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Abstract
Neural network models are essential tools in understanding
how behavior arises from information processing in the brain.
Recent advances in computing power and neural network al-
gorithms have made more complex models possible, increas-
ing their explanatory power. However, it is difficult to make
such models work: they have many configuration parameters
that have to be set right for the model to work properly. Conse-
quently, automated methods are needed to optimize them. This
paper proposed an evolutionary approach to this problem. An
Age-Layered Evolutionary Algorithm is introduced and evalu-
ated by fitting training parameters for BiLex, a self-organizing
map model of lexical access in bilinguals. The resulting con-
figurations are highly optimized and able to generalize to pre-
viously unseen human data, showing that evolutionary opti-
mization of complex models has the potential to play an inte-
gral role in cognitive modeling in the future.
Keywords: Neural Networks; Cognitive Modeling; Evolu-
tionary Algorithms

Introduction
Over the last few decades, connectionist neural networks have
become an essential tool to characterize and investigate hu-
man cognition. Models based on such networks are usually
not intended as physiologically accurate simulations of bio-
logical neurons and their interactions; nevertheless, they ex-
hibit many characteristics of information processing in bio-
logical systems, including robustness to damage and input
errors, and the ability to learn and generalize. This prop-
erty of brain-like information processing on an abstract level
is the main advantage of neural network-based models, en-
abling them to capture many aspects of high-level cognition
while relying on mechanisms that are plausible analogs of the
underlying neural substrate.

Recent progress in computing technology, such as GPU
computing and software frameworks that rely on it, like
Theano and TensorFlow (Abadi et al., 2015; Theano Devel-
opment Team, 2016), have dramatically increased the perfor-
mance and complexity of achievable models. At the same
time, advances in neural network algorithms and architec-
ture like deep learning and reservoir methods (Schmidhuber,
2014; Maass, Natschlager, & Markram, 2002) have made use
of these capabilities, and thus the scale and performance of
neural network applications have increased in equal measure.

Together these advances can significantly improve cogni-
tive neural network models. Most importantly, rather than
simulating behavior on an abstract and qualitative level, suf-
ficiently large and complex networks can now be built so that

clinical and psychometric tests can be modeled directly and
quantitatively. Furthermore, rather than demonstrating that a
certain kind of function of behavior can plausibly occur in
a model, modern architectures can be used to investigate the
link between environmental factors on the one hand, and the
resulting individual differences on the other.

Building this new brand of models presents new and unique
challenges. Most importantly, their ability to capture individ-
ual differences in behavioral data makes them sensitive to a
large set of interdependent parameters governing e.g. module
sizes, extent and intensity of training and pre-training, and in-
put/output behavior of different classes of artificial neurons.
In contrast to typical models in the past, fitting a model’s
many parameters manually in order to account for behavioral
data is no longer feasible.

Another significant challenge is that the amount of indi-
vidual human data available is often limited. Since the re-
quired amount increases with larger parameter spaces, and
since quantitative measures need to be elicited for both target
behavior and any individual differences of interest, acquir-
ing the data necessary for accurate parameter fitting becomes
prohibitively difficult.

Third, for an interdependent set of parameters that influ-
ence the behavior of the model in a non-linear way, fully
evaluating a given set of model parameters involves training
a complete model for each human participant. The resulting
goodness-of-fit measure provides no gradient w.r.t. the pa-
rameter set. Therefore, the standard gradient based methods
of metalearning cannot be used to optimize these models.

This paper proposes an evolutionary approach to these is-
sues. The goal is to make parameter fitting of complex neural
network models to limited human data workable in practice.
In order to limit the cost of evaluation, the proposed EA uses a
variant of the previously introduced Age-Layering technique
(Shahrzad, Hodjat, & Miikkulainen, 2016), which aims to fo-
cus detailed evaluations on the most promising candidates.

The approach is evaluated in optimizing parameters for
BiLex, a neural network model of the bilingual lexicon (Anon
et al., 2016). BiLex simulates tests used in clinical practice,
and captures the complex interactions between exposure to
different languages and the resulting individual differences in
bilingual lexical access. It is a complex model of individual
subjects, for which little training data is available. It is there-
fore an appropriate test case for the proposed approach.



The next section gives an overview of bilingualism and the
BiLex model. Using BiLex as a working example, the follow-
ing sections then introduce and evaluate the proposed model
fitting method, and discuss the results.

Bilingualism and the BiLex Model
The mental lexicon, i.e. the storage of word forms and their
associated meanings, is a central component of language pro-
cessing. The lexicon of bilinguals is considerably more com-
plex than that of monolinguals, and the ways in which multi-
ple language representations can develop, coexist, and inter-
act are incompletely understood.

Given that the majority of the world’s population is bilin-
gual or multilingual (Bhatia & Ritchie, 2005), extending ex-
isting modeling approaches to improve our understanding of
these additional complexities is of considerable practicle im-
portance, and computational models of the bilingual lexicon
could contribute to novel approaches in bilingual research,
education, and clinical practice.

Current theoretical models of the bilingual lexicon gener-
ally agree that bilingual individuals have a shared semantic
(or conceptual) system, and that there are separate lexical
representations of the two languages (L1 and L2). However,
the models differ on how L1 and L2 interact with the seman-
tic system and with each other. The most recent model is
the Revised Hiearchical Model, proposed by Kroll & Stewart
(Kroll & Stewart, 1994). It assumes connections of varying
strength between all three components, depending on relative
language dominance.

The physiological structure and location of the lexicon in
the brain are still open to some debate, but converging evi-
dence from imaging, psycholinguistic, computational, and le-
sion studies suggests that the lexicon is laid out as one or sev-
eral topographic maps, where concepts are organized accord-
ing to some measure of similarity (Caramazza, Hillis, Leek,
& Miozzo, 1994; Spitzer et al., 1998).

Self-organizing maps (SOMs; Kohonen, 2001) are neu-
ral networks that model such topographical structures, and
are therefore a natural tool to build simulations of the lexi-
con. SOM models have been developed to understand e.g.
how ambiguity is processed by the lexicon (Miikkulainen,
1993), and how the lexicon is acquired during development
(Li, Zhao, & MacWhinney, 2007).

Following the Kroll & Stewart model, and using SOMs as
its building blocks, the BiLex model consists of three sepa-
rate maps: one for word meanings, and one each for phonetic
symbols in L1 and L2, as illustrated in figure 1. All maps are
linked by associative connections of varying strength, which
allow network activation to flow between them.

Training Corpus During model training, the semantic and
phonetic maps need to organize according to similarity, i.e.
on the semantic map, words with similar meaning will tend
to be close, while on phonetic maps, words that sound similar
will tend to be close. For this organization to occur, seman-
tic and phonetic symbols need to be encoded as vectors that

L1 phonetic map (English) L2 phonetic map (Spanish) 

Shared semantic map 

Figure 1: The BiLex model consists of three SOMs, one each
for semantics, L1, and L2, that are linked by associations that
enable the model to translate between semantic and phonetic
symbols, simulating lexical access in bilingual humans.
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Figure 2: A word is encoded as a phonetic vector representa-
tion, creating the basis for phonetic map organization in the
BiLex model.

reflect this similarity.
Feature-based semantic and phonetic vector representa-

tions were developed for a training corpus of 638 concrete
nouns in English and their direct translations to Spanish. Se-
mantic representations were derived from feature data devel-
oped by Sandberg, Gray, and Kiran (2018). For each word,
10-20 relevant attributes (e.g. “can fly”) were used that were
normed on healthy adults using Amazon MTurk. Overall,
data from more than 320,000 interactions of the type “does
word X have feature Y?” were used to produce semantic vec-
tors of 400 features.

Phonetic representations were based on phonetic transcrip-
tions of English and Spanish words, which were split into
spoken syllables, and padded such that the primary stress
lined up for all words. The individual phonemes compris-
ing each syllable were represented numerically as a set of
phonetic features like height and front-ness for vowels, and
place, manner, etc. for consonants (Ladefoged, 2001). Figure
2 illustrates the encoding process. The final phonetic repre-
sentations consisted of 144 real-valued features for English,
and 192 for Spanish.

Model Training
Using the semantic and phonetic symbols as input data, the
organization of the three maps and the associations between
them are learned simultaneously. Symbols are presented to
two of the maps at the same time; the two exposed maps
adapt, and over time become more likely to represent each
symbol in the corpus accurately. At the same time, associa-
tive connections between corresponding semantic and pho-
netic symbols grow stronger.

Varying relative exposure to English and Spanish can be



Figure 3: A well-trained semantic map, with winner units
for each word labeled (LEFT). Map units are colored accord-
ing to semantic categories, showing good global organization.
RIGHT: Detail demonstrating that semantic similarity is re-
flected locally as well (e.g. walnut, nut, peanut are neigh-
bors). Carefully designed training parameters are essential in
creating this kind of highly organized map.

simulated by presenting English and Spanish phonetic sym-
bols at proportional frequencies during model training, en-
abling the model to capture the effects of an individual’s lan-
guage learning history.

SOM Training Each SOM consists of a two-dimensional
grid of neurons; each neuron is associated with a weight
vector that encodes a semantic or phonetic symbol. The
maps are trained using the standard SOM training algorithm
(see e.g. Kohonon, 2001), which causes the weight vectors
to become representations of the symbol vectors. At the
same time, neighboring weight vectors become similar, and
the map learns to represent the space of symbols as a two-
dimensional layout where units that are close to each other
on the map are similar either semantically (in the semantic
map) or phonetically (in the phonetic maps).

SOM training is mainly governed by two parameters: the
learning rate α determines the intensity of training, and the
neighborhood size σ determines whether a larger or smaller
part of the map changes in response to a training input.

The effectiveness of SOM training depends critically on
how σ and α change over time. To develop the map’s global
structure first, the size of the neighborhood usually starts rel-
atively large (on the order of the size of the map), and is
gradually reduced, which causes the map to learn the sim-
ilarity relations between input patterns at a more and more
fine-grained level. Similarly, the learning rate is usually re-
duced over time, which allows the map to fine-tune its weight
vectors in later stages of training.

Figure 3 shows an example of a well-trained semantic map,
with colors encoding rough semantic categories. The cate-
gories tend form contiguous areas that border on similar cate-
gories. The detail on the right illustrates that locally, concepts
tend to be arranged according to semantic similarity as well,
e.g. ”walnut”, ”nut”, and ”peanut” form a tight cluster.

A central working assumption underlying the BiLex model
is that, similar to the training schedules necessary to achieve
well-organized SOMs, language acquisition during human

development requires an equivalent progression of factors
governing learning. In other words, the cortical structures
that underlie the human lexicon start out highly flexible and
adaptive, but later in life adapt only to a smaller degree, both
in terms of learning intensity and overall flexibility. In this
way, SOM-based models can provide a mechanistic explana-
tion for the age-related limitations on second language learn-
ing that occur in humans.

Training Associative Connections In addition to map
training, associative connections between the maps are
adapted simultaneously based on Hebbian learning, i.e. by
strengthening connections that link active neurons:

a′i j = ai j +αθiηiθ jη j,

where ai j is the weight of the associative connection from
unit i in one map to unit j in the other map, ηi is the activa-
tion of unit i, and θi is a function defining the current map
neighborhood.

In order to prevent the associative strengths from increas-
ing indefinitely, the the overall sum of outgoing associative
connections is normalized such that for each neuron, the L2
norm of outgoing connections to each target map is 1.

Additionally, since lexical access can decline in humans
with age or lack of exposure to a language (Kavé, Knafo, &
Gilboa, 2010), small amounts of random noise (with a given
variance γ) are added to the associative connections during
training.

Simulating Naming Tests Once a BiLex model is trained,
the task of naming an individual word in either language can
be simulated by first presenting its semantic representation to
the semantic map. The resulting map activation is then prop-
agated to the phonetic map via the associative connections;
the weight vector of the most highly activated phonetic unit
is then compared to all phonetic representations in the corpus,
and the word with the minimal distance is produced as out-
put. If the output word matches the original input, the word
is counted as correctly named. The simulated naming perfor-
mance for a set of words is the percentage of words that are
correctly named in this way.

Evolutionary Parameter Fitting
In BiLex, age and relative language exposure over time are
based on individual human data: the age of an individual de-
termines the number of epochs used for model training, one
training epoch per simulated year. The relative exposure to
each language determines the proportion of English vs. Span-
ish words randomly selected for training during each epoch.
However, appropriate settings for all remaining parameters
governing the training process are initially unknown, includ-
ing how learning rates and neighborhood sizes for the SOMs
change over time. Finding parameter settings that enable
BiLex to match an individual’s naming performance given
past language exposure is a complex problem, involving pre-
cise tuning of a large set of interdependent parameters. The



remainder of this section describes an Evolutionary Algo-
rithm (EA; e.g. Bäck et al., 1997) designed to solve this prob-
lem.

EAs are a class of population-based optimization algo-
rithms that use mechanisms inspired by biological evolution,
like reproduction and mutation, to solve optimization prob-
lems. EAs maintain a population of candidate solutions, us-
ing a fitness function to determine the quality of each candi-
date. Highly fit candidates are more likely to be selected to
reproduce, and recombine with other highly fit candidates. In
this way, evolution tends to produce better candidate solutions
over time.

Representation of Candidate Parameter Sets For the
present problem of finding the best possible parameter set-
tings for BiLex, each candidate solution was a set of BiLex
training parameters, excluding age and relative language ex-
posure, but including α and σ at different simulated ages, the
scale γ of the random noise added to simulate aging and attri-
tion effects, and the size N for each SOM.

To avoid overfitting, both α and σ were assumed to be the
same for all three maps. Specific values for α and σ were
evolved at a number of simulated ages (1,4,7,10,13,19,25,
and 50 years), and interpolated linearly for intermediate val-
ues. Additionally, both α and σ were constrained to non-
increasing values, i.e. at each time, the minimum of all values
so far was used for training.

Training the associative connections also requires a learn-
ing rate α′ at each time during training. To limit the number
of parameters, a single factor k was added, such that at each
time, α′ = k×α. In this way, the scale of α′ was independent
of that for SOMs, but changed in the same way over time.

To account for the fact that monolinguals tend to score
above zero on naming tests in the other language, a minimum
exposure parameter ε was added such that exposure for each
language was clipped to values between ε and 1− ε.

Initially, the number of words trained per simulated year
were also included in the set of evolved parameters, which
turned out to be unnecessary. In the reported experiments,
the number of trained words per simulated year was set to a
fixed value of 1.5 x the size of the training corpus.

Overall, each candidate parameter set was encoded using
20 numeric values; the initial population of 100 candidates
was generated using random values within reasonable inter-
vals, which were chosen empirically for each parameter. E.g.
neighborhood sizes were constrained to an interval between
0 and 10, and initial learning rates ranged from 0 to 0.4.

Evaluation and Age-Layering In order to evaluate how
well a particular candidate was able to match the naming
performance of a given human participant, a BiLex model
was trained, and the naming tests administered to the hu-
man participant were simulated using the trained model. The
goodness-of-fit for a given candidate on a human individual
i (GOFi) was then calculated as the sum of squared residuals
for the naming scores in both languages.

Based on this GOF measure, the straightforward way of
fully evaluating the fitness of a candidate would be to evalu-
ate it on all training samples, and compute the fitness as the
mean GOF measure, requiring training and evaluating a com-
plete model for each i, and making the evaluation function
extremely expensive.

As a possible solution, age-layered EAs (Shahrzad et al.,
2016) attempt to limit complete evaluations to only the most
promising candidates. Candidates that score highly on an ini-
tial limited evaluation are further evaluated, while weak can-
didates are eliminated, saving computing resources.

Age Layering is particularly useful for noisy and expensive
evaluations, and has been shown to speed up evolution signif-
icantly. To optimize BiLex parameters, a slight variation was
used that accounts for the small, fixed set of human individu-
als on which each candidate can be tested: rather than ranking
candidates by their overall fitness, a separate ranking for each
human data set i was computed, and candidates were then dis-
carded if their average ranking was below the 50th percentile
within their age layer.

EA Design The remaining components of the Evolutionary
Algorithm were fairly standard (see e.g. Bäck, 1997); Par-
ents were chosen by standard roulette-wheel selection; off-
spring was created using uniform crossover, and mutated by
adding normally distributed noise with uniform probablility
(p=0.05) and standard deviation 0.025, scaled by the size of
the initialization interval for each parameter.

In order to simplify distributed evaluations across remote
compute nodes, and because age-layering makes the time re-
quired for evaluations unpredictable, a steady-state EA was
used, i.e. rather that proceeding in distinct generations, pop-
ulation size was maintained between 50 and 70 candidates by
adding new candidates continually as needed.

Finally, if none of the most recent 500 candidates was able
to improve on the previous best solution, a mutation burst was
performed, i.e. to maintain diversity, new candidates were
added without recombination, but using a high mutation rate
of 0.5. If no improvement was observed in the 1000 most
recent candidates, the EA terminated, and the current best so-
lutions were used as the final result. All parameters governing
the EA were set empirically.

Experiments
Human Data The human data used to evaluate the parame-
ter tuning methodology were collected from 33 healthy adult
individuals, including 28 Spanish-English bilinguals and 5
monolinguals (2 Spanish, 3 English), who were included in
order to provide the EA with appropriate edge cases w.r.t. lan-
guage exposure and naming performance.

Relative exposure to English vs. Spanish over each individ-
ual’s lifetime was estimated using a standard Language Use
Questionnaire (LUQ19; Kastenbaum, 2018), which included
questions about age, native and second languages, as well as
a detailed self-reported linguistic profile that included relative
exposure to both languages.



In order to measure lexical access (i.e. naming perfor-
mance) in English and Spanish, all participants completed the
Boston Naming Test (BNT; Kastenbaum, 2018), as well as
another 60-item picture naming screener test used in clinical
practice. To reduce the noise inherent in such tests, both tests
were averaged to obtain one composite naming score for each
language.

The provided data on language exposure and age made it
possible to modulate relatitve English vs. Spanish exposure
over the course of the simulated lifetime for each individual
human, creating an individual BiLex model whose naming
performance could be measured and compared to the actual
test scores.

Validating the Evolutionary Parameter-Fitting Method
In order to evaluate the generalization performance of the pro-
posed evolutionary method, a five-fold cross-validation run
was conducted, using the human data described above as ei-
ther training or test data. The initial set of 33 participants
was divided randomly into five test sets, with each test set
containing one monolingual. For each test set, the EA pa-
rameter optimization was performed using the remaining 26
or 27 healthy controls as training data. Generalization per-
formance was measured as the goodness-of-fit on the respec-
tive test sets: For each individual in a test set, a model was
trained using parameters that were evolved to fit the naming
performance of the respective training set. Since each control
subject was part of one test set, this was possible for all 33
controls.

Results
All five cross-validation runs produced highly fit candidate
solutions; final best-fit parameter sets were found after evalu-
ating 2749 (SD=1023) candidates on average, training and
evaluating an average of 13549 individual BiLex models.
Complete evaluation of all candidate parameter sets would
have required over 7x as many trained models, suggesting
that the age-layering approach was highly effective in reduc-
ing the number of required evaluations.

Most parameters in the best-fit candidate parameter sets
tended to be similar, e.g. low but finite minimum expo-
sure ε (0.04, SD=0.0137), and large initial neighborhood
size (08.06, SD=1.17) that decreased dramatically (0.59,
SD=0.049) by age 25.

Simulated composite naming scores were highly predictive
of human data for both English (R2 = 0.77 , p << 0.0001)
and Spanish (R2 = 0.63 , p << 0.0001). Figure 4 shows
predicted vs. actual composite naming scores for both lan-
guages, using predicted naming scores from the top five pa-
rameter sets found by each of the five EA runs.

Figure 5 illustrates the way in which L2 age of acquisition
(AoA) and exposure influence the structure of BiLex maps
using concrete phonetic maps from four individual BiLex
models; each map was trained using evolved training param-
eters and the language history of one of the bilingual study
participants. The individual maps were chosen to represent
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Figure 4: Simulated naming scores on test sets are highly
predictive of human data for both English (left, R2 = 0.77)
and Spanish (right, R2 = 0.63), indicating that models trained
with evolved parameters are able to generalize to simulate
bilingual access of previously unknown individuals.

extreme AoA/exposure combinations: Panel A shows early
AoA and high exposure, from a model with high L2 naming
score (> 90%). Panel B demostrates that as long as the AoA
is early, the L2 map organizes and performs well even for
low exposure. Panel C shows a late-AoA/high exposure map;
the global organization deteriorates to some degree, but per-
formance is still acceptable (70%). Finally, panel D shows
how the combination of late AoA and low exposure leads
to a badly organized map that accounts for low performance
(<40%).

Discussion
The complexity of the BiLex model, the infinite possible
combinations of individual language history, and the com-
paratively small amount of human data available in this case
make BiLex an appropriate test case for the evolutionary pa-
rameter fitting method proposed in this paper. The reported
results demonstrate clearly that using evolution, a complex
model like BiLex can be configured to capture complex in-
teractions between environment and behavior, in a model that
itself plausibly models neural information processing.

In addition to capturing the link between language expo-
sure and naming ability quