. Tremblay, Myers-Stewart, Morissette & Chartier, 2013).  

Following recent progress in using contextual labels 
(Rolon-Mérette, Rolon-Mérette & Chartier, 2018a) it is thus 
proposed to use the class label to make each exemplar unique 
using a combination of supervised and unsupervised BAMs. 
This will increase the BAM’s versatility and help in learning 
any number of overlapping OMAs of any length, where 
exemplars can have any level of correlation and where a non-
linear solution is required.  

The remainder of the paper is divided as follows: the next 
section gives brief background of the BAM used in the study; 
This is then followed by Simulation I, where context is used 
to show the feasibility of enumerating exemplars from a class 
and the limits when facing with overlapping OMAs; 
Simulation II is then presented with a brief background of the 
unsupervised BAM and how its interaction with the BAM 
allows the network to perform the desired task; Finally, a 
short discussion ends this paper.  

Bidirectional associative memory 

Model description 
The model is a modified version of the BAM. Like any neural 
network, it is defined by an architecture, transmission and 
learning functions.  

Architecture 
The BAM’s architecture is illustrated in Figure 1. The 
supervised model has two layers of interconnected units in a 
bidirectional fashion, where the W and V layers return 
information to each other (both acting as a teacher to one 
another); where M and N represents the number of units in 
each layer. The initial patterns are represented by x(0) and 

y(0) while the outputs of the network are x(t) and y(t) after t 
cycles.  

 
Figure 1: Architecture of the BAM 

Output function 
The transmission function is defined by equation 1a and 1b: 
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Where i is the index unit, δ the general transmission 
parameter and a and b the activations. These activations are 
obtained the usual way: a(t) = Wx(t) and b(t) = Vy(t).  

Learning rule 
The connection weights for the model are modified following 
a hebbian/anti-hebbian rule (Chartier & Boukadoum, 2006). 

(2a)  𝐖(𝑘 + 1) = 𝐖(𝑘) + 𝜂/𝐲(0) − 𝐲(𝑡)1/𝐱(0) + 𝐱(𝑡)1
I 

 
(2b)  𝐕(𝑘 + 1) = 𝐕(𝑘) + 𝜂/𝐱(0) − 𝐱(𝑡)1/𝐲(0) + 𝐲(𝑡)1

I  

 
Where x(0) and y(0) are the initial inputs, η is the learning 
parameter and k is a given learning trial. Equation 2a and 2b 
shows that the matrix weights will converge when x(0) = x(t) 
or y(0) = y(t). To reduce the simulation time, the number of 
cycles performed according to equation 1 is usually set to t = 
1. It is guaranteed that the learning will converge if the 
learning parameter (η) is smaller than the following value 
(Chartier & Boukadoum, 2006): 

 

  (3)  𝜂 < +
K(+LKM)NOP[R,S]

	, 𝛿 ≠+
K
    

 

Simulation I: BAM  
The general task is illustrated in Figure 2. In order to recreate 
the task of enumerating exemplars from a class by only 

yn(0) y2(0) y1(0) 

x1(0) xm(0) x2(0) x3(0) 

x(t) 

y(t) 

V 

W 



presenting its class label, three overlapping list of arbitrary 
patterns were used. The general goal was to learn all 
overlapping lists. Two simulation (conditions) were created 
to better understand the complexity of the task and the 
feasibility of using a single BAM. The first condition was to 
establish if labels can be used to solve a simple OMA and 
enumerate all the exemplars of a class and while the second 
was to show its limitation with overlapping OMAs. Both 
conditions are illustrated in Figure 3. 

