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Abstract

Cognitive architectures based on neural networks typically use
the Basal Ganglia to model sequential behavior. A challenge
for such models is to explain how the Basal Ganglia can learn
to do new tasks relatively quickly. Here we present a model
in which task-specific procedural knowledge is stored in a
separate memory, and is executed by general procedures in
the Basal Ganglia. In other words, learning happens else-
where. The implementation discussed here is implemented in
the Nengo cognitive architecture, but based on the principles
of the PRIMs architecture. As a demonstration we model data
from a mind-wandering experiment.
Keywords: Spiking neural networks; Mind Wandering; Basal
Ganglia; PRIMS; Nengo; Skill Acquisition
Model code: https://github.com/ntaatgen/NengoPRIMs

Introduction
Symbolic cognitive architectures are very powerful in pro-
ducing flexible task performance. Part of task performance is
the ability to carry out steps in sequence. Although a produc-
tion system, the typical symbolic solution to sequential be-
havior, is a straight-forward solution, it is less clear how it is
carried out by the brain. The brain structures that are typically
implicated in sequential behavior are the Basal Ganglia and
the Thalamus1. For example, numerous ACT-R studies map
model activity onto brain areas, of which procedural memory
is mapped onto the Basal Ganglia (Anderson et al., 2004).
Several neural network architectures that include sequential
behavior have forwarded proposals for possible Basal Gan-
glia implementations (Stocco, Lebiere, & Anderson, 2010;
O’Reilly & Frank, 2006; Eliasmith et al., 2012). However,
these implementations impose quite some constraints on pro-
duction rules. In the Stocco et al. implementation, the amount
of information that can be transferred between modules is
limited to a single item of information. The Eliasmith et al.
solution does allow for the transfer of multiple items, but has
no clear way in which the procedural knowledge is learned.
In addition, one may wonder whether all human procedural
knowledge, which is often quite task-specific, can be stored
in a structure as small as the Basal Ganglia.

The work presented here is not a completely new proposal
for sequential behavior, but builds on the Eliasmith et al.
(2012) solution in Nengo, ACT-R (Anderson, 2007) and the

1To save space and improve readability, I will refer to the Basal
Ganglia/Thalamus combination as just the Basal Ganglia for the rest
of the paper.

PRIMs theory (Taatgen, 2013). A common idea among these
theories is that procedural knowledge involves controlling the
flow of information between different cognitive modules. For
example, in order to perform an Aural-Vocal task in which a
number has to be spoken based on the pitch of a tone (i.e.,
when you hear a low tone you have to say ”One”, when you
hear a middle tone you have to say ”Two”, etc.), an Aural
module determines the pitch, a Declarative memory module
determines the mapping from pitch to number, and a Vocal
module speaks the number. The role of procedural knowl-
edge is to take the result of the Aural module and feed this
into the Declarative module, and once the Declarative module
successfully produces a result, move that result to the Vocal
module.

If we assume that the knowledge to carry out a procedu-
ral task such as the aural-vocal task is encoded in the Basal
Ganglia, we have a problem. Tasks such as the aural-vocal
task, and also more complicated tasks that are typically part
of psychological experiments, can typically be carried out by
subjects after a short instruction and very little practice, even
though they have never done these tasks before. It is there-
fore not very likely that they train their Basal Ganglia in that
short period for this specific purpose. We therefore have to
look for a solution that uses existing representations in the
Basal Ganglia to do new tasks. To develop such a solution, it
is useful to look at the PRIMs architecture (Taatgen, 2013).
In PRIMs, procedural knowledge is decomposed into a fixed
set of primitive operations. Each of these operations either
makes a single comparison, or performs a single action by
transferring one knowledge element from one module to an-
other. Because the set of PRIMs is finite, we can imagine a
Basal Ganglia model that is capable of carrying out any of
the PRIMs, and is therefore in principle capable of perform-
ing any sequential task that can be defined in terms of PRIMs.

In this paper, I will first describe the overall architecture
of the Nengo/PRIMs model. It resembles the Spaun model,
a Nengo model that is capable of carrying out a range of
tasks Eliasmith et al. (2012). The main difference between
the two is that Spaun’s procedural knowledge is hardcoded in
the Basal Ganglia, whereas the Nengo/PRIMs model only en-
codes PRIMs in the Basal Ganglia, and uses a memory system
to trigger the correct PRIM at the right moment. I will then
use it to model an experiment by Smallwood et al. (2011).
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Figure 1: Overview of the Nengo/PRIMs model. Rectangles represent slots that can hold a single semantic pointer. Hexagons
are more complex neural structures. The rounded rectangle provides the inputs to the network at scheduled times.

