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Abstract 

When learning similar stimuli, we tend to group them together. 
This categorization is a behaviour which all humans share. Yet, 
the pathways undertaken by the brain differs between 
individuals. To investigate this phenomenon, a Feature 
Extracting Bidirectional Associative Memory (FEBAM) was 
used to generate representations of various grouped stimuli. It 
was determined that representations created by different 
FEBAMs were always new. However, the learning behaviour 
was always the same. The generated representations were 
always categorized into the right category. Finally, by lowering 
the size of these representations, prototypes of the categories 
could be created. Recall tests showed that reconstructed 
prototypes remained the same across all FEBAMs, even if the 
representations themselves differed. This shows that although 
the encoding pathways might differ between individuals, the 
learned cognitive concepts do not. These findings are 
promising steps towards better understanding how individuals 
exhibit common cognitive functionality despite variability in 
neural activity. 

Keywords: Variability; Categorization; Feature-Extraction; 
Associative Learning; Bidirectional Recurrent Neural 
Networks, Cognition. 

Introduction 

There are billions of human beings on this planet and each 

one of them can understand and share complex concepts such 

as language, games, music and much more. This common 

cognitive understanding is mind boggling when individuality 

is considered. There is no brain that is the same as another, 

with each containing a unique arrangement of its neural 

structures and connections (Sporns, Tononi, & Kötter, 2005; 

Thompson, Schwartz, Lin, Khan & Toga, 1996). When 

presented with the same learning task, different individuals 

will exhibit different neural activity (Churchland et al., 2010; 

Mueller et al., 2013). While perception can change based on 

certain differences in anatomical structures, surprisingly, this 

variability does not seem to drastically change an individual’s 

understanding of the world and/or its relationships with 

others. While the neurological pathways involved are 

different across individuals, the behaviour remains 

consistent. In other words, from different neural activities, the 

same cognitive functionality can be observed. That being 

said, the mechanisms behind such commonality from 

variability are yet to be fully understood. 

An encouraging avenue to better understand this would be 

to explore the concept of associative learning and 

categorization. Associative learning can be seen as linking 

two or more stimuli together (Rescorla & Wagner., 1972). 

One of its interesting characteristics is the ability to recall one 

stimulus when only presented with a partial cue (McCleland, 

McNaughton & O’reilley, 1995). This process forms the 

basis of categorization whereas similar patterns are grouped 

together to form a category (Shields, Rovee & Collier, 1992). 

However, how these “grouped” patterns are represented in 

our brain remains a mystery. Are the encoded representations 

of stimuli different across individuals? If so, do they respect 

the relationship between stimuli, i.e. correctly categorized? 

In other words, if stimuli are similar, are their representations 

also similar?  

In cognition, such questions can be explored using formal 

models (Forstmann, Wagenmakers, Eichele, Brown & 

Serences, 2011). Specifically, artificial neural networks 

(ANNs) have been an exciting approach to study various key 

cognitive concepts such as associative learning and 

categorization (Mareschal, French, & Quinn, 2000). One of 

the many interesting properties of ANNs dwells in the 

initialization of weight connections. By randomly initializing 

the connection weights, each individual instance of a network 

will be different, analogous to the variability found in human 

brains. However, what would be interesting is that different 

instances of a network would display the same behaviour 

when presented with the same learning task. 

Among ANNs are Recurrent Associative Memories, which 

are designed to implement associative learning (Acevedo-



Mosqueda, Yáñez-Márquez, & Acevedo-Mosqueda, 2010). 

Particularly, there is the Feature Extracting Bidirectional 

Associative Memory, or FEBAM (Chartier, Giguère, 

Renaud, Lina & Proulx, 2007), which can create perceptual 

features from input patterns via feature extraction (Rolon-

Merette, Rolon-Merette & Chartier, 2018). This property 

allows the FEBAM of category development (grouping 

similar patterns together based on their correlation). 

However, a question remains. When presented with the same 

stimuli, will the FEBAM always generate new 

representations and if so, will it exhibit the same learning 

behaviour? In other words, will the representations be 

categorized in the same manner even if they are always new? 

This would shed light on the mechanisms allowing common 

cognitive functionality found between individuals.  

The next section gives a short description of the FEBAM 

and a cluster analysis, followed by three simulations. In 

simulation I, it was investigated if the representations created 

by different instances of the FEBAM are always new. In 

simulation II, the exemplar categorization was observed with 

a learning task consisting of grouped patterns. In simulation 

III, under the same learning task, the size of representations 

was varied to examine prototype categorization. Finally, this 

paper ends with a short discussion.  

Model 

The FEBAM is a completely unsupervised recurrent ANN, 

meaning it does not have any explicit teacher. The entirety 

of the model can be described by its architecture, 

transmission function and learning function.  