Methodology 
Arbitrary alphabetic patterns were used to test the network. 
Each pattern was a 49-dimensional pixel base pattern where 
black pixels represent the value of +1 and white pixels -1. 
Those patterns have the property of showing various levels of 
correlation (between 0.02 and 0.92). Moreover, they can be 
naturally partitioned in multiple overlapping classes and are 
easily recognized by experimenters. Of course, any other 
arbitrary patterns could have been used without any 
modification in the results. Two conditions were created. 
In condition 1, two sequences of three exemplars (class label 
followed by two letters) were used to generate an OMA 
scenario. For both sequences the class label was concatenated 
to each exemplar of the list allowing exemplar modification 
and transform the OMA into a one-to-one association (Figure 
3a). In condition 2, multiple intertwined lists were used 
(Figure 3b). The number of lists was set to three for proof of 
concept while avoiding the simplicity of having a binomial 
solution. Furthermore, contrary to condition 1, each list was 
of different lengths and contained multiple OMAs. The first 
list contained the class label “L” followed by the 26 letters of 
the alphabet in lowercase. The second sequence was a subset 
of the first, containing the class label “V” followed by all the 
vowels in lowercase. Finally, the third sequence was a 
different subset of the first list containing the class label “C” 
followed by all the consonants in lowercase. For both 
conditions, each list was ended by an auto-association on the 
last exemplar (final attractor).  

 
Figure 2: Sequences with class labels (“L”, “V” and “C”) at 

the beginning of each class for the overall task. 

 
Figure 3: Class labels followed by modified exemplars for 

condition 1(a) and condition 2 (b). 

Procedure 
For all simulations, the transmission parameter (δ) was set to 
0.2 and the learning parameter (η) respected equation 3. The 
M and N layers where set to 98 units each, which represents 
the dimensionality of the combined exemplar (49) and the 
class label (49). Learning was stopped when the mean 
squared error (MSE) was lower than 10-15 or when 5000 
learning trials was reached.  

Learning  
1. Selection of a list containing both the exemplars and the 

combined context (Figure 3). 
2. Random selection of a pair (x(0) and y(0)). 
3. Computation of x(1) and y(1) according to the 

transmission function (equation 1a and 1b).   
4. Computation of the weights according to the learning 

function (equation 2a and 2b) 
5. Repeat step 2) and 4) until all the pairs are selected. 
6. Repeat step 2) to 5) until the desired MSE or the 

maximum learning trial are reached. 

Recall  
1. Selection of an initial contextual label of a given list, x(0). 
2. Compute y(t) in accordance to the transmission function 

(equation 1a and 1b) until convergence; end of the list. 
3. Comparison of the outputted exemplars with the correct 

ones. 
4. Repetition of step 1) to 4) for each contextual label (“L”, 

“V” and “C”). 

Results 
Figure 4 shows the output for each of the conditions when 
presented with the class label. In condition 1, the output is a 
clear representation of the desired solution for both 
associated outputs. By using this approach, it was possible to 
solve a simple OMA. In condition 2, results showed that 
appropriate retrieval was unobtainable in the situation of 
many OMAs. This is not surprising because in such a 
scenario the task becomes non-linear as well. Therefore, a 
single BAM will not be able to perform this task. However, 
by combining the BAM with its unsupervised version, it is 
possible to overcome this limit. Therefore, in the next 
simulation, we show such an implementation while keeping 
the contextual encoding strategy to allow the network to 
achieve the desired behaviour shown in Figure 2. 

 
Figure 4: Recall outputs for condition 1(a) and 2 (b) 
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Simulation II: FEBAM-BAM  
In order to use the context to discriminate identical exemplars 
and to solve non-nonlinear classification, the BAM network 
is modified to take into account information from its 
unsupervised version; the Feature Extracting Bidirectional 
Associative Memory (FEBAM). The FEBAM generates a 
representation that when combined with the initial input 
increases the dimensionality and makes the classification 
problem into a linear one (Tremblay et al., 2013). By still 
having the same learning and transmission functions and the 
same general bidirectional architecture, this contributes 
towards increasing the internal consistency of the overall 
model.  

FEBAM model description 
The FEBAM is the unsupervised version of the BAM 
previously described. The only notable difference between 
the two is the absence of external (y(0)) connections. 
Consequently, there is no teacher and the model must rely 
only on one set of inputs, (x(0)). Therefore, the goal of this 
model is to generate the best representation that allows 
optimal reconstruction of the inputs. It is a process akin to 
feature extraction (Chartier et al., 2007). 
Architecture 
The FEBAM’s architecture is illustrated in Figure 5. Like the 
BAM, this model has two layers of interconnected units in a 
bidirectional fashion, where the W and V layers return 
information to each other. As mentioned, there is only one 
explicit set of connections, x(0), used to store information.  

