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Abstract 
The ability to respond to the needs of an individual operator is 
key for cognitive assistance in naturalistic settings. In order to 
keep track of changing operator demands in dynamic 
situations, a model-based approach for cognitive assistance is 
proposed. Based on model tracing with flight deck 
interactions and EEG recordings, the model is able to 
represent individual pilots’ behavior in response to flight deck 
alerts. As a first application of the concept, an ACT-R 
cognitive model is created using data from an empirical flight 
simulator study on neurophysiological signals of missed 
acoustic alerts. Results show that uncertainty of individual 
behavior representation can be significantly reduced by the 
combination of cognitive modeling and EEG data. 
Implications for model-based cognitive assistance in flight 
deck operations are discussed. 

Keywords: Cognitive modeling; flight deck alerts; model-
based cognitive assistance; model-tracing; neuroadaptive 
technology; 

Introduction 

Individual user behavior 
Representing individual user behavior is a challenge for 
cognitive modeling. Most models aim to simulate average 
user behavior under controlled conditions instead of 
individual performance in complex tasks (Rehling, Lovett, 
Lebiere, Reder, & Demiral, 2004). Representing individual 
behavior in naturalistic settings requires dealing with 
multiple sources of variation such as inter-individual 
differences (e.g., architectural and knowledge differences; 
Taatgen, 1999) and uncontrolled external factors of the 
situation. For example, when modeling pilot performance in 
commercial aviation, different levels of experience and 
changing weather conditions would need to be considered. 
A cognitive model that is able to keep track of the 
operational context and an individual users’ cognitive 
dynamics can serve as the basis for cognitive assistance in 
operations (Zhang, Russwinkel, & Prezenski, 2018). 

Cognitive assistance is about providing the right 
information at the right time. The quality of support that can 
be provided therefore depends on what is and can be known 
about the task environment and the operator’s cognitive 
processes. In naturalistic situations, very extensive models 

would be needed to incorporate all sources of variation for 
explaining individual performance in a deterministic 
fashion. Regardless of the feasibility of such modeling, 
understandability of the model would be traded in for 
completeness, also known as “Bonini’s paradox” (Dutton & 
Starbuck, 1971). Alternatively, leaner models would 
introduce epistemic uncertainty (Kiureghian & Ditlevsen, 
2009), leaving specific aspects of behavior unexplained due 
to a model’s lack of knowledge. A number of methods have 
been used to reduce epistemic uncertainty caused by 
individual differences, such as pre-test scores as predictors 
(Rehling et al., 2004), model tracing (Fu et al., 2006), 
inserting physiological data on user’s workload into the 
model (Putze, Schultz, & Propper, 2015) and dynamic 
adjustment of parameters with pre-computed lookup tables 
(Fisher, Walsh, Blaha, Gunzelmann, & Veksler, 2016).  

Cognitive assistance in aviation 
Inattentional deafness leads to performance drops in the 
cockpit (Dehais, Roy, & Scannella, 2019) that can benefit 
from cognitive assistance, e.g. in the form of verbal 
reminders (Estes et al., 2016). Causes and consequences of 
overheard messages for individual pilots’ performance need 
to be considered to identify the right information to be 
provided and the right timing to provide it for cognitive 
assistance in operations. 

Causes can be diverse and situation dependent (e.g., 
perceptual/attentional factors, see Dehais et al., 2019) and 
are likely too complex for deterministic modeling of single 
occurrences of missed alerts. Often, alerts are declared as 
missed when pilots fail to react. Knowing what made a pilot 
fail to react or what pieces of information he or she was 
unable to process gives diagnostic value and helps to 
identify adequate means of support. For cognitive assistance 
in handling flight deck alerts, information about a message’s 
contents and whether it was processed by the pilot is a 
viable alternative to complex models required for 
deterministic prediction of user states. 

