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Abstract

Expert performers in complex tasks synthesize a wide variety
of information to select the optimal choice at each decision
point. For the task of Tetris, the synthesis includes information
about the “next” piece in addition to the configuration of pieces
currently on the board. While simple models of Tetris are ca-
pable of behavior similar to high level human players most
(to reduce the combinatorial explosion in computation time)
are only aware of the active piece and its possible placement
positions. To explore how additional information contributes
to expertise, when placing the current ‘on board’ piece, our
model also considers placements for the “next piece” (visable
to humans in the Preview Box). Though we expected this addi-
tional information to result in higher performance, we instead
observed a drop in performance, and a shift in behavior away
from common human patterns. These results suggest that hu-
man experts are not incorporating the additional piece infor-
mation into their current decision. We speculate about the role
of next piece information for expert level players.
Keywords: Expertise, Reinforcement Learning, Machine
Learning, Human Performance

Introduction
Complex task environments are, almost by definition, dif-
ficult to master and, by extension, difficult to study. In
this work we focus on the complex task environment cre-
ated by the dynamic, decision-making game of Tetris, which
we see as the poster child for human studies of predic-
tive processing (Clark,2013;Engstrom et al.,2018;Rao & Bal-
lard,1999). Although we have made considerable progress
in understanding Tetris play in our laboratory (Lindstedt &
Gray,2019), human play represents a confounding of various
human limitations that may well be impossible to disentangle
in vivo. This tangle has led us to machine models of Tetris
(Fahey,2015;Gabillon, Ghavamzadeh, & Scherrer,2013;Szita
& Lorincz,2006) where we have focused on understanding
how the configural properties of the Tetris board can be inter-
preted by machine models as good placements or bad place-
ments for the currently falling zoid (i.e., Tetris piece) (Sibert,
Gray, & Lindstedt,2017;Sibert & Gray,2018).

The attentive reader will note that we initiated the preced-
ing paragraph by alluding to human predictive processing but
ended that paragraph by focusing on defining characteristics
of good or bad placement decisions by using machine models.

This shift is possible as, unlike humans, our models do not ac-
tually rotate, transpose, or drop pieces; rather, as in an episode
of Star Trek, they simply beam the piece to the desired lo-
cation. This trick neatly disentangles the where to place it
decision from the how to get it there one (which are the con-
cern for Tetris studies of Predictive Processing (Lindstedt &
Gray,2019)).

The current work complicates our models by observing
that the classic, Nintendo Entertainment Systems (NES) ver-
sion of Tetris (which is the version used in the annual Classic
Tetris World Championships, CTWC) as played by humans,
always provides the “next” zoid in a Preview Box (see Fig-
ure 1). As the goals of the machine modeling community dif-
fer from ours, no prior machine model of Tetris play uses that
information.1 Hence, our current work explores two-piece
placement decisions in an attempt to determine whether and,
if so, how, attempts to optimize the current placement with
respect to the next placement improves the game.

A Very Brief History of Games in Research
Gray (2017) distinguishes among three ways in which mod-
ern computer games have been used in psychological re-
search. Gamification represents the attempt to use features
of game play for more serious work such as gamifying a so-
cial media field trial (Rapp, Cena, Gena, Marcengo, & Con-
sole,2016), modeling “professional thinking” (Nash & Shaf-
fer,2011), or teaching helicopter flight skills (Proctor, Bauer,
& Lucario,2007).

Games as Treatment Conditions represents attempts to use
game play as a means of changing some aspect of human
behavior, health, intelligence, and so on. Examples involv-
ing Tetris include its use to reduce “flashbacks” associated
with Posttraumatic Stress Disorder (PTSD) (Holmes, James,
Coode-Bate, & Deeprose,2009) or as a placebo control in a

1While we do not know for sure why the machine modeling com-
munity does not use that information, we do note that doing so ex-
tends the search space for moves from approximately 23 placements
(between 9 and 34, depending on the zoid) up to 3434 placements.
The addition of more complex move generation functions that allow
zoids to be navigated underneath other zoids further increases the
number of placements to be considered at each decision point.



study of the utility of games (Belchior et al.,2013) in expand-
ing older adult’s useful field of view (UFOV).

Game-XP refers to the use of game play itself as an experi-
mental or quasi-experimental paradigm. The earliest example
of using Tetris for Game-XP (that we are aware of) was for
exploring the concept of epistemic or complementary action
(Kirsh & Maglio,1994;Destefano, Lindstedt, & Gray,2011).
Of course, our past work (cited earlier) as well as the work
presented in this paper provide other examples of the use of
Tetris for these purposes; that is, an experimental paradigm
which we use to seek insights into the low level mechanisms
that contribute to skilled performance in dynamic tasks.