Figure 5: Architecture of the FEBAM 

Transmission and learning functions 
Both transmission (equation 1a and 1b) and learning 
functions (equation 2a and 2b) remained the same. However, 
since y(0) is not explicitly given, the information has to 
circulate a little longer in the network in order to get all 
needed inputs.  

As shown in Figure 6, y(0) is obtained by iterating x(0) 
through its corresponding weight connections W using the 
transmission function. Subsequently, x(1) is obtained from 
y(0) and finally, y(1) from x(1). Through weight updates, 
each x(1) and y(1) will converge to a solution that will try to 
best reconstruct its associated initial pattern x(0) and/or its 

representation y(0). Thus, in the case where it is impossible 
for x(1) to equal x(0) (ex. information compression), weight 
convergence will only be guaranteed by y(1) and y(0). The 
number of units in the y–layer determines the dimensionality 
(level of compression) of the generated representations. The 
more units there are, the better the reconstruction will be 
(Giguère et al., 2009).  

 
Figure 6: Iterative process used to gather inputs for learning. 

FEBAM-BAM Model 
Figure 7 illustrates the overall network to accomplish the 
task where the FEBAM is used to generate features (context). 
 

 
 

Figure 7: Overall architecture of the FEBAM-BAM  

Methodology 
The task consisted of learning the same three sequences from 
simulation I’s condition 2 (Figure 3b). This time, exemplars 
with their class label were fed to the FEBAM first. This 
allowed the FEBAM to generate features which acted as a 
unique “signature” for the current exemplar. This 
representation was then concatenated to the initial input and 
fed to the BAM for learning. The number of y units in the 
FEBAM was fixed at a dimension of 98. This was determined 
in order to increase the probability of success (Rolon-Merette 
et al., 2018b). The number of y-units can be lower than the 
number of x-units but for the scope of this study it was not 
investigated. Finally, in addition to recalling condition 2’s 
lists, a simple noisy (pixel flip) recall task was performed, 
where the class labels were distorted prior being presented to 
the FEBAM-BAM. For the noisy recall task, pixel flip ranged 
from 0 to 50% of the original class label to show the FEBAM-
BAM’s ability to deal with noise.  

FEBAM Learning 
The inputs were presented to the FEBAM. To maintain 
internal consistency, the transmission parameter (δ) and the 
learning parameter (η) were not change from simulation I. 
The weights were randomly initialized with values between -
0.1 and 0.1 and were updated after one cycle (t = 1). Learning 
stopped when the network achieved a mean squared error 
(MSE) of less than 10-15 or when 5000 learning trials were 
reached. The learning procedure can be described as follow: 

x1(0) xm(0) x2(0) x3(0) 
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y(t) 
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EXEMPLAR(t)
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1. Selection of a list containing all three sequences of 
modified exemplar as seen in Figure 3b). 

2. Random selection of a given exemplar from the list to 
obtain x(0). 

3. Iteration through the network (as illustrated in Figure 6) 
using the output function (equation 1a and 1b) to obtain 
y(0), x(1) and y(1).  

4. Computation of weight updates according to the learning 
rule (equation 2a and 2b). 

5. Repetition of steps 2) to 4) until the minimum mean 
squared error between y(0) and y(1) or max trials is 
reached. 
 

Each output was then concatenated to its associated input 
before being presented to the BAM for learning. The same 
learning and recall procedure from simulation I was used for 
the BAM except for the M and N layers, they were increased 
to 196 units due to the concatenation.  

Results 
All three sequences (Figure 2) were successfully learned by 
the combined FEBAM-BAM model (Figure 7). Furthermore, 
contrary to condition 2 in simulation I, every exemplar for 
each sequence is retrieved correctly without any distortion. 
These results are similar to ones obtained in machine learning 
(Collobert et al., 2011; Jordan, 1997; Neville, 2008). 

