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Abstract 

Cardiopulmonary resuscitation (CPR) is a real-world basic 
lifesaving skill that requires a complex combination of 
declarative memory and psychomotor skill. It is also simple 
and brief enough to be practical for laboratory use. Here we 
describe a repeated measures study with increasing lags 
between sessions. At the time of the writing of this initial 
manuscript submission, the final session of CPR performance 
data has not been run. This paper documents our participant-
level performance predictions for that final session, using the 
Predictive Performance Equation (PPE; Walsh, Gluck, 
Gunzelmann, Jastrzembski, & Krusmark, 2018). With the final 
lag period for that final experiment session at approximately 
one year for every participant, we will be able to assess 
predictive accuracy of PPE over an ecologically relevant 
timeframe. 
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Introduction 
Cardiopulmonary resuscitation (CPR) is an essential 

component of first aid training. The Basic Life Support CPR 
procedure, as laid out by the European Resuscitation Council 
(ERC) guidelines (Soar et al., 2015), includes an assessment 
of the so-called victim (check response, check breathing) and 
a series of steps (alert emergency services, hand positioning) 
before the actual chest compressions and rescue breaths are 
administered in a cycle of 30 compressions and two rescue 
breaths. In addition to its being a critical life-saving skill, 
CPR is a useful domain for studying human performance. It 
is a task that combines declarative knowledge and 
psychomotor skills, and clear performance standards are 
available. High fidelity training and assessment equipment, 
such as the Laerdal QCPR manikin used in this study, record 
and store detailed performance measures automatically.  

Crucially, CPR certification entails periodic retraining to 
ensure performance remains above criterion. For medical 
professionals, retraining is typically completed every other 
year. This interval is often considered suboptimal as 
performance is likely to drop below the criterion during this 
period (Stross, 1983). Furthermore, the American Heart 
Association (AHA) recognizes that large individual 
differences in CPR performance exist, which complicates the 
prescription of ideal methodology and frequency of training 
(Nolan et al., 2015). Consequently, cognitive-psychological 

theories of learning and retention over realistic time-frames 
could provide a benefit to public health and safety by 
accurately predicting when someone should be provided with 
additional training to remain above performance criteria. 

To validate learning and retention theories for this purpose, 
we initiated the collection of a CPR dataset (Sense, Maaß, 
Gluck, & van Rijn, 2019, https://osf.io/m8bxe/). A benefit of 
studying CPR performance is that there exist certain sub-
populations who have been trained previously on this task 
before entering the lab. Specifically, part of the requirements 
to obtain a German driver’s license is to demonstrate CPR 
performance above criterion. Therefore, German students 
with a driver’s license are a suitable population to test long-
term retention of procedural and declarative knowledge 
because they had CPR training in the past, typically had no 
retraining, and there will be natural variation in time since 
last presentation.  

Mathematical models of learning and retention can help 
describe fluctuations in CPR performance over time based on 
individuals’ prior performance. Sometimes the motivation in 
research and application of these models is to optimize 
repetition schedules within individual learning sessions (van 
Rijn, van Woudenberg, & van Maanen, 2009; Sense & van 
Rijn, submitted). Earlier research has shown that an ACT-R-
based cognitive model can use response accuracy and latency 
on a trial-by-trial basis to predict when each studied item is 
likely to be forgotten and ensure rehearsal before that 
moment. This improves retention of the studied facts (Sense 
& van Rijn, submitted) and allows the estimation of a 
learner’s rate of forgetting (Sense, Behrens, Meijer, & van 
Rijn, 2016).  

