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Abstract

How does one person learn a complex task? Averaging per-
formance over a group of individuals implicitly assumes that
there is only one set of methods for accomplishing the task and
that all learners acquire those methods in the same sequence.
We maintain that the average subject is a mythical beast that
does not exist. Hence, rather than profiling a mythical “aver-
age subject”, we use SpotLight – a tool for analyzing changes
in individual performance as skill is acquired in a complex task.
Specifically, in this report, SpotLight uses 35 features and mea-
sures (some collected at millisecond level, others collected once
per game), to investigate the skill acquisition of 9 players each
of whom spent 31 hours learning the complex task of Space
Fortress (SF). SpotLight enables us to uncover the evolution of
individual strategies and the iterative efforts of individuals to
create, discover, and explore new ways to improve their current
performance. To our surprise, these players seem to have fol-
lowed a common ‘design for the weakest link’ rule, in which
after the current weakest link was strengthened a player’s at-
tention turned to the next weakest link. While this rule served
our performers well, an often imposed constraint on the rule
– ‘while retaining existing strengths’ – sometimes led the odd
performer to suboptimal plateaus.
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Introduction
Studies of skill acquisition often proceed by averaging data
collected over large groups of individuals. Such methods are
fine if we wish to measure the average effect of a treatment
administered in different ways, but they fail to achieve our goal
of understanding how individuals acquire complex skills.

Here we adopt the Plateaus, Dips, and Leaps (PDLs) ap-
proach advocated by Gray and Lindstedt (2017) and use the
SpotLight tool (Rahman & Gray, in preparation) which enables
us to identify the PDLs in individual performance. Our results
show some commonalities in individual strategies amidst vast
differences. For example, after varying numbers of hours of
practice, all players adopted an optimal, but effort-expensive
strategy. However, the most striking commonalities are not
in the gameplay strategies per se, but the ways and means in
which these strategies were modified. Specifically, we observe
that the changes in each player’s gameplay strategies pivoted
around part-tasks in which the player was performing well.
Relative to these pivots, gameplay strategies were recurrently
modified to address the weakest parts of gameplay. Based on
these findings, we propose that task execution strategies were
recurrently updated by a common optimize strategies for the
weakest links rule.

By focusing on one subgoal at a time, this rule provides
checkpoints towards devising optimal strategies for the whole

task. However, an excessive focus on subgoals may lead per-
formers to lose sight of the overall goal (maximize total re-
turns) and adopt strategies that maximize the current subgoal
at the expense of the overall goal. For example, as we elaborate
later, our worst performing player, in attempting to reinforce
his skills in one subtask, adopted a suboptimal strategy that
basically contradicted the entire point of the game and led to a
plateau of stable suboptimal performance (Fu & Gray, 2004)
from which there was no path forward. His best alternative
would have been to discard the results of a long branch of ex-
ploration and strategy development, and revert to a much ear-
lier set of strategies; which he did not do and fell victim to a
type of sunk cost fallacy (Sweis et al., 2018).

Learning in Simple vs Complex Tasks
The research literature seems bifurcated between simple and
complex tasks. For simple tasks, the power law of practice
does a fine job of modeling learning (Newell & Rosenbloom,
1981). Those who follow in this tradition have complicated the
world a bit (very reasonably) by proposing revisions that incor-
porate strategy-specific power laws (Rickard, 1997; Delaney,
Reder, Staszewski, & Ritter, n.d.; Donner & Hardy, 2015).
However, the more complex the task, the more the number of
subtasks, and/or the more alternative ways of implementing a
subtask, the less we would expect one individual’s choices to
resemble another’s.

A complex task encompasses a hierarchy of subtasks
(Simon, 1962), where higher level subtasks consist of and
serve as goals for lower level ones. Task complexity exceeds
the sum of separate subtasks because of intermediate associa-
tions in the hierarchy, which also implies a number of alterna-
tive routes in the hierarchy to reach from bottom to top. Con-
sequently, even if practice alone suffices to maximize perfor-
mance for simple tasks, more complex tasks require identify-
ing optimum strategies from many alternative strategies.