 
Figure 9: Recall of the learned three sequences. 

 
Likewise, during the pixel flip recall task, correct retrieval 
was possible for distortion between 0 and 25 %. Figure 10 
shows results for a pixel flip of 10% (10 pixels) of the original 
class label ‘L’. This “cleaning” by the FEBAM portion of the 
FEBAM-BAM allowed to obtain the same retrieval results 
(Figure 9) while dealing with noisy class labels (inputs). 

 
Figure 10: Noisy recall (10 % pixel flip) of class label ’L’  

Discussion 
In Simulation I, the goal was to learn a simple one-to-many 
association task (condition 1) by using the context to 
discriminate the exemplar in a BAM. Results showed that 
joining the input with fixed contextual information allows the 
network to solve a simple OMA task using a cognitively 
plausible neuronal implementation. However, condition 2 
showed that this strategy alone is not sufficient if the task 
contains multiple OMAs. In this last case, a non-linear 
classification is then required.  
 To remedy this problem, in simulation II, the BAM was 
employed in combination with the FEBAM. This addition 
allowed the network to create its own generated features and 
when combined with the initial input, allowed to solve non-
linear task. The network was able to achieve a perfect 
learning and recall while maintaining internal consistency; 
the same transmission, learning functions and the same 
general bidirectional architecture were used. Furthermore, 
when faced with distorted exemplars, the model was able to 
“clean” noisy inputs and reconstruct the appropriate class 
label while retrieving the associated generated feature. This 
allowed the FEBAM-BAM to solve the enumeration task 
despite being presented noisy inputs. This is an important 
feature towards having a model deal with real world stimuli. 

This combination (FEBAM-BAM) is an interesting 
solution because it avoids the current task specific problem 
(Marcus, 2018). In approaches where context is given 
through time delay units (Chartier & Boukadoum, 2006; 
Collobert et al., 2011; Elman, 1990) the network must know 
beforehand how many of those units will be necessary for the 
task, limiting its versatility and plausibility. 

That being said, in this model, the proposed mechanism is 
sequence specific. In other words, although the sequences 
themselves were arbitrary and could be replaced by any 
sequences of exemplars, the network outputs will always be 
in the same order. This is accurate in the case of learning 
multi-step patterns like motor outputs. However, a future 
desired property would be the inclusion of more flexibility 
where the order of outputs is determined from the frequency 
of occurrence or the success rate of past experience using 
reinforcement learning. Furthermore, it would be interesting 
to follow up on the inherent characteristic task (Hattori & 
Hagiwara, 1998) while using the FEBAM-BAM’s ability to 
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modify the exemplars with pseudo-contextual compartments 
(Clarke, 2017; Spillers & Unsworth, 2011; Stoet & Snyder, 
2007). This would open the door towards a cognitively 
plausible artificial neural-network capable of combining 
knowledge acquisition and knowledge transfer, increasing 
even further the model’s versatility. Additionally, it is known 
that the number of y-units must be greater or equal to the 
number of unique exemplars for feature extraction in the 
FEBAM (Tremblay et al., 2013). That being said, it would be 
advantageous to investigate the probability of success for this 
multi-OMA task while controlling for the dimensionality of 
the generated context (FEBAM y-unit). This could determine 
if the number of exemplars in a list or the number of 
intertwined exemplars have an impact on the number of y-
units needed for the non-linearly separable OMA task. 
Finally, it would be interesting to account for exemplars in a 
list representing a single exemplar or a whole category in 
itself. This would allow the model to perform an important 
semantic memory task while being a simple neuronal model 
(free association task; Nelson et al., 2004) 

In sum, it was shown that a simple bidirectional recurrent 
associative memory with a hebbian/anti-hebbian learning 
algorithm is sufficient to solve a complex task requiring the 
enumeration of all associated arbitrary exemplars from a 
class by the sole presentation of a class label. These findings 
are an important step towards developing a neural 
implementation of semantic networks in order to shift from 
narrow intelligence to artificial general intelligence (Bengio 
et al. 2015; Marcus, 2018). 
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