 Other times the motivation is to predict performance over 
longer time periods between sessions. This is our primary 
interest in the analyses reported here. A model that has shown 
some promise regarding its predictive validity over those 
longer between-session intervals, regardless of the relative 
mix of declarative or procedural knowledge involved, is the 
Predictive Performance Equation (PPE; Walsh, Gluck, 
Gunzelmann, Jastrzembski, & Krusmark, 2018). PPE is a set 
of equations capturing key human performance dynamics. 
First, activation increases with the number of learning events 
(N). This is implemented as a power law of learning, with the 
learning rate fixed at 0.1 based on prior empirical evidence 
and model fits (Equation 1). Because participants enter the 
study at different experience levels, we add to N a free 



parameter, a, to represent each individual’s past CPR 
experience. Second, performance drops as a function of 
elapsed time among practice events (T; Equation 1). This is 
implemented as a power function of forgetting, with the 
decay rate determined by the function expressed in Equation 
4, below. In PPE the effects of learning and retention on 
activation is multiplicative, such that: 

 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  (𝑁𝑁 + 𝑎𝑎)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝑇𝑇−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟     (1) 

Third, PPE captures the spacing effect, such that retention 
is better and more stable when practice is distributed over 
time. This is implemented in the forgetting function through 
T and the decay rate. T is computed as the sum of the 
weighted age of each practice event,  
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where the weight, wi, is an exponential decay function of 
time, 
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Thus, T weighs practice repetitions so that more recent 
events carry more weight, and the variable x, which is fixed 
at 0.6, controls the degree of the weighting.  

The decay rate is computed as a function of the complete 
history of lags between successive practice opportunities 
(lagj):  
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Finally, in PPE performance is computed as a logistic 

function of activation: 
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PPE parameters are estimated separately for individuals 

based on their performance histories. For each individual, we 
compute the optimal values of the decay intercept, decay 
slope, threshold, and experience (a) parameters that 
maximizes the likelihood of individual performance 
trajectories. These parameter values are then used to generate 
out-of-sample predictions of performance at future points in 
time.   

An increasingly common modeling practice in 
environments with sparse and noisy data is to seed a model’s 
parameter values with priors. This avoids over fitting and 
improves out-of-sample prediction (Yarkoni & Westfall, 
2017). There has been some previous exploration of this 

approach in the context of PPE (Collins, Gluck, Walsh, & 
Krusmark, 2017; Collins & Gluck, 2018). Here we use priors 
generated from an independently completed CPR study 
(Jastrzembski et al, 2017). In that research, CPR compression 
data from four sessions separated by either one day, one 
week, one month, or three months were used to calibrate the 
model and generate model parameters for temporal 
predictions at either three or six months in the future. These 
model parameters were used in the current study to inform 
parameters generated during the model fitting process. The 
generalization of priors allows PPE to use available prior 
information about human performance on CPR. 

The current study was devised to assess the accuracy of 
personalized performance predictions. The ERC’s guidelines 
(Soar et al., 2015) state that “The intervals for retraining will 
differ according to the characteristics of the participants”. 
The availability of predictive models that take an individual’s 
performance profile over time into account permits such 
personalized predictions. Ideally, this would make retrainings 
more efficient and reduce the interval during which a medical 
professional might perform below criterion. The viability of 
personalized refresher schedules crucially depends on the 
accuracy of the predictions: Requiring people to retrain too 
early is a waste of resources but requiring them too late can 
cost lives. 

Method 

Participants 
Fifty participants (age range = [18, 27]) were recruited for a 
first learning session, 40 took part in the second session, and 
35 participated in the third session. All participants held a 
valid German driver’s license.  

Procedure and Stimuli 
The full experiment protocol includes four sessions in which 
CPR performance data are collected. At the time these model 
predictions were run, participants had completed three 
experimental sessions, with the fourth session upcoming. In 
addition to assessing CPR performance in all sessions, a set 
of computerized laboratory tasks more typical of 
experimental cognitive psychology were also administered in 
some of the sessions. These are documented elsewhere in 
detail (Sense, Maaß, Gluck, & van Rijn, 2019, 
https://osf.io/m8bxe/) and are not a focus in this paper. A 
graphical summary of the CPR-specific experiment protocol 
is provided in Figure 1. 