 

Architecture 

The FEBAM architecture is illustrated in Figure 1. The model 

has two layers of interconnected units in a bidirectional 

fashion, where the W and V layers return information to each 

other. Contrary to traditional bidirectional associative 

memories, there is only one explicit connection, x(0), to 

allow the network to perform feature extraction. 

 
Figure 1: Architecture of the FEBAM 

 

Output function 

The transmission function is defined by the Equations 1a and 

1b: 

(1a) ∀𝑖, … , 𝑁, 𝑦𝑖(𝑡+1) = 𝑓(𝑎𝑖(𝑡)) = {

1, 𝑖𝑓 𝑎𝑖(𝑡) > 1

−1, 𝑖𝑓 𝑎𝑖(𝑡) < −1

(𝛿 + 1)𝑎𝑖(𝑡) − 𝛿𝑎𝑖(𝑡)
3 , Else

 

 

(1b) ∀𝑖, … , 𝑀, 𝑥𝑖(𝑡+1) = 𝑓(𝑏𝑖(𝑡)) = {

1, 𝑖𝑓 𝑏𝑖(𝑡) > 1

−1, 𝑖𝑓 𝑏𝑖(𝑡) < −1

(𝛿 + 1)𝑏𝑖(𝑡) − 𝛿𝑏𝑖(𝑡)
3 , Else

 

Where N and M are the total number of units in each layer, i 

is the index unit, δ is the general transmission parameter and 

a and b are the activations. These activations are obtained 

the following way: a(t)=Wx(t) and b(t)=Vy(t).  

 

Learning rule 

The connection weights are modified following a 

hebbian/anti-hebbian rule: 

(2a) 𝐖(𝑘 + 1) = 𝐖(𝑘) + 𝜂(𝐲(0) − 𝐲(𝑡))(𝐱(0) + 𝐱(𝑡))
T

 

(2b) 𝐕(𝑘 + 1) = 𝐕(𝑘) + 𝜂(𝐱(0) − 𝐱(𝑡))(𝐲(0) + 𝐲(𝑡))
T

 

 

Where x(0) and y(0) are the initial inputs, η is the learning 

parameter and k is a given learning trial. Equation 2a and 2b 

shows that the matrix weights will converge when x(0) = x(t) 

or y(0) = y(t). To reduce the simulation time the number of 

iterations was set to t = 1. It is guaranteed that the learning 

will converge if the learning parameter (η) is smaller than the 

following value (Chartier & Boukadoum, 2006): 

(3) 𝜂 <
1

2(1−2𝛿)Max[𝑀,𝑁]
 , 𝛿 ≠

1

2
    

 

FEBAM learning process 

As previously mentioned, in the FEBAM, there is only one 

explicit connection x(0), meaning the y(0) inputs are not 

initially available. Instead, they are obtained after a first 

iteration through the network. As shown in Figure 2, y(0) is 

obtained by the iteration of x(0) through its corresponding 

weight connections W using the transmission function. 

Subsequently, x(1) is obtained from y(0) and finally, y(1) 

from x(1). Through the weight updates, each x(1) and y(1) 

will converge to a solution that will try to best reconstruct its 

associated initial pattern x(0) or its initial output y(0). Thus, 

in the case where x(1) does not equal x(0), weight 

convergence will be granted by y(1).  

The number of units in the y–layer determined the 

dimensionality (size) of the generated representation.  

 
Figure 2: Iterative process for weight updates during 

learning in the FEBAM. 
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FEBAM Learning Procedure 

The transmission function’s parameter (δ) was set to 0.2 and 

the learning parameter (η) respected Equation 3 for all the 

simulations. Weights were randomly initialized with values 

between -0.1 and 0.1. Learning stopped when the network 

achieved a mean squared error (MSE) of less than 10-10 or 

when 5000 learning trials was reached. Learning was 

conducted following this procedure:  

1. Creation of a list of inputs respecting preset conditions. 

2. Random selection of a given exemplar from the list to 

obtain x(0). 

3. Iteration through the network (as illustrated in Figure 2) 

using the output function to obtain y(0), x(1) and y(1).  

4. Computation of weight updates according to the learning 

rule. 

5. Repetition of steps 2) to 4) until the minimum mean 

squared error between y(0) and y(1) or maximum trials is 

reached. 

Cluster Analysis 

In order to partition the generated representations into 

categories, k-mean clustering was used. For a chosen number 

of clusters k, the algorithm randomly sets k centroids in 

feature space and assigns each data point to the category of 

its nearest centroid. The positions of each centroid are then 

iteratively readjusted such that the within-category distance 

of the resulting categories is minimized. Lloyds algorithm 

and K-means++ initialization were implemented with the 

SickitLearn library on Python (Arthur & Vassilvitskii, 2007; 

Kanungo, Mount, Netanyahu, Piatko, Silverman & Wu, 

2002). The sum of the squared distances between data points 

and their centroid is presented by distortion. A priori, the 

number of clusters that would most appropriately divide the 

data cannot be known and its high dimensionality makes it 

prohibitive to determine it visually. Instead, the elbow 

method was applied to select the optimal number of clusters 

(Kodinariya & Makwana, 2013). Cluster analysis was 

conducted under two different scenarios. Scenario A will be 

used to examine variability across all FEBAMs (Simulation I 

and IIIb). Scenario B allows to find the average behaviour of 

an individual FEBAM (Simulation II and IIIa).  