Tetris the Task
During a game of Tetris, players navigate a series of pieces,
called ”zoids”, as they fall from the top of the screen into a
pile at the bottom of the screen. When a row within the pile
becomes full (all ten cells contain a part of a placed zoid) it
vanishes, lowering the pile and earning points for the player.
More points are earned if more lines are cleared simultane-
ously, with up to four lines able to be cleared in a single move.
The game ends when the pile reaches the top of the screen. A
game in progress can be seen in Figure 1.

Though the basic task is simple to understand, game diffi-
culty increases as the player plays. The player is limited in
the actions that they can take to move a zoid: zoids can be
translated one cell left and right, or rotated 90 or 180 degrees
(depending on the zoid) using a single button press, and a
complete movement usually requires several button presses.
As the game progresses, the pieces fall more quickly, mean-
ing that players must make placement choices and navigate
the zoids in increasingly short time periods. At the start of
the game, it takes 16 seconds for a zoid to fall from the top
of the screen to the bottom. At level 29 (considered by top
players to be the ”kill screen”, and the highest playable level)
pieces fall in a third of a second.

In addition to managing the ever increasing game speed,
players must weigh the risks and benefits of making different
types of line clears. Clearing a single line is fairly simple
to do, and most low level players focus on clearing one line
at a time in order to prolong the game as long as possible.
However, from a purely points based perspective, this is a
poor strategy. Setting up and executing a single 4 line clear
(or a Tetris) is worth 7.5 times as many points as clearing a
single line four times. Because the speed component of Tetris
will eventually force any game to end, most high level players
adopt a strategy that emphasizes making 4 line clears early
and often.

Tetris is a complex, dynamic task in that the task state is
constantly changing independent of any action taken by the
player. Pieces will fall even if the player presses no buttons.
In this kind of environment, taking no action requires a de-
cision to do nothing, and the series of decisions made by the
player at each zoid placement result in the final game score.
Performance in Tetris is judged by this final game score, but
because of the constant and varied game state, it is difficult to

Figure 1: A Tetris game in progress. The active piece, the or-
ange ”L” is currently being placed by the player on the main
game screen. The player also has access to score informa-
tion, in the lower right-hand box, and one upcoming piece,
the green ”Z” in the upper right-hand box.

know what contributes to that performance.

Tetris Models
Human play of Tetris is a test of human limits in dy-
namic decision-making and action and provides an excellent
example of predictive processing (Clark,2013;Engstrom et
al.,2018;Rao & Ballard,1999). Deciding where best to place
a zoid becomes increasingly time-limited as the rate of fall
increases. Likewise, the time available for the player to move
the zoid to the chosen location also decreases.

Despite the complexity of human behavior in a task like
Tetris, it is possible to build simple models capable of high
level performance. Most of these come from the machine
learning community, where Tetris is a popular test case for
feature search algorithms.

These models function by defining a set of board features
(selected by the researcher) that are believed to be important
when making placement decisions. An early and commonly
used set of features, defined by Dellacherie (Fahey,2015), is
provided in Table 1. These are the features that we use to
build the models used in this study.2

The models play Tetris by assigning each feature a numer-
ical weight, the magnitude and sign of the weight indicates
how desirable or undesirable a particular feature is. For a
given move placement, the model generates all possible zoid
positions and evaluates each one by multiplying the weight of
each feature against the value produced by that move. These
feature scores are added together to form a total move score,
and the model ultimately selects and executes the placement
with the highest move score.

The feature weights remain constant during a game, so the
challenge of building a high performing model lies in choos-

2See Sibert et al. (2017) and Sibert and Gray (2018) for a fuller
story.



Table 1: Tetris features proposed by Dellacherie, and used to
construct the models used in this paper

Feature Description
Landing
Height

Height where the last zoid is added

Eroded
Cells

# of cells of the current zoid elimi-
nated due to line clears

Row Tran-
sitions

# of full to empty or empty to full hori-
zontal transitions between cells on the
board

Column
Transitions

# of full to empty or empty to full ver-
tical transitions between cells on the
board

Pits # of empty cells covered by at least
one full cell

Wells a series of empty cells in a column
such that the cells to the left and right
are both full

ing an optimal set of weights from a large search space. We
employ the Cross-Entropy Reinforcement Learning method
proposed by Szita and Lorincz (2006) and modified by Thiery
and Scherrer (2009a,2009b).

Making Models More Human-Like
While traditional machine learning models are capable of
high level performance, several important changes are made
to the task environment that encourages models to adopt un-
human-like strategies in order to do well.