Session 1: Test 1.1. At the beginning of each session, 
participants signed the informed consent forms. In the first 
session participants then entered the experimentation room 
where a Laerdal Resusci Anne QCPR manikin was lying on 
the ground. Participants read the following instructions: “You 
volunteered for community service to help elderly neighbors 
with chores in their homes. When you enter the house of Mr. 
Johnson, you find him on the living room floor. There are no 
signs of bleeding or open wounds and no one else is in the 
house. Based on your first aid training, take the steps 



necessary in this situation on the manikin to assess and react 
upon the situation.” 

 

 
Figure 1. Overview of the experiment protocol. 
 

This scenario was chosen to sketch a hypothetical scenario 
that required participants to perform CPR on the manikin. 
They were asked to perform the necessary actions required 
according to the ERC guidelines (Soar et al., 2015). This 
means participants were supposed to alternate between 30 
compressions and two rescue breaths. Participants were 
stopped after administering four cycles of compressions and 
rescue breaths (i.e., 30-2, 30-2, etc.) to avoid fatigue. We 
refer to this procedure (i.e., initial steps followed by four 
rounds of 30-2) as one run-through of CPR.  

Performance scores were based on Laerdal’s proprietary 
scoring algorithm using the European guidelines (ranging 
from 0 to 100%; a score of 75% or higher is considered 
“proficient”).  

Retraining. After the initial assessment, participants were 
re-trained. First, participants watched a short instructional 
video (see https://osf.io/9er6g/) demonstrating the initial 
steps, as well as instructions on how to correctly apply chest 
compressions and rescue breaths. This video was specifically 
made for this research project.  

Subsequently, participants had the opportunity to practice 
compressions on the manikin with its live feedback option 
enabled for one minute. That is, for each compression 
participants could track their depth and frequency and adjust 
if necessary. Then participants practiced giving rescue 
breaths until the live feedback indicated that two correct 
breaths had been given in a row. Following retraining, 
participants completed a basic lab task. As noted earlier, due 
to space limitations, details about the basic lab tasks will not 
be discussed. 

Practice 1 and 2. Participants were instructed to “Perform 
the complete procedure you saw in the video, with four 
rounds of compressions and rescue breaths” twice while their 
performance was scored. 

After the run-throughs of CPR, participants completed 
questionnaires to gather demographic information, the date 
their driver’s license was issued, and the approximate number 
of months between obtaining their license and completing 
their CPR training. The time between the mandatory training 
and obtaining the driver’s license ranged from 1 to 60 months 
(mean = 9.92 and SD = 12.71). Participants then completed 
two more basic lab tasks. 

Test 1.2. Following the computerized tasks, participants 
were asked to complete another run-through of CPR. If the 
score of this test was below 75%, participants were re-trained 
until they reached criterion. 

Session 2: Test 2. Participants completed a run-through of 
CPR. If performance was below 75%, they repeated the run-
through. Participants also completed the full set of basic lab 
tasks. 

Session 3: Test 3. Participants completed another run-
through of CPR. If performance was below 75%, they 
repeated the run-through. Participants also did one minute of 
chest compressions without live feedback from the manikin, 
then rescue breaths until two consecutive ventilations were 
correctly performed. 
Session 4: Test 4. Participants will complete another run-
through of CPR. Then participants will watch the short 
instructional video again (as in Session 1) and complete 
another run-through of CPR.  

Predicting Future CPR Performance 
As noted earlier, individual participant single performance 
event-level predictions present a small data challenge, 
especially earlier in the protocol. To manage and avoid 
overfitting to unexplained individual event-level variation we 
use Hierarchical Bayesian Modeling (Kruschke, 2014; Lee & 
Wagenmakers, 2013) to bias the PPE parameters with priors 
from a previous CPR study and generate posterior predictive 
distributions for each participant remaining in this study 
through Session 3.  

In predicting CPR performance on Session 4, PPE’s free 
parameter values were estimated using the model shown in 
Figure 2. For each participant, the model estimates 
probability distributions for PPE’s free parameters (decay 
intercept, decay slope, a, threshold) that best characterize 
performance over the first three sessions. The estimates are 
based on a set of hyperparameters (decay interceptpop decay 
slopepop, apop, thresholdpop). that were estimated from 
individual-level CPR performance data collected in a 
previous CPR study (Jastrzembski et al, 2017). 