Overview of the System
Nengo basics: Semantic Pointers
Nengo is a neural network architecture based on spiking neu-
rons. Clusters of neurons are used to represent vectors of
numbers, and mappings between these clusters can calculate
functions. For example, we can define a cluster of 100 spik-

ing neurons to represent the vector
(

x
y

)
, and connect this

to another cluster of spiking neurons that will calculate and

represent
(

x2

y2

)
.

The next level of abstraction is to let these vectors repre-
sent symbols. For example, a particular vector of numbers
can represent the color RED (we use 128 dimensional vec-
tors in the model here). A symbol, represented by a vector
of numbers, is called a semantic pointer in Nengo. Semantic
pointers can represent simple symbols, but can also be con-
volved to create more complex representations. For example,
we can represent a red ball by the following vector:

REDBALL = COLOR�RED+SHAPE�ROUND

Structure of the Model
With semantic pointers Nengo is capable of representing
quite powerful knowledge structures, which can be manipu-
lated with the appropriate mappings between clusters of neu-
rons. The structure we will use is depicted in Figure 1. Each
of the rectangles in the Figure represents a cluster of neurons
that holds a single semantic pointer (we will call them ”slots”
in this paper). The horizontal row of rectangles represents a
set of slots that hold information related to particular cogni-
tive modules, similar to buffer slots in ACT-R. For illustration

purposes, some values have been put into the boxes. They are
related to the experimental task to be discussed later. The
Goal slot represents the current task. It, together with the
visual input, is set by a separate process represented by the
rounded rectangle. This process sets the values in these slots
to particular values at particular times in the task. In the ex-
ample, the goal is set to WMTASK, and the visual input is set
to a red question mark.

The WM (working memory) slot can hold a single item of
information. Contrary to the other buffer slots, where infor-
mation decays away if not fed by another process, the WM
slot maintains its value until replaced. The three Memory
slots represent a limited long-term declarative memory. An
item can be placed in Memory1, after which an associative
memory (Memory) finds the associate memory that is then
placed in Memory2. In the example in the Figure, memory
is used to determine that NINE is ODD. The Action slot is
used to set the model’s action. In the Figure it is not con-
nected to anything, but it should be connected to an appro-
priate motor system, comparable to what has been done in
Spaun (Eliasmith et al., 2012). Finally, PrevPRIM refers to
the previous step the system has executed, because this will
be part of the input for determining the next step.

The model takes cognitive steps by transferring informa-
tion between the slots. These steps are represented by cog-
nitive operations that are basically quite simple: a symbol
(semantic pointer) that represents the source and destination
slots. For example, V1MEM1 means: copy the contents of
Vision1 to Memory1. MEM2AC means: copy the contents of
Memory2 to Action. The desired action is placed in the PRIM
slot, after which the Basal Ganglia carries out that action. The
Basal Ganglia follows the standard Nengo implementation,
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Figure 2: Design of the Smallwood et al. (2011) experiment.

and has a rule for each of the possible PRIMs.
Although the PRIMs architecture also has primitive opera-

tions to test conditions, the Nengo/PRIMs model will achieve
this in a different way. The role of conditions is to determine,
given the state of the system, what actions need to be carried
out. Here we achieve this goal in a slightly different way: by
learning a mapping between the contents of all the slots and
the PRIM slot. We do this by combining all slots in a single
semantic pointer:

Combined=G�WMTASK+V1�Question+V2�RED+...

This combined semantic pointer is then mapped onto a PRIM
semantic pointer.

Learning
The advantage of changing conditions into a more abstract
mapping is that they can be learned instead of programmed.
The current model uses supervised learning, which is why
there is a Correct PRIM slot that is set by the input process.
Whenever the model produces a PRIM on the basis of the
combined state (initially random), that PRIM is compared to
the Correct PRIM, after which the weights that map the com-
bined state onto the PRIM slot are adjusted based on the error
using prescribed error sensitivity (PES) learning (MacNeil &
Eliasmith, 2011).

The design presented here is in principle task-general, al-
though some parts need to be expanded for a fuller function-
ality (e.g., a more faithful Declarative Memory).

A Model of Mind Wandering
As an illustration of the model explained above, I will present
a model of a task by Smallwood et al. (2011). In the experi-
ment, subjects had to do two different tasks. In the Choice Re-
action Task (CRT), subjects were presented with a sequence
of digits that were interleaved with fixation crosses. Digits
were presented for 1000ms, and the fixation cross for a vari-
able duration between 900 and 2100ms. As long as the digits
were black, no response was needed. After 2–5 black dig-
its, a colored digit would appear, to which a response had to

be made depending on whether the digit was odd or even.
In the Working Memory task (WM), subjects were also pre-
sented with a sequence of 2–5 black digits, except that a col-
ored question mark would appear instead of a colored digit.
At that point subjects had to respond whether the last digit
they saw was odd or even. Because subjects do not know
when the question mark would appear, they had to remember
the black digits. Occasionally, instead of the colored digit or
question mark, subjects would be presented with a so-callled
thought probe, to which they had to respond whether or not
they were attending the task, or were thinking about some-
thing else. Smallwood et al. found that in the CRT, subjects
were thinking about something else 68% of the time, whereas
in the WM task they did so in 51% of the cases.