First, models tend to be unconstrained by the time pres-
sure that is a major component of human gameplay. Second,
models are reinforced for line clearing behavior, which en-
courages a strategy that primarily clears single lines. This
is a viable strategy in the very long term (as, for example,
used in Sibert and Gray, 2018), but only yields mediocre per-
formance during the restricted time scale of a human game.
Third, humans have access to additional information, like the
upcoming zoid, that is not incorporated into the model deci-
sion making process.

Efforts have been made to explore how these environmen-
tal factors impact behavior. When trained on games of re-
stricted length, models reinforced for line clearing behav-
ior performed at a low-scoring but stable score level, while
models reinforced for score reached higher scores but not as
consistently. At their best, the score-reinforced models per-
formed at the level of high performing student players, while
line-reinforced models performed closer to intermediate level
student players (Sibert et al.,2017).

This behavioral and strategy split was also observed in the
absence of a reinforcement criteria when comparing mod-
els trained on restricted games against models trained on
games of unrestricted length. The best long-game models
far outperformed the short-game models by clearing single

lines far beyond the point that the human game becomes
unplayable. When restricted to human-length games, mod-
els adopted the higher scoring strategy of executing multiple
line clears (worth far more points than a series of single line
clears) early and often (Sibert & Gray,2018).

Whereas these prior studies focused on addressing the
time pressure and reinforcement criteria aspects of the human
Tetris environment, the current study aims to look at a third
major difference between models and humans: humans have
access to upcoming zoid information that models lack. Ini-
tial eye-tracking explorations (e.g., (Gray, Hope, Lindstedt,
& Sangster,2015)) into human behavior show increased fixa-
tions on the next zoid box for higher level players, suggesting
that this information is an important aspect of advanced play.
Prior studies adjusting the model game environment led to
performance levels, but only to the level of advanced human
players (when equating for game length), suggesting that as-
pects of truly expert gameplay are still beyond the models.
We hypothesized that allowing the models to consider the up-
coming zoid when making placement decisions would result
in higher performance. This ability to do Two-Piece looka-
heads, thereby optimizing placements for 2 zoids rather than
just 1, should also promote an increase in multiple line clears,
as the models will have an increased capacity to plan ahead.

Methods
Model Development
Using the Dellacherie feature set (described in Table 1) and
the cross-entropy reinforcement learning (CERL) method, we
developed two models, a One-Piece Lookahead model and a
Two-Piece Lookahead model.

Both models were trained on short games (a maximum of
525 zoids3) and were reinforced for high score. Both of these
environmental conditions have encouraged more human-like
behavior in our previous modeling studies. The models were
developed using the same iterative CERL method (described
in more detail in (Sibert et al.,2017), which can be summa-
rized as a process that generates a set of candidate models
with each model playing a single game of Tetris. The highest
performing models are averaged together to create the start-
ing point for generating the next set of candidate models. At
each generation, 100 candidate models are tested, and the 10
best models were used to create the averaged model. In pre-
vious studies, this process was repeated 80 times, but here
we implemented a halting condition: when the variance of
the feature weights in the top performing models reached an
acceptable threshold (below 0.01), the model was considered
to have reached conversion and the search ended. Models
tended to converge between 30 and 40 generations, greatly
reducing the search time required for development.

The critical difference between the models was the amount

3Note that although these games are short for Machine Models,
for the 300+ humans who have played an hour or more of Tetris
in our laboratory, 525 zoids is the most zoids ever played by any
human.



of lookahead information incorporated into the decision-
making process. The One Piece models only information
about one zoid at a time, and have no knowledge about what
might be coming next in the sequence. It generates all pos-
sible placements for that zoid, and each placement is given a
score by combining feature weights with the value of those
features that result from the placement (i.e., if the placement
creates a new pit, the score for that placement will change by
the weight of the pit feature, and so on). At each placement,
the model selects and executes the highest scoring move.

Two Piece models, by contrast, have access to the active
zoid as well as the next zoid. Rather than calculate a score
for each zoid placement, the Two Piece model evaluates the
score for each pair of moves (adding together the score for the
first and second move). This might cause the model to choose
the second or third best move for the first zoid in order to
allow a much higher scoring placement for the second zoid.
Adding this capability greatly increases training time, not just
in the greater computation time required for each game, but
also by increasing the number of generations for convergence
from approximately 30, for the One Piece models, to over 50
for the Two Piece models. However, we expected that this
initial training cost would be compensated by better model
performance.