The number of subtasks and the sets of possible strategies
for each subtask raises new questions as to how learning pro-
gresses with practice. Does the individual attempt to optimize
all parts of the task? Considering the limited cognitive and
physical resources available to performers, it is reasonable to
expect at least some parts to be satisficed (Simon, 1947). How
choices are made as to which parts are satisficed or optimized
and how such choices affect the goals and ultimately perfor-
mance, are questions that directly relate to the dynamics of
individual learning. To explore answers to these questions, we
put the SpotLight on individual performance in the complex
task of SF (Mané & Donchin, 1989).



The SpotLight Tool
The SpotLight tool (Rahman & Gray, in preparation) reveals
changes in the execution of individual tasks and subtasks by
detecting the PDLs in individual performance. The tool is
instrumented with relative entropy (denoted by RE in Equa-
tion 1), an information-theoretic measure of the difference be-
tween a target probability distribution (pi) and a reference dis-
tribution (pr); in other words, it measures the difference be-
tween two states of uncertainty (Vedral, 2002). Whereas the
scope of comparison in relative entropy is limited to two dis-
tributions, the scope is extended in the SpotLight to a finite
number of distributions (see Equation 1). First, longitudinal
records of performance (univariate or multivariate) are dis-
cretized into n consecutive phases and converted into phase-
specific probability distributions. Then, a stable phase (i.e., its
corresponding distribution) of performance is set as the com-
mon reference, relative to which relative entropy of each target
distribution in each phase is calculated. Therefore, the output
from the SpotLight is a relative entropy curve consisting of n
points. This way, information of systematic changes in perfor-
mance is retained in the relative entropy curve as differences
from the stable reference. For details and demonstrations of
the SpotLight, please refer to Rahman and Gray (in prepara-
tion).

RE(pi||pr) =
∫

X
pi(x) log2

(
pi(x)
pr(x)

)
dx (1)

Indices of targets: i = 1,2,3, ...,n
Index of common reference: r (1≤ r ≤ n)

SpotLighting at Different Levels of Granularity
In the relative entropy curve (e.g., in Figures 2 and 4), general
improvement of performance with practice is captured by a
continual decrease of relative entropy, and the periods of PDLs
are identifiable as exceptions from this general trend. Specifi-
cally, during plateaus – periods of non-improvement with prac-
tice – relative entropy remains steady; during dips, relative en-
tropy temporarily increases; and during leaps of performance,
relative entropy sharply drops. Because the SpotLight models
performance recorded by any measure through a single vari-
able, relative entropy, individual performance in a complex
task can be compared and investigated across levels of gran-
ularity. Therefore, a strategy change affecting the higher-level
measures of performance (e.g., the Total score in SF) can be
investigated further in lower levels (e.g., number of Fortress
kills, use of resources, spatial locations of player’s ship) to
identify the subtasks associated with the strategy change.

Relative Entropy versus More Common Measures
To explain the choice of relative entropy over other more com-
mon measures (e.g., moving average, cumulative sum or co-
efficient of variation), its relativity property mitigates random
noise from analysis (Rahman & Gray, in preparation). That is,
random noise present in both the target and the reference distri-
butions is eliminated in relative entropy. Moreover, relative en-
tropy compares entire probability distributions, enabling more

Figure 1: Space Fortress 4 (Destefano, 2010). Screenshot
showing the Space Fortress in the center, the player’s OS hav-
ing recently fired a missile (red) at a mine (blue diamond).

efficient use of the information present in the data. Finally, the
probabilistic approach also enables future works in other rigor-
ous frameworks (e.g., Bayesian updating or Kolmogorov equa-
tions for stochastic processes) to explore evolution of probabil-
ity distributions with individual learning.