Scenario A 

1. Creation of input patterns respecting preset conditions. 

2. FEBAM learning as specified in the learning procedure. 

3. Repetition of steps 1) and 2) for all FEBAMs. 

4. K-Means cluster analysis on generated representations of 

all FEBAMs at once from step 3). 

Scenario B 

1. Creation of input patterns respecting preset conditions. 

2. FEBAM learning as specified in the learning procedure. 

3. K-Means cluster analysis on generated representations of 

each individual FEBAM. 

4. Repetition of steps 1) to 3) for all FEBAMs. 

5. Calculate average distortion and number of clusters from 

step 4). 

Simulation I: new representations 

The number of different generated features was studied when 

the inputs were kept constant. The task consisted of three 

learning conditions of different input patterns and generating 

their associated representations. In each condition, the 

patterns were fed to multiple FEBAMs, mimicking the 

learning process of different individuals. The generated 

outputs, or representations, were then analyzed with k-means 

clustering using Scenario A.  

Methodology 

Three different learning conditions were studied using 

pixelated bipolar inputs patterns of dimension 50, where 

black pixels represent the value of +1 and white pixels -1. 

The “pattern” condition consisted of a single pattern. The 

“category” condition consisted of two categories of five 

highly correlated patterns. Each pattern within a category 

exhibited a correlation of 0.95 and the correlation between 

patterns of both categories was set to 0.15. Finally, in the 

“random” condition, ten inputs were generated with low 

correlations varying from 0.01 to 0.30. All three conditions 

are presented in Figure 3.  

In order to have a good estimate of the behaviour, the input 

patterns were presented to 1000 different FEBAMs, each 

with a different set of randomly initialized weight 

connections. The size of the generated representations was 

kept constant at a dimension of 50. Finally, for each 

condition, k-means clustering analysis was conducted on the 

generated representations of all the FEBAMs at once, as 

stated in Scenario A.  

 
Figure 3: Input patterns for the “pattern” (a), “category” 

(b) and the “random” (c) conditions.  

Results 

Different FEBAMs generated different representations when 

presented with the same pattern(s). Figure 4 illustrates an 

example of this process. Figure 5 shows the results of k-

means clustering for each condition. As the number of 

clusters created increased, the distortion decreased. However, 

for all three conditions no elbow was observed. 



 
Figure 4: Generating representations for the “pattern” 

condition with different FEBAMs. 

 

 
Figure 5: Cluster analysis on representations formed across 

1000 different FEBAMs.  

Simulation II: Exemplar categorization 

In this section, we further investigate whether different 

FEBAMs respect the same behaviour during exemplar 

categorization. To do this, we extended the condition 2 of 

simulation I to five categories. However, in this case, 

clustering analysis will be conducted on individual FEBAMs 

and not all at once, as stated is Scenario B.  

Methodology  

The same method described in simulation I was used to 

generate input patterns.  Here, two to five categories were 

generated. Each category contained five patterns. The 

correlation of patterns within the categories was 

approximately 0.95 and the correlation of patterns between 

the categories was set to approximately 0.15. The 

dimensionality of representations (outputs y units) was set 

again to 50. Each set of patterns were presented to 1000 

different FEBAMs with the same learning procedure and 

parameters as previously described. Subsequently, following 

Scenario B, k-means cluster analysis was conducted on the 

generated patterns of individual FEBAMs only. Within-

category and between-category correlation of generated 

representations were also examined. Finally, a recall test was 

performed to verify that patterns were correctly categorized.  

Results 

In Figure 6, an example of exemplar categorization is 

presented. In Figure 7, the mean number of clusters and 

distortion for the 1000 FEBAMs are presented. Results show 

that the generated representations respected the number of 

categories found in the input patterns (e.g. two categories, 

two clusters of generated representations). Furthermore, the 

average within-category correlation of generated 

representations was 0.75 and the average between-category 

correlation was <0.05. Lastly, the recall test yielded a 

performance of 100% correct pattern categorization. 

 
Figure 6: Example of exemplar categorization. Within 

category (black) and between category (gray) correlation 

for input (a) and output (b) patterns are presented. 

 

 
Figure 7: Average distortion and number of clusters for 

generated representations in function to the number of 

categories. 