Models of the CRT and WM Task
In order to be able to do the tasks, the Basal Ganglia had to
be prewired to carry out primitive actions. Primitive actions
consisted of a source slot and a destination slot. For example,
V1MEM1 would transfer the contents of the Vision1 slot to
the Memory1 slot, and WMMEM1 would transfer the con-
tents of the working memory slot to the Memory1 slot. For
efficiency reasons, not all possible combinations were imple-
mented, but a modest superset of the operations needed to
do both tasks: V1MEM1, MEM2AC, V1WM, WMMEM1,
MEM2WM, WMAC. A second function of the Basal Gan-
glia is related to learning, and was only active during learn-
ing: whenever a primitive action had completed its action,
the learning signal would be suppressed. The reason is that
we wanted to associate the operation with the state before the
operation had been carried out, and did not want an associ-
ation with the state after the operation (otherwise it would
learn to repeat the operation).

A second piece of knowledge the network needs is which
numbers are odd and which are even. An winner-takes-all
associate memory was implemented in the Memory part of
the model. Therefore, if a Semantic Pointer representing a
number is placed in Memory1, ODD or EVEN would appear
in Memory2.

The input node in the network feeds the input into the Vi-
sion slots of the network, and, during the training period, the
correct PRIM into the Correct PRIM slot. The timing of
the model is not yet completely consistent with the real ex-
periment, but compressed in time, and restricted to just two
black digits before the colored digit or question mark. Table 1
shows the schedule for what is presented by the input node to
both Vision slots, and the correct PRIM operator that needs
to be carried out at that point, which is send to the Correct
PRIM slot to be used in the learning process.

The timing of the experiment is not consistent with human
experiment, because many of the processes in Nengo are a lot
faster in simulated time, but a lot slower in real time. Neither
visual perception nor actions do take any time in this model,
and memory retrieval is extremely fast. On the other hand,
simulating a large model like this takes quite some real time,
which means that for simulation purposes this is a reasonable



Table 1: Timing of the Inputs node. The V1 and V2 columns
are fed into Vision1 and Vision2, respectively, and the CRT
prim or WM prim is placed in the ”Correct PRIM” slot when
learning is switched on.

tstart tend V1 V2 CRT prim WM prim
0.0 0.3 Digit Black FOCUS V1WM
0.3 0.5 Blank Blank FOCUS FOCUS
0.5 0.8 Digit Black FOCUS V1WM
0.8 1.0 Blank Blank FOCUS FOCUS
1.0 1.3 Digit or Red V1MEM1 WMMEM1

question
1.3 1.6 Digit or Red MEM2AC MEM2AC

question
1.6 1.7 Blank Blank FOCUS FOCUS

compromise.
The general idea in the CRT is that the model does not

need to do anything until it sees a red digit. It then should
execute V1MEM1 to determine whether the digit it sees is
odd or even. After the memory has retrieved ODD or EVEN,
it should execute MEM2AC to make the retrieved parity into
an action. We are assuming here we have an action system
that can interpret this as an action.

The WM model needs to do a bit more work: every time a
black digit is presented, it should store that digit in working
memory with a V1WM action. Once it sees a colored ques-
tion mark, it should transfer the item from working memory
into the memory retrieval system: WMMEM1. Similarly to
the CRT, the result of that retrieval should be transferred to the
action slot, MEM2AC. Whenever the model does not need to
do anything, the table shows FOCUS. This is placed in the
PRIM slot, but there is no rule in the Basal Ganglia to carry
it out (because it doesn’t do anything). However, the Basal
Ganglia are not just waiting, but carries out a ”default” ac-
tion, which will be the basis for Mind Wandering.

Modeling Mind Wandering itself

As has become clear in the previous section, the Basal Gan-
glia are not always engaged in task-related actions. To model
mind wandering, we added a default action to the Basal Gan-
glia that initiates and perpetuates mind wandering as long as
it does not receive a specific instruction from the PRIM slot.
This option is more or less standard in the Nengo Basal Gan-
glia model, because you have to specify a default action for it
to do if no other action is sufficiently supported.