Space Fortress: A Complex Task
Each game of SF lasts 5 minutes, where the player battles the
Fortress. The player flies a ship (‘Own Ship’ or OS) carrying a
limited number of missiles in a frictionless environment (Fig-
ure 1). The Fortress, fixed at the center, can rotate to shoot at
OS. The mines (minions of the Fortress) periodically spawn to
home in on OS. The mines are of two types which are only
distinguishable by a three-letter code shown once at the start
of each game. After a necessary identification step, one mis-
sile hit kills a mine. Contrastingly, killing the Fortress has
two steps. First, 10 missile strikes make it vulnerable (with an
inter-strike interval > 250 ms, failure to maintain the intervals
results in full recovery); then, a double-strike (with an inter-
strike interval < 250 ms) kills it. Conversely, OS is destroyed
after 4 hits from either the Fortress and/or the mines. After
being destroyed, OS or the Fortress immediately regenerates
and the battle continues. At random intervals, the player re-
ceives opportunities to choose between receiving a bonus of
100 points or 50 missiles. The time to notice and to act to re-
ceive the bonus is limited. If OS’ arsenal is empty, the player
can gain more missiles at the cost of 3 points for each one.

The objective of the game is to maximize the Total score,
consisting of four subscores – Points, Speed, Control and
Velocity – measuring performance in different subtasks. In



turn, each subscore consists of even lower-level measures (e.g.,
speed of killing mines, flying OS inside the large hexagon).
For details of scoring rules, please see Destefano (2010).

Review of Relevant Works
Mané and Donchin (1989) developed SF as a common task
for psychologists to use in comparing the effectiveness of dif-
ferent training paradigms for skilled performance. For ex-
ample, in the emphasis change study by Gopher, Weil, and
Siegel (1989), the experimental group was instructed to prior-
itize parts (OS control, OS velocity and mine handling) while
training in the whole task. In contrast, Frederiksen and White
(1989) adopted a direct part-task training approach by building
up from small to more integrated subtasks. Despite treatment
differences, both experimental groups benefited from special-
ized training and scored significantly more in post-test than the
control groups.

More recently, Boot et al. (2010) employed Variable Prior-
ity Training (VPT), a variant of training with emphasis change,
and found results consistent with the earlier findings in terms
of accelerated learning. Lee et al. (2012) combined part-
task training and VPT in a Hybrid Variable priority Training
(HVT) regimen, to also show accelerated learning. Interest-
ingly, again using HVT, Lee et al. (2015) showed that training
strategy can compensate for intelligence differences within a
group of individuals. Together, these works indicate that learn-
ing is aided by complexity reduction through training or em-
phasizing various parts of the whole task.

Finally, Destefano and Gray (2016) provide a prequel to this
paper in that they used the PDL framework to uncover pre-
viously unknown individual strategies that even the designers
might not have foreseen.

Methodology
We use the dataset from Destefano (2010), that contains highly
detailed records (∼ 40 measures) of nine players over 31 hours.
Each individual played 8 games in each 1-hr session per day
for 31 days, resulting in total 248 games per player. Experi-
menter instructions included rules and objectives of the game
and some general suggestions of optimal gameplay. We ex-
clude the 8 games from the first day, as the players needed
time to get familiar with the complex rules. Therefore, the
final dataset contains 240 games per player.

Due to space constraints, we demonstrate the SpotLight
analyses of the Total scores of two example players (Figures
2 and 4) and provide a summary of lower level analyses of all
nine players. For the Total score, we use a sliding window
approach (span = 20 games) to discretize each player’s perfor-
mance into 221 windows and convert measures in each win-
dow to a normal distribution. The span of 20 games is chosen
to estimate distributions reliably with sufficient samples (more
would be better, but that means less number of windows). We
use the last window (of games 229-248) as our reference, be-
cause it is the most stable phase according to the power law.

A drawback of the sliding windows approach is that each
game is included in a number of successive windows, there-

fore, the changepoints shown in the relative entropy curve may
shift within a range of [0, window span/2]. We use the sliding
window approach for most but not all of our analyses. For ex-
ample, for several low-level measures (e.g., spatial locations
of OS or OS velocity), 9000 samples were collected at 30 Hz
frequency from each 5-min game. Therefore, the sliding win-
dow approach is not necessary, and the SpotLight analysis is
performed by fitting normal distributions to each game’s data
and taking the last game as the reference.