Model Testing
Both models were tested using performance metrics (mea-
sured by game score) and behavior metrics (measured by
types of line clears executed). Though only two models were
developed, we had a total of four testing conditions. Be-
cause Lookahead was an environmental condition, it could
be turned on or off for a developed model during testing. All
tests were conducted on both models in both conditions: One
Piece model with One Piece tests (same as training), One
Piece model with Two Piece tests (alternate test condition),
Two Piece model with One Piece tests (alternate test condi-
tion), and Two Piece model with Two Piece tests (same as
training).

For the performance test, models were run through ten
Tetris games. The zoid sequences of these games were gen-
erated using one set of ten random seeds (111, 222, 333, and
on to 101010) to ensure that the models were tested in a con-
trolled and equal environment.4 Each model plays through
this set of 10 games twice, once with only the current zoid
(One Piece lookahead), and once with the current and next
zoid (Two Piece lookahead).

Model performance was measured in three ways: the high
score, the mean score, and the criterion score. The high score
is the best score achieved on any game, and the mean is the
average score of all ten games. The criterion score is a met-
ric developed for evaluating human player skill (Lindstedt
& Gray,2019), and is calculated by averaging the scores of
the top four games in a testing period (for human players,

4See the discussion in Sibert & Gray, 2018, of the surprising
differences in the variability of model performance across different
random seeds.

this testing period is one hour, for models it is the set of ten
games). The criterion score reduces the influence of a single
unusually high or unusually low score on the overall measure-
ment of player skill.

Model behavior was evaluated using the same ten test
games, but rather than looking at a numerical score, the mod-
els were measured by the proportion of line clear types made
during the game. Of all lines cleared during a game, some
percentage are cleared using single line clears, some by two
line clears, three line clears, and four line clears. The pattern
of line clear types is a good measure of how the model be-
haves, as truly machine models tend to clear predominantly
single lines, and high level humans try to emphasize 4 line
clears.

Results
Table 2 shows the performance results for models trained in
the One-Piece condition, tested in both the One-Piece and
Two-Piece conditions. All scores were higher during testing
with One-Piece lookahead (the same as the training condi-
tion), though the scaling scoring system of Tetris makes the
score differences look larger than the actual performance dif-
ferences that they reflect (line clears of all types are worth
more points when executed at higher levels, meaning the rate
of score accumulation increases as the game progresses).

Comparing the “native” training positions in the one-piece
model (left column in Table 2) versus the native training po-
sition of the two-piece model (right column in Table 3) shows
that the two-piece model performs worse than the one-piece
model. Perhaps more surprising is the massive drop in per-
formance when the Two Piece model is tested in the One
Piece condition (left column in Table 3). These extremely
low scores (left column in Table 3) represent very few line
clears and in several games, these Two Piece models made no
points at all.

Table 2: One-piece lookahead models tested in either the one
or two piece lookahead condition

Testing Condition One Piece Two Piece
High Score 406000 200560
Mean Score 203766 161472

Criterion Score 323740 187965

Table 3: Two-piece lookahead models tested in either the one
and two piece lookahead condition

Testing Condition One Piece Two Piece
High Score 1600 326180
Mean Score 220 132818

Criterion Score 540 229565



Figure 2: The behavior of models as represented by the proportion of each type of line clear made. Each set of bars represents
a training/testing condition pair.

Figure 2 shows the percentage of each type of line clear
averaged through the ten test games. The percentage of line
clear type indicates the proportion of lines cleared using each
type of clear to the total lines cleared during a game. Typi-
cal machine performance is characterized by a very high per-
centage of single line clears, and steadily lower percentages
of each type of multiple line clear. High level human players
have a more U-shaped pattern, with the highest percentage of
lines being from 4 line clears, followed by 1 line clears and
two line clears, with the fewest lines from 3 line clears.

The behavior pattern produced by the One Piece/One
Piece condition (one-piece lookahead model playing one-
piece lookahead games) is not quite the same shape as hu-
man experts, but represents a significant behavior shift toward
human-like behavior. The behavior pattern has a U-shape that
is similar to good human players, with more 4-line clears than
3-line clears.

Both models trained in the Two Piece condition show the
much more typical machine pattern, with high percentages
of single line clears, and progressively lower percentages of
higher order line clears. The results from the Two Piece/One
Piece model are representative of significantly fewer lines
cleared, and are not as robust as the results from the other
conditions.

The most unexpected result comes when the One Piece
model is tested in the Two Piece condition. This resulted in
lower performance, but also in a significant behavioral shift
away from a humanlike pattern and toward the machine pat-
tern.