Unique parameter distributions are sampled for each 
individual participants from the hyperparameters to derive a 
distribution of values for each free parameter. The sampled 
set of parameters are then combined with the student’s fixed 
time variables (t, N) and are transformed into performance 
predictions (Perfi:n). The average of these performance 
predictions (Perfi:n) is represented by variable omega (ω) and 
is then combined with free parameter k, to represent the 
model’s prior beliefs of the student’s performance (𝜽𝜽). This 
prior is then combined with the student’s actual performance 
to generate a posterior estimate of performance. 
Under this methodology, PPE’s free parameter values are 
treated as a probability distribution, representing our degree 
of belief in a particular parameter value to generate a 
prediction. The final posterior probability distribution used 
to determine PPE’s prediction is affected by two factors: (1) 
Prior, the beliefs about the most likely free parameter values 
before observing the performance of a participant (i.e., Prior  



 

 
Figure 2. The hierarchical Bayesian model used to estimate free parameter values (Decay Intercepti, Decay slopei, ai, 
Thresholdi  - all shown in blue ) for PPE prediction of performance in the 4th CPR session, given prior distributions (Decay 
Interceptpop mean  , Decay Intercept pop sd, Decay Slopepop mean  , Decay slope pop sd, apop mean, a pop sd, Threshold pop mean, Threshold 
pop sd  - all shown in salmon) based on a sample of CPR performance from a different study and the participant’s prior 
performance across the first three sessions (Perf). Random variables are represented as circles, deterministic variables are 
represented as double circles, and observed variables (lag, t, Perf) are in grey. 
 
CPR performance), and (2) the performance of a particular 
participant over the course of three sessions (i.e., likelihood). 
These two factors are combined together to generate a 
posterior distribution for each of PPE’s free parameters. It is 
this posterior distribution that is used to make predictions for 
each participant’s next performance. We do this iteratively 
through the experiment protocol for each of the 35 
participants, culminating in a prediction for their upcoming 
performance in Session 4. 

Results 
Data collection for Session 4 is scheduled for May 2019, after 
the submission deadline of this manuscript. Our key interest 
at present is in documenting our predictions for each 
participant’s CPR performance when they return for Session 
4, approximately one year after they did Session 3.  

In the process of generating Session 4 CPR predictions for 
each participant, we ran several simulations to assess how 
different assumptions about participants’ past CPR 
experience would affect predictions. Recall that the 
participants in the current study were German college 
students with a valid driver’s license, which required them to 
successfully complete CPR training prior to getting their 
license. Thus, from the issue dates on the licenses, we know 
the approximate date of each participant’s initial CPR 
training. Although no performance measures are available, 
we assumed that all participants reached criterion level of 
performance (i.e., 75%) during this initial training. Based on 
this information, we combined the 75% performance score 
that we assumed at the time of licensing with the data from 
Sessions 1 and 2, and predicted performance on Session 3. 
We then compared the accuracy of these predictions to 
predictions from the model with only data from Sessions 1 

and 2 predicting Session 3. Results of this comparison 
showed that predictions were more accurate when we ignored 
the licensing data. A possible explanation for this is that we 
were making assumptions about the level of performance 
participants reached when they received their license, but not 
that they started with no experience. Thus, we ran the model 
again assuming that performance was 0 prior to their initial 
training, and that it increased to 75 afterwards. But again, this 
did not improve predictive accuracy. Predictions were more 
accurate when we made no assumptions about CPR 
performance prior to the onset of the study.  

Figure 3 plots data for the fit and prediction methodology 
described in the previous section for each of the 35 
participants. A data file documenting the raw values used to 
generate the graph is available at (https://osf.io/5ma29/). 
Performance scores are exported from Laerdal’s proprietary 
software, which combines the compression and rescue breath 
performance into a single score.  

On the initial test at the beginning of the first session, only 
two participants demonstrate proficient performance (a score 
of 75% or above), while many score below 25%. The CPR 
Retraining administered between CPR Test 1 and CPR 
Practice 1 results in a marked increase in performance, 
making the majority of participants reach criterion. Testing 
for a difference between those two scores with a paired 
Bayesian t-test yields a decisive Bayes Factor of 2.4×1017 in 
favor of a difference. The second practice marks a further 
increase in overall performance and the vast majority of 
participants retain above-threshold performance until CPR 
Test 2 at the end of the first session. In the eight-week interval 
until the second session, and performance decreases (BFH1 = 
9.95) but many participants still exhibit near-ceiling 
performance.  
 



 
Figure 3. CPR performance for each of the 35 participants. Observations within a session are connected by lines; sessions are 
indicated by color and shape. Session 1 is orange squares. Session 2 is a yellow circle. Session 3 is a green triangle. The 
model’s predicted performance is shown in blue, with mean predicted performance at each measurement indicated by the 
blue circle. The blue ribbons indicate the 95% highest density interval (HDI) of the posterior distribution at each instance. 
The predictions for the final session are the rightmost blue circles in each panel. 

 
Another way to summarize the data and contrast the 

predictions with the recorded data is to compute a prediction 
error at each measurement event. In Figure 4, predicted 
performance has been subtracted from the actual performance 
to express the prediction error at each measurement event. 
The color-coding indicates the session and the root-mean-
squared-error (RMSE) is listed for each event to summarize 
the prediction error. At the first event, most errors are 
negative, suggesting that predicted performance was 
consistently estimated to be higher than the recorded 
performance. This is also apparent in Figure 3, where we see 
human performance nearly always worse than the model’s 
posterior predictions at Test 1.1. The RMSE decreases over 
the events in the first session and increasingly normally 
distributed around zero, suggesting that the model’s 
posteriors become less biased: Performance is overestimated 
about as often as it is underestimated. 

Discussion 
The focus of the current work is the prediction of future CPR 
performance over ecologically valid periods. After 
completion of the first three sessions, individual predictions 
have been made for CPR performance in the 4th session.  

As can be seen in Figure 3, the priors do a generally poor 
job of representing the actual performance of participants in 
the early trials. This is a risk in generalizing parameters from 
one study to another. They are different samples, with 
participants in the previous study starting at and maintaining 
higher levels of proficiency. Given that participants in the 
study reported here started at a lower proficiency, it is to be 
expected that the prior distributions based on better 
performers would not predict worse performer data very well. 
However, most participants in both studies achieved and 
maintained higher levels of proficiency after several trials, so 



this is bias-variance tradeoff we are willing to make in the 
interest of what we hope will be an improvement in predictive 
validity in Session 4. Additionally, the use of Bayesian 
Hierarchical Modeling as a method of parameter estimation 
provides posterior predictive distributions for each 
individual’s learning profile. The use of prediction intervals 
allows for a quantification of certainty in our out-of-sample 
predictions.  

 

 
Figure 4. Prediction errors at each measurement event. Colors 
indicate the session; numbers at the bottom are the RMSE at 
each event. 
 

The ERC’s report (Soar et al., 2015) states that CPR 
performance is known to deteriorate within months of 
training and, therefore, even annual retraining might not be 
frequent enough for some people. Due to the fact that CPR 
training can be time consuming and optimal training intervals 
are currently unknown, they suggest that frequent “low dose” 
training using video instructions and hands-on practice can 
be as effective as instructor-led courses (Nolan et al., 2015). 
The work presented here confirms that there is a swift 
improvement in performance after such CPR retraining.  

In summary, we report an experimental setup in which the 
learning and forgetting of CPR is assessed over ecologically 
relevant timeframes. We test a mathematical model’s ability 
to predict future CPR performance using very sparse data. A 
first wave of predictions is presented here and an evaluation 
of the accuracy of those predictions will be presented at the 
conference.  
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