Strategy Shifts of the Best Performing Player
Figure 2 shows the relative entropy curve (red line) of the Total
score (blue line) for Player 7. Note the two periods of dip+leap
in the Total score (in the shaded regions in Figure 2); both dip
periods are indicated by increased relative entropy (green- and
gray-shaded) and each leap period is indicated by rapid drops
of relative entropy (red- and yellow-shaded). A dip followed
by a leap indicates performance improvement from shifting to
a new strategy that implements better goals with the dip reveal-
ing a temporary performance decrement as the new strategy is
learned (Gray & Lindstedt, 2017).

Importantly, the Total score is the aggregate of all perfor-
mance measures; to identify the details of strategy shifts, per-
formance in lower-level subtasks was investigated in the same
manner (not included here). We found that Player 7’s strate-
gies were centered on flight-related tasks. Here we discuss our
findings of the two strategy modifications that had the largest
impact on Player 7’s Total score.

The first dip+leap shown in Figure 2 stems from Player
7 adopting a strategy of flying in small circles around the
Fortress at the 81st game (Figure 3d). The tightness of the
flight path in Figure 3e vs Figure 3d shows the rapid improve-
ment Player 7 made across just 7 games. Once adopted, this
strategy was maintained (with minor improvements) to the last
game (Figure 3f).

Destefano (2010) and Towne, Boot, and Ericsson (2016)
separately observed expert players to adopt these circular

Figure 2: Performance of our best player, Player 7, through
Total score and its relative entropy curve. Green- and gray-
shaded regions denote two dip periods; red- and yellow-shaded
regions show the two leaps that follow the dips.



Figure 3: Distributions of OS location in six example games of Player 7: (a)-(c) illustrate explorations of optimal flight path
and velocity; (d) shows the 81st game, where Player 7 shifted to a strategy of circular paths around the Fortress; (e) shows the
88th game, illustrating fast improvements within 7 games; (f) shows that the strategy was maintained till the end of practice.

paths. Flying in circles is beneficial as it maximizes opportu-
nities to attack the Fortress and increases predictability of the
Fortress’ behavior (Rahman & Gray, in preparation). How-
ever, maintaining circles requires precise synchronization be-
tween acceleration and rotation of OS. Therefore, before bene-
fitting from the circular path strategy, Player 7 needed to mas-
ter “circular flying”.

Importantly, rapidly decreasing relative entropy before the
first dip+leap started (Left of the green-shaded region in Fig-
ure 2) indicates that the player was improving quite fast even
before changing strategy. On the other hand, impact of the
strategy change was enormous; for example, one subscore
dropped by 98.9% (from 3424 to just 39 in 80th and 81st

games, respectively). What the Total score does not and can-
not show us, is that the player extensively explored different
flight paths (Figures 3a-c) in the ∼ 30 game period prior to
the green-shaded period (in Figure 2). Presumably, Player 7
had realized flight patterns being a weakness in his otherwise
strong game, before investing effort to perfect it and restruc-
turing other aspects of gameplay accordingly.

At the second dip+leap (gray- and yellow-shaded regions),
Player 7 tweaked the circular flight path strategy by adding
flying OS slower to it. A low velocity is especially helpful for

aiming at the moving targets (i.e., mines) and for making tiny
movements to evade hits from mines to OS without swaying
too far from the circles.

Strategy Shifts of the Worst Performing Player

Figure 4 shows the relative entropy curve (red line) of the Total
score (blue line) for Player 2. Notably, unlike Player 7, Player
2 shows no major dips in performance. Rather, the two biggest
points of discontinuity in the relative entropy curve (asterisked
in Figure 4) denote the start of two leaps of performance. Ab-
sence of dips before leaps indicates that the costs of adopt-
ing new strategies were not high enough to cause dips (Gray
& Lindstedt, 2017). SpotLight analyses of Player 2’s perfor-
mance in lower-level subtasks (not included here) reveal that
the player’s strategies pivoted around killing mines. Interest-
ingly, Player 2 flew in circles around the Fortress since the be-
ginning of practice, but possibly without realizing the benefits
or acquiring the skills to utilize the strategy.