Consequences of an overheard or ignored message for 
pilots’ performance can be anticipated with the help of a 
cognitive pilot model. ACT-R (Anderson et al., 2004) is a 
comprehensive and scientifically substantiated cognitive 
architecture that has produced models representing 



processes e.g. involved in “manual” flight control of single 
engine aircraft (Somers & West, 2013), visual attention 
allocation in a glass cockpit (Byrne et al., 2004) and the use 
of and skill acquisition for the flight management system 
(Schoppek & Boehm-Davis, 2004; Taatgen, Huss, & 
Anderson, 2008). For model-based assistance such formal 
descriptions of flight related tasks and processes can 
describe what constitutes normative performance.  

Neuroadaptive cognitive model 
In the present paper a modeling concept is proposed that is 
able to explain uncertainty in single instances of missed 
alerts by representing individual pilots’ behavior. In the 
fashion of Putze et al. (2015) we extend the idea of model 
tracing (Fu et al., 2006) by incorporating physiological data. 
Whereas Putze et al. (2015) integrate physiological data to 
model architectural differences, i.e. occupying cognitive 
resources with a dummy model to model workload, the 
concept in this paper focuses on modeling knowledge 
differences (Taatgen, 1999) due to unprocessed auditory 
messages. 

Model tracing based on monitoring pilot interactions with 
flight deck instruments enables the model to identify when 
performance deviates from normative behavior. Based on 
such deviations, the model can make inferences about the 
pilot’s cognitive states. By treating instances of deviating 
behavior as situations it cannot explain due to lack of 
knowledge, the model consults external sources of 
information, i.e. event-related physiological data of the pilot 
it tries to represent. 

Physiological measurements, e.g. electroencephalography 
(EEG) can provide information about cognitive operations. 
With a passive brain computer interface (Zander & Kothe, 
2011) EEG can be recorded without interfering with the task 
and data can be processed in (almost) real-time. The 
integration of these data into the model allows for more 
refined representations of individual pilots. Such a 
neuroadaptive (Zander, Krol, Birbaumer, & Gramann, 2016) 
cognitive model would be able to adjust its generic or 
normative behavior to measurements of a pilot’s current 
cognitive state and to identify current needs for assistance. 

Physiological measures can be subject to errors that 
introduce intrinsic or aleatory uncertainty (Kiureghian & 
Ditlevsen, 2009). Whereas epistemic uncertainty represents 
defined model boundaries, aleatory uncertainty is hard to 
identify in single situations where there is no ground truth 
available. That is, the model is able to identify situations of 
deviating behavior, but it cannot say which of the 
physiological data are affected by measurement or 
classification error and which are not. In model-based 
cognitive assistance, thoughtful handling of the two types of 
uncertainty is required (see Figure 1 for an overview of type 
of uncertainty introduced by data source). 

 

Figure 1: Sources of uncertainty in neuroadaptive concept 

The objective of this study is to increase the effectiveness 
of modeling individual pilot behavior in response to flight 
deck alerts. For increased effectiveness, model tracing and 
EEG recordings are used to reduce uncertainty due to 
individual differences. Behavioral data from an empirical 
study on the neurophysiological reaction to auditory signals 
in simulated flight (Krol et al., 2018) are modeled to 
demonstrate how the proposed concept can be implemented. 
Accuracies of a neuroadaptive cognitive pilot model and 
normative model are compared to quantify the fraction of 
uncertainty reduced by inserting pilots’ EEG data. 
Epistemic and aleatory uncertainty are quantified and 
examined regarding their implications for model-based 
cognitive assistance in flight operations. 

Methods 

Empirical study 
21 air crew (one female) who were predominantly military 
pilots participated in the empirical flight simulator study. 
Participants had a mean age of 49.08 years (SD = 6.08) and 
an average experience of 3230 hours of flight (SD = 
2330.71). All participating air crew had normal or corrected 
to normal vision, all but two were right-handed. Air crew 
were seated in a fixed base experimental flight simulator in 
single pilot setup that approximated Airbus A320 cockpit 
design. Participants were asked to perform an 18 minutes 
scenario that consisted of 9-14 events resembling flight deck 
alerts per participant, each preceded by auditory warnings or 
air traffic control (ATC) messages. The scenario had to be 
flown by selecting heading and altitude on the auto flight 
system according to ATC instructions. In addition, 
participants were asked to manage thrust manually and 
attend to alerts. Alerts included in the scenario could have 
low (“amber alert”, e.g. fuel pump failure) or high priority 
(“red alert”, e.g. engine fire) and ATC messages contained 
navigation or speed instructions. Speed warnings were 
issued dynamically whenever participants left a speed 
threshold area, which resulted in different numbers of 
acoustic events per participant. For the scenario, the open 



source flight simulation software “FlightGear 3.4”1 was 
used. Essential instrument properties and state changes in 
the scenario were recorded in log files with a sampling rate 
of 20 Hz.  