Discussion
We expected that providing models with more information
would improve model performance, and encourage a behav-
ior pattern with higher levels of long term planning. Instead,
we found that more zoid information led to lower model per-
formance, and less human-like behavior. While there were
not huge differences in performance between the one piece
model tested with one piece lookahead and the two piece
model tested with two piece lookahead (compare Tables 2
and 3), there were significant performance drops when a one
piece model was tested with two piece lookahead. Removing
two piece lookahead from the two piece model led to an even
larger drop in performance, where the models were barely
able to clear any lines.

The changes in the patterns of model behavior were also
unexpected. Successful human players display a distinct pat-
tern of line clear types, prioritizing four line clears. Single
line clears are the next most frequent, followed by double line



clears, and very low frequencies of three line clears. Many of
our previous modeling efforts have tried to encourage models
to follow similar patterns. During these experiments (Sibert
& Gray,2018), we found that the model’s behavior was deter-
mined by the training condition, and the pattern of line clears
would persist in alternate testing conditions.

Adding two-piece lookahead to a high performing one-
piece model (see the second set of bars in Figure 2) caused
a large shift in model behavior, changing from the u-shaped
pattern similar to high level humans to a sloped pattern con-
sisting of primarily single line clears and very few four line
clears. Both two-piece models displayed similar behavior
patterns, but because the two-piece model tested using one-
piece lookahead cleared almost no lines, few conclusions can
be drawn from its pattern of line clear types.

Looking at the episode-level behavior of the models, we
believe that the drop in performance and change in behavior
patterns is caused by the model constantly making a subopti-
mal decision about the current zoid placement in service to a
better placement for the upcoming zoid. However, once the
upcoming zoid becomes the current zoid, there is a new up-
coming zoid that may change the best placement. That is, the
model is always planning to make a better move, but rarely
follows through. Though we thought having additional zoid
information would lead to the model making better moves,
the short term optimization at the level of one or two pieces
came at the cost of the generalization offered by the one piece
model.

Based on these models, we can guess that if humans are in-
corporating upcoming zoid information into their placement
decisions, it is not by making choices to facilitate specific
placements for the next zoid. We do have some evidence
(Gray et al.,2015) that players, particularly expert players,
frequently fixate the next zoid box as they play, strongly sug-
gesting that this information is being used in some way.

We theorize that a Tetris placement involves two stages:
the decision phase and the movement phase. At low speeds,
movement can be initiated before a final decision is made,
but at high levels, speed is the limiting factor in perfor-
mance, and placement decisions must be extremely rapid in
order to maximize the available movement time. Rather than
make decisions about the current zoid when it appears on the
game board, we now interpret our model results as suggesting
that expert players offload the decision phase to the previous
episode, making a decision about the zoid placement while
the zoid is still in the Next box. Once the piece appears on
the Board, the player can initiate the movement phase for that
zoid (now the “current” zoid in our terminology) while simul-
taneously initiating the decision phase for the upcoming zoid
(i.e., the one that is now in the Preview box). Hence, expert
players do not try to optimize two-piece placements but do try
to optimize one-piece placements. The extra time for making
these one-piece optimization is especially important at higher
levels of Tetris; whereas maximum drop time is 16s at level 0,
that decreases to 2s by level 9, to 1s by level 16, and to 0.67s

at level 19. This explanation is compatible with component
2 of Lindstedt & Gray’s (2019) Principal Component Analy-
sis which suggested that better players make their placement
decisions prior to moving the zoid.

We have not yet formally tested this hypothesis, but some
expert Tetris players have already performed an informal ex-
periment on their own. At 2018’s Classic Tetris World Cham-
pionship, 16 players engaged in a novel, ”no-next box” tour-
nament which began play at level 18 (where it takes 1s for
a zoid to drop from top-to-bottom). Although most of these
players had secured a slot in the next day’s playoffs for the
Classic Tetris tournament, only one player scored over 30,000
points in this no-next box match with a few players scoring
no points at all. The behavior of the players, usually char-
acterized by high percentages of four line clears, was almost
entirely single line clears. No four line clears were executed
during the entire no-next box tournament.

Overall, the results of these models suggest that in com-
plex, dynamic tasks, where there is rarely a single objectively
correct action, the most successful behavior pattern must be
general. Adding additional information serves to make model
behavior more specific, which may be more optimal for a sin-
gle decision point, but will be less successful over a long se-
ries of decisions. Additional zoid information, then, is likely
not used to modulate individual zoid placement decisions. In-
stead, observation of expert players suggests that it is used
to shift the time demands of a placement decision and allow
more time to execute movements, making gameplay possible
at very high levels. Further experiments may be able to ex-
plore how upcoming zoid information is incorporated by high
level players, but the more machine-like approach of system-
atically exploring all options is clearly not the answer.
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