At the first point of discontinuity, Player 2 adopted a strat-
egy of flying OS slower (same as Player 7’s) that improved
the player’s mine killing performance. However, unlike Player
7, the strategy did not aid Player 2 much in protecting OS,
as it was the Fortress causing the most damage. The player



Figure 4: Performance of our worst performing player, Player
2, through Total score and its relative entropy curve. The two
asterisks denote the start of two leaps intermediate in practice.
(Note: Scales are different from Figure 2)

Table 1: Impact of Player 2’s shift to lazy strategy.
Measure Before* After*
Fortress kills 13.6 (2.8) 4.8 (1.4)
Mine kills 30.6 (2.7) 35.9 (2.3)
Missiles fired 318 (54.9) 99.3 (27.7)
Missiles fired with penalty 154 (80) 8.3 (12.4)
OS destroyed 2.7 (1.3) 0.8 (0.7)
Total Score 7091 (728) 8067 (517)
* Mean (SD) in 50 game blocks

was shooting a lot of missiles at the Fortress, almost half of
which were wasted. Consequently, the player was spending
more than anyone else in the group to buy necessary missiles.

The second point of discontinuity corresponds to a strange
strategy Player 2 adopted to address these weaknesses: Min-
imize exchanges with the Fortress (!), save missiles, and kill
as many mines as possible. This lazy strategy, despite its ex-
treme ingenuity, contradicts the whole point of the game. The
player adopted a flight pattern of bigger circles (i.e., away from
the Fortress) to get more time to move away from the Fortress’
line of fire. In the process, the player lost a big source of points
(100 points/Fortress kill). Nevertheless, the strategy markedly
improved the player’s ability to protect OS and manage OS’
arsenal (Table 1). Additionally, the strategy helped the player
to focus resources on the strength of killing mines. Therefore,
the differential gain from the lazy strategy was positive, and
the Total score improved by almost 1000 points.

Common Strategies among All Nine Players
Experimenter instructions included the suggestions of flying
slowly in small circles. Therefore, it is not surprising that all
nine players adopted the circular paths. However, only five
adopted the strategy within the first 50 games; the rest experi-
mented with flight patterns deep into practice, with one player
taking as late as the 160th game to adopt flying in circles. The

players were more varied in terms of smallness of circles and
slowness of flying, possibly because these suggestions were
less objective. The flight-related scores – Velocity and Control
– are prone to ceiling effect, therefore do not portray improve-
ments in these two respects beyond a certain point. But, gen-
erally, slower velocity in smaller circles around the Fortress
resulted in higher Total scores.

We observe another common strategy in optimizing arse-
nal management. The game starts with 100 missiles in OS.
There are two options to get more missiles: (1) Bulk option at 2
points/missile – choose 50 missiles instead of 100 points when
bonuses are available, and (2) Retail option at 3 points/missile
– fire a missile with penalty when arsenal is empty. Though the
bulk option is better, it may result in surplus missiles if taken
late in the game. Therefore, the optimal strategy is to switch
to the retail option for missiles and take bonus points (instead
of missiles) towards the end of a game. Six of the 9 players
discovered this strategy on their own.

None of the players discovered the strategy of switching
from taking bonus missiles to bonus points before adopting the
circular flight paths. We believe this is due to the fact that gains
from optimum arsenal management are measured in hundreds
of points, whereas gains from regulating the flight pattern are
measured in thousands of points. Hence, the gain in points
from switching from bonus missiles to bonus points is harder
to notice than gains from changing the flight pattern.

The six players who discovered the optimal strategy of man-
aging arsenal, also show similar steps in progressing towards
the optimal strategy. Each of them first relied on the retail op-
tion only, before switching to the bulk option only and then, fi-
nally reaching the optimum balance between the two. The rea-
son can be understood by walking through the possible steps
in a player’s learning. At the start, a player is weak in every
aspect of the game and the main focus is to just learn how to
kill the Fortress and mines. Because even taking bonuses is not
quite simple in SF, each player initially relies on the retail op-
tion. This does not become a big issue until a player becomes
very good at killing the Fortress and mines, and needs more
missiles. At this point, the primary choice becomes the bulk
option. Finally, when the player has maximized returns from
larger resources of points, not losing points through unused
missiles comes to the fore.