Simulation III: Prototype categorization 

In this last simulation, the goal was to examine the behaviour 

of the FEBAM during prototype categorization. A previous 

study showed that if the dimensionality of the representations 

is small enough when compared to the number of patterns, 

prototypes are formed (Giguère, Chartier, Proulx & Lina, 

2007). However, the variability of recalled prototypes formed 

across different FEBAMs was not investigated. 

Methodology  

Two categories of input patterns, each containing five 

patterns, were generated in the same fashion as in Simulation 

Ib and II. The dimensionality of generated representations 

(number of y units) was varied from 5, 10, 25, 50 to 100 

dimensions. The patterns were presented to 1000 different 

FEBAMs using the same learning procedure and parameters 

as in simulation I and II. Two clustering analyses were 

conducted.  



Simulation IIIa. First, to determine the relationship 

between distortion and size of representations, k-means 

cluster analysis was conducted on generated representations 

from individual FEBAMs. This was done following the 

procedure described in Scenario B.  

Simulation IIIb. Second, to determine the variability of 

recalled patterns, k-means clustering analysis was conducted 

on generated representation of dimension 5 and their recalled 

patterns for all FEBAMs at once. This was done following 

the procedure described in Scenario A. 

Results 

Figure 8 shows the first cluster analysis. The average number 

of clusters and distortion is presented. In all cases, two 

clusters were formed. Additionally, by lowering the 

dimensionality of the representations, clusters with lower 

distortion began to appear. With representations of dimension 

5, two clusters accounted for all the distortion, suggesting that 

prototypes were created.  

 
Figure 8: Simulation IIIa. Relationship between the 

number of clusters and number of y units.  

 

In Figure 9, the second k-means clustering is shown. When 

looking at the generated representations across the 1000 

FEBAMs, it is quickly noted that no clusters were observed.  

This is consistent with the results from Simulation I, different 

FEBAMs will always generate different representations. 

Furthermore, when looking at the recalled patterns, two 

clusters are shown. However, these accounted for almost all 

the distortion. This suggests that although coming from 1000 

different FEBAMs, the same two patterns were recalled. 

Figure 10 illustrates this process. 

 
Figure 9: Simulation IIIb. Recalled prototypes and 

generated representations clustering across 1000 FEBAMs.  

Discussion 

The goal of this paper was to determine if the FEBAM could 

shed light on the categorization process found within and 

between individuals. Results from simulation I showed that 

when learning the same stimuli, different FEBAMs will 

generate diverse representations of these input patterns. As 

seen by the absence of clusters during a k-means clustering 

analysis. This result was expected since connection weights 

were initialized randomly.  

However, in simulation II, it was found that although 

different FEBAMs generate different representations, their 

learning behaviour remained the same. This was first shown 

by looking at the correlation of generated representations 

from each FEBAM. The within-category correlation (≈ 0.75) 

was far greater than the between-category correlation (≈ 

0.05). This was further shown with a k-means clustering 

analysis on the representations. The analysis put forward the 

fact that the number of clusters corresponded to the number 

of categories.  In addition, recalled patterns were correctly 

categorized into individual exemplars. These findings are 

keys since it proposed that the FEBAM will have the same 

encoding behaviour even if the initial connection weights are 

different. This also contributes to previous work by showing 

that both representations and reconstructed patterns are 

categorized in the same manner (Giguère, Chartier, Proulx & 

Lina, 2007). 

 
Figure 10:  Example of Prototype categorization. Two categories of input patterns are presented to (n) different FEBAMs. 

These generate representations of dimension 5. Although representations are always different, the same two patterns are 

recalled. These recalled patterns act as a prototype for each input category. 

 



This characteristic was further explored with prototype 

categorization. Simulation III showed that different FEBAMs 

constructed the same prototypes even if the stored 

representations were different. If the size of the 

representations is equal or lower than the number of patterns 

of a given category, then the same pattern was always 

recalled. This recalled pattern was a prototype of all input 

patterns within a given category. Thus, even if the initial 

learning conditions and subsequent generated representations 

are different, the network will still create the same prototypes. 

To sum up, this study showed that the FEBAM is a good 

model for categorization, capable of both exemplars and 

prototypes encoding while also accounting for individual 

differences. The findings are a promising step towards better 

understanding how individuals exhibit common cognitive 

functionality despite variability in neural activity and may 

help in defining the optimal conditions to perform a 

classification task.  

Future work could focus on how manipulating weight 

initialization may influence learning. A change in initial 

weight connections between different FEBAMs could result 

in a corresponding change in their generated representations. 

Furthermore, depending on the size of the network, the 

FEBAM exhibits different behaviours during reconstruction 

of the input patterns (prototype or exemplar recall). An 

interesting property would be to grow (increase y-units) or 

prune (decrease y-units) the network based on a task. This 

would help to surpass the current task specific problem and 

allow the model to be more generalized.  
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