Before the flight scenario, participants’ EEG was 
recorded while performing an auditory oddball paradigm 
(frequent versus rare sounds). A classification algorithm 
was trained on the EEG data to recognize activity patterns 
for processing of target (i.e. processed alerts) and standard 
sounds (missed alerts). The algorithm was tuned to have 
equal chances for false alarms and misses in case of 
incorrect response classification. Due to the frequent use of 
standard compared to rare target sounds in the training 
paradigm, classifier accuracy needs to be higher than 0.78 to 
perform significantly better than chance. EEG was recorded 
during classifier training and scenario with a 32 channel 
BrainProducts LiveAmp system. 

Cognitive modeling 
ACT-R was used to create a cognitive model to represent 
individual pilot’s behavior. ACT-R consists of memory, 
perceptual and motor modules that interact with each other 
by exchanging chunks of information through buffers. The 
declarative memory module can hold and store information 
about the task state, whereas procedural memory allows for 
modeling productions (condition-action-statements) that 
apply depending on the state of the task or the environment. 
Perceptual and motor modules allow for modeling of basic 
sensory processes and enable a model to interact with the 
environment. When modeling pilot activities, the respective 
modules can be used to represent storing and updating flight 
information such as altitude and speed, procedures for how 
to react in case of alerts, and auditory and visual perception 
of messages in the cockpit. 

For assistance in operations, a cognitive pilot model 
needs to be flexible, adaptive at runtime and knowledgeable 
of the operational context. Not only does it need to know 
what constitutes optimal or normative performance of a 
task, but also alternative means to meet the objective. In 
case of deviations from normative performance, it has to be 
able to adapt its functionality and adjust its representation of 
the pilot. Finally, the model needs to be able to anticipate 
the consequences of both normative and alternative 
performance in a task so it can offer support when needed. 

A scenario specific hierarchical task analysis (HTA; 
Stanton, 2006) was conducted identifying seven main tasks 
of which one routine and six alert specific tasks. Main tasks 
were then split up iteratively until the lowest level of actions 
that can be observed in simulator log files. Based on this 
HTA, an ACT-R cognitive model was created that was able 
to memorize flight information by reading airspeed and 
altitude data, decide when to adjust the throttle, process and 
respond to auditory messages, and check if its own actions 
match pilot’s actual behavior. This model will be referred to 
as the “normative” model. 

                                                           
1 http://home.flightgear.org/ 

An extended version of ACT-CV (Halbrügge, 2013) was 
used to create an interface and FlightGear log files. ACT-R 
did not interface with FlightGear directly (see Somers & 
West, 2013), but through recordings of individual 
participants’ performance The graphical interface of the 
flight simulator was represented textually, e.g., “on”, “539”, 
in ACT-R’s visual representation of the environment, the 
visicon. As the study’s focus was not on visual behavior, 
different parameters (e.g., airspeed, altitude, etc.) were 
presented at pre-defined locations independent of Airbus 
cockpit design. Parameter changes linked to events (e.g., 
engine1-on-fire from “0” to “1”) triggered sounds in ACT-
R, so messages from the cockpit were presented in the same 
modalities as in the empirical study. Processed EEG data 
were displayed as event-related Boolean variable (“1” for 
alerts processed as target sound, “0” for standard sounds). 
Contents of ATC messages in the controller-pilot datalink 
communications could not be communicated through 
FlightGear. As a workaround, an extra buffer was added that 
gives the model access to information not displayed in the 
visicon. 