‘Design for the Weakest Link’ Rule
‘Design for the weakest link’ is a principle often adopted in
engineering design problems. The concept is to specify de-
sign parameters to address the weakest point in a machine. An
analogy to this concept applies to our players. Note that the
instructions included suggestions of optimal play, but the indi-
viduals themselves had to decide on the order they would learn
the numerous subtasks and update strategies to realize these
suggestions. Each new strategy a player adopted, addressed
the weakest link of performance; by weakest, we mean the
scope in gameplay with maximum potential for improvement.
However, an additional constraint we find is that the new strat-



egy must reinforce existing strengths; by strengths, we mean
the parts of gameplay closer to being optimal. It is possible
that performers use the subgoals of addressing weakest links
and reinforcing existing strengths in part-tasks as checkpoints
towards the global optimum of the whole task.

A successful proponent of the rule is our best performer,
Player 7. Despite improving fast, the player reorganized their
entire gameplay around a strategy of flying in small circles
around the Fortress. Though the reward system may not show
it, all tasks are not equally influential in the game. For ex-
ample, skills in killing the Fortress crucially depends on flight
pattern, but not the other way around. It is likely that the player
realized that determining the best flight pattern is crucial and
strove to make it a strong point. Once acquired, the player
maintained this strategy, but made smaller refinements to ad-
dress other weaknesses.

Similar to the best player, our worst player (Player 2) also
pivoted strategies around his strengths to address the weak-
est links in gameplay. But, in effort to reinforce strengths,
the player adopted a suboptimal strategy that worked well in
the short-term, but would never lead to maximal performance
even after an infinite amount of practice. This strategy demon-
strates that excessive emphasis on the subgoal of reinforcing
strengths can lead performers to local optima, instead of the
global one; that is, to performance plateaus rather than perfor-
mance asymptotes.

The ‘design for the weakest link’ rule extends to the whole
group. First, the players followed the same order, without ex-
ception, in adopting the two optimal strategies – respectively
for flight pattern and arsenal management. This order fits into
the rule nicely, that the players simply addressed the weakest
links first. Second, even in terms of managing arsenal only, the
players went through the same steps to reach the optimum. All
requiring several steps indicates that the players focused on a
part only until it was not the weakest, but not necessarily opti-
mal. In other words, the players were satisficing in part-tasks,
with ‘not the weakest’ as the criterion of sufficiency. However,
Player 7 does provide one exception, as the player optimized –
not just satisficed – the weakest link in flight pattern and made
it the strongest before moving on. Even then, it is quite possi-
ble that satisficing observed in players’ gameplay are actually
static points in the dynamics of reaching the optimum.

Summary and Conclusions
In this work, we put the SpotLight on the commonalities in
individual learning of a complex task that underlie vast differ-
ences in performance. We observe that our players progress
towards optimal strategies by recurrently applying the rule of
‘design for the weakest link’, while simultaneously reinforc-
ing existing strengths. More comprehensively, the rule stands
to be: optimize strategies for the weakest links, but relative to
existing strengths. A resultant of adopting this common rule
is that the individuals’ very different routes to expertise tended
to converge towards the same strategies. Therefore, a possi-
ble explanation for the rule is that optimizing strategies for the

weakest links serves as checkpoints towards the globally op-
timum strategies that maximize the overall or ultimate goal.
Although the rule served the performers well, we also observe
that the constraint of relative to existing strengths on the rule
may lead to local optima of strategies – instead of the global
optimum – and therefore, to stable suboptimal performance.

The ‘design for the weakest link’ rule provides a simple
explanation as to how individuals may progress in learning a
complex task, and what may cause them to plateau. But, we do
not claim that it to be an absolute general rule, especially with
the scope of study being only one task. Rather, it serves as a
demonstration of how the PDLs and strategies uncovered by
the SpotLight, can aid in finding common patterns in the dy-
namics of individual learning. These patterns, in turn, would
be useful to discover the laws that govern individual learning
and finding ways of overcoming suboptimal plateaus to accel-
erate learning. Finally, our experimental paradigm of SF em-
ulates an important characteristic of complex real-world tasks
– numerous, interconnected elements resulting in many alter-
native strategies. Therefore, a promising direction for future
research is to apply and test the SpotLight tool in investigating
learning of complex real-world tasks to progress towards the
general laws of individual learning.
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