The idea is, following some existing symbolic models
(Taatgen et al., submitted), that Mind Wandering consists of
a train of thought simulated by a sequence of declarative re-
trievals. To mimic this in a simple way, we added a num-
ber of extra associations to the memory that also produces
the mapping between numbers and parity. More specifically,
we added that EPISODE maps onto CRY, CRY maps onto
REDEEM, and REDEEM maps onto LAUGH. The default

Basal Ganglia action is to feed EPISODE to Memory1, and
also copy the contents of Memory2 into Memory1. This
means that if there are no active PRIMs (either because it
is set to FOCUS, or when there is no specific PRIM active),
EPISODE is placed in Memory1, which will in turn lead to
the retrieval of CRY, which is fed back into Memory1 leading
to the retrieval of REDEEM, etc.

Training
Training consisted of 40 learning blocks, each with a CRT
trial and a WM trial. A trial lasted 1.7 simulated seconds fol-
lowing Table 1. After 40 trials the training input was blocked,
after which and additional 20 blocks were simulated and used
to determine the results.

Results
The critical mapping that the model needs to learn is between
the combined state of the system and the PRIM to be exe-
cuted. Figure 3 shows the input to the Basal Ganglia, which
represents the strength of each of the PRIMs in the PRIM
slot. The graphs shows the average of the 20 performance
trials after learning. On the left side of the graph the WM
task is shown, where the V1WM prim becomes active when-
ever there is a black digit. During the short periods between
the digits, there is no PRIM that is active enough to exceed
the 0.3 threshold, which means that the model will initiate
Mind Wandering during this (very brief) period. When the
red question mark is presented, the WMMEM1 PRIM is ac-
tivated, transferring the contents of working memory to a
memory retrieval. When the answer has been retrieved from
memory, the MEM2AC PRIM is activated to transfer the re-
trieval to the action slot. The interesting aspect of last action
is that the PRIM becomes active earlier than during training
(approximately at 1.2 seconds instead of 1.3 seconds), which
indicates that the learning has made sure that the PRIM has
been keyed to a successful retrieval.

For the CRT we can see that the model does nothing when
black digits are presented, even though the V1WM PRIM be-
comes active, but at a subthreshold level (indicating some
transfer from the WM task). When the red digit comes up,
the V1MEM1 PRIM becomes active, initiating the memory
retrieval and subsequently the MEM2AC PRIM. It is clear
that in the CRT the model has much more opportunity to mind
wander. This can be seen slightly more clearly in the Thala-
mus output graph (Figure 4), where a winner-takes-all com-
petition has produced a winning action in each of the stages.

To get an impression of how much Mind Wandering these
decisions produce, we need to look at the activity in Mem-
ory. Figure 5 shows the activity of various memory items in
a sample trial, measured in the Memory2 slot. We can see
mind wandering by the activation of the CRY, REDEEM and
LAUGH semantic pointers, while task-related activity con-
sists of activation of ODD and EVEN. Obviously, there is a
lot more Mind Wandering going on than the Basal Ganglia
results suggest. The reason is that after the Basal Ganglia
initiates Mind Wandering, it can dominate the activity in the
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Figure 4: In the output of the Thalamus we can see which action is selected, which is the highest value of the input.

memory system for a while as long as it is not needed by the
task (following the threaded cognition multitasking theory,
Salvucci & Taatgen, 2008). Nevertheless, in the CRT Mind
Wandering is supported by the Basal Ganglia for a much
longer period, which is reflected in more memory activity.

If we calculate the proportion of Mind Wandering over all
the model output (after training), we see that the Memory out-
put matches the data most closely (Figure 6). We have to take
these results with a grain of salt, though, because the timing
of the experiment does not match the real experiment.

Discussion
The main purpose of this work was to demonstrate that se-
quential tasks can be learned by a spiking neural network
following principles derived from symbolic architectures. In
this model it is no longer necessary to store all procedural

knowledge in the Basal Ganglia, but is stored in an associative
memory that can be located elsewhere, probably in the pre-
frontal cortex (Cole, Bagic, Kass, & Schneider, 2010). A key
difference with regular production models (and also Spaun),
is that it does no test conditions explicitly, but instead learns a
mapping between the cognitive system’s state and the action
to be performed. This has two advantages: sequential match-
ing of production rules in a neural network is cumbersome.
In order to do this in parallel, production rules already need
to be hard-wired in such models, which makes flexibility a
greater challenge. The second advantage is that it is much
easier to learn new productions.

Still, there is a lot of work to be done. The actions this
model can make are elementary PRIMs. However, in the full
PRIM theory, elementary PRIMs cluster together into general
purpose operators. The most probable place for this kind of
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learning are the Basal Ganglia. Moreover, we used supervised
learning in this model. It is unclear where such a learning in-
put would come from, and therefore a form of reinforcement
learning is a better alternative.

The model’s mind wandering is a nice demonstration (also
showing the model can fit some data), but the Mind Wander-
ing itself is now modeled as a ”default strategy”. Instead, it
should also be modeled using primitive operations that com-
pete with task-related operators.
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