 

 

Figure 2: Routine loop in both models 

For the routine task (see Figure 2), the model monitors 
variables of airspeed and altitude that were shown in the 
simulator’s primary flight display. Based on these data, it 
computes trends for speed and altitude and updates its 
internal representation of the flight information that is stored 
as declarative knowledge in an imaginal buffer. If airspeed 
approaches threshold values, the model prepares to adjust 
the thrust accordingly. If speed trend is not increasing or 
decreasing considerably, the model returns to monitoring 
speed or altitude after updating its flight information. 

In case of auditory signals, the model leaves this routine 
loop and processes the sound and the corresponding 
message. In case of ATC messages, it processes 

http://home.flightgear.org/


navigational instructions and stores them in the imaginal 
buffer. If the model hears an alert, it retrieves a checklist 
matching the alert type and puts the response required from 
the pilot in its imaginal buffer. For all acoustic events, the 
normative model assumes that pilots will respond 
adequately and, after each event, it checks the log data for 
the required pilot response to evaluate if its assumption is 
correct. Situations where pilots do not respond adequately 
are treated as epistemic uncertainty and marked as cases 
when some sort of assistance should be provided. 
 

 

Figure 3: Alert procedure for neuroadaptive model 

The neuroadaptive model forms an extension of the 
normative model. It follows the same courses of action for 
routine tasks and acoustic events that were followed by an 
adequate pilot response. If no adequate response is 
observed, the neuroadaptive model consults the EEG data to 
check if the pilot had paid attention to the sound (see Figure 
3). If EEG data show the pilot has processed the alert or 
message like a standard stimulus, the neuroadaptive model 
updates its description of the situation to a missed alert. The 
model considers these cases as situations that require verbal 
reminders of the alert or message. Situations where no 
adequate response was observed but EEG-data show the 
preceding sound was processed are treated as epistemic 
uncertainty. For these situations, the model knows that 
assistance of some form other than a verbal reminder is 
needed. 

Analysis 
For this study the first reaction to the auditory events was 
evaluated, i.e. adjusting selected altitude in response to ATC 
messages or opening a checklist in response to alerts. In 
both models epistemic uncertainty was scored as incorrect 
description of pilot behavior. Both the normative and the 
neuroadaptive model could correctly describe situations 

with adequate pilot reactions to acoustic events; in addition, 
the neuroadaptive model was able to classify lacking 
responses as correct descriptions, when EEG data showed 
no reaction to the sound.  

Correctly described responses are scored with 1, 
incorrect response descriptions with 0. For each participant, 
both models divide the sum of correct descriptions by the 
total number of alerts and ATC messages to quantify model 
accuracy. For both models, mean accuracy is computed 
across pilots. As the number of auditory events was not the 
same for all participants due to ATC speed messages, 
median and interquartile range had to be used as measures 
of central tendency and dispersion. Wilcoxon signed rank 
tests for pairwise comparisons are used to quantify added 
value of EEG-data for the neuroadaptive model. 

Aleatory uncertainty in the neuroadaptive model is equal 
to one minus EEG classifier accuracy. As the data give no 
information about which situations are concerned by 
classifier inaccuracies, aleatory uncertainty is accepted and 
scored as correct. Added value of neuroadaptivity to the 
normative model is quantified by subtracting normative 
from neuroadaptive model accuracy. By multiplying added 
value with EEG classifier accuracy, a mean accuracy of the 
neuroadaptive model corrected for aleatory uncertainty can 
be computed. 

Results 

 

Figure 4: Median accuracy per model 

In total, behavior descriptions for 225 events were 
generated by each model for all pilots with an average of 
10.7 (SD = 0.9) per pilot. The normative model correctly 
described participant’s behavior for 163 of these events 
(AccNorm. = 0.72) with a Median model accuracy of 
MDNNorm. = 0.70 (IQR = 0.80 - 0.67; Figure 4). Thus, the 
total amount of uncertainty treated as epistemic is 0.30. 

The neuroadaptive cognitive model generated correct 
descriptions in 213 of 225 cases (AccNeuro. = 0.95) with a 
median accuracy of MdnNeuro. = 0.92 (IQR = 1.0 - 0.9; Figure 
4). The uncertainty treated as epistemic is therefore 0.05. 



The signed rank test showed that neuroadaptive model 
accuracy is significantly higher compared to the normative 
model (z = -4.01, p < 0.01).  Added value of the EEG-data is 
0.23. Correcting the added value for the EEG classifier 
accuracy of 0.86 results in a corrected accuracy of the 
neuroadaptive model of 0.92 and aleatory uncertainty of 
0.03. 

Model accuracies per participant and model are shown in 
Figure 5. 

 

Figure 5: Mean accuracy per participant and model 

Discussion 
The presented concept and its application demonstrate how 
pilot performance can be modeled in spite of individual 
differences using model tracing and physiological data. The 
distinction between aleatory and epistemic uncertainty 
(Kiureghian & Ditlevsen, 2009) and their quantification was 
decisive for the neuroadaptive model’s design and 
implementation. Data show how model accuracy can be 
significantly increased by connecting model-tracing and 
EEG data in line. The specification of remaining fractions of 
epistemic and aleatory uncertainty provide starting points 
for further improvement of the concept. 

Whereas flight deck instrument interactions can be 
observed directly, unprocessed alerts can only be detected 
by behavioral or physiological symptoms. Due to aleatory 
uncertainty introduced by the EEG classifier, model tracing 
with instrument and EEG data had to be connected in line to 
maximize effectiveness in reducing epistemic uncertainty. 
Compared to other studies using EEG data to model effects 
of individual differences, the integration of EEG data was 
quite straightforward for the neuroadaptive model and did 
not require a dual model approach (Putze et al., 2015). 
Model tracing based on the log files proved effective in 
detecting deviations from normative behavior due to an 
increased density of acoustic events in the scenario. Real 
flight however contains long periods of monitoring 
instruments without direct input required. Deriving mental 
states based on model tracing (Fu et al., 2006) in such 

highly automated or autonomous environments could 
therefore require other pilot behavior data sources, e.g. 
unobtrusive monitoring of neurophysiological activity, 
speech or gaze. Cognitive models are well suited for the 
interpretation of such data by linking physiological 
phenomena to context.  

Apart from measurement and classification errors, the 
neuroadaptive model was able to explain ~81% of the 
normative model’s epistemic uncertainty, leaving a total of 
5% of cases when the model does not know what made 
participants fail to react adequately. These data suggest that 
cognitive assistance in form of verbal reminders would 
suffice to help with performance recovery in all other 
situations lacking responses from participants. 

Normative model accuracy represents the effects of 
individual differences on performance given the scenario. 
By design, the neuroadaptive model improves on the 
normative model; the significance of improvement with the 
EEG data is moderated by the effect of individual 
differences. Nonetheless, increased accuracy of the 
neuroadaptive model shows how epistemic uncertainty can 
be reduced with the help of physiological data. For an 
empirical evaluation of the concept, a comparison with 
alternative designs for model-based assistance is required. 
E.g., a wizard-of-oz setup with a human co-pilot interpreting 
pilot behavior could be compared to the effectiveness of the 
neuroadaptive model.  

The neuroadaptive model tracks pilots’ perception of 
auditory events. The fact that a piece of information has 
been perceived and processed by a pilot does not mean that 
it has been understood. Measures of pilots’ situation 
assessment and awareness (Endsley, 1995) may help to 
reduce epistemic uncertainty about why a pilot may fail to 
respond adequately. Physiological symptoms of cognitive 
conflict can be used to identify when information that was 
perceived could not be comprehended by the pilot. 

Mean accuracy of the neuroadaptive model corrected for 
aleatory uncertainty is 92 %. Aleatory uncertainty may be 
reduced with other independent physiological measures, e.g. 
eye tracking. EEG classification could be supported with 
corresponding gaze data by connecting both methods in 
line. E.g., when the EEG data show that a pilot has 
processed an alert, saccades to the warning display after the 
alert can reduce the uncertainty by eye tracking 
classification accuracy. 

Further research is required on how to model individual 
differences with the help of behavioral and physiological 
measures of operators’ cognitive states. Model-based 
assistance in human machine interaction can provide 
machines with an implicit feedback loop that allows to 
check if the information they provide is perceived and 
understood by the user. Ideally, this will enable machines to 
form a more refined model of their users and to anticipate 
their behavior in much the same way that humans learn to 
interact with a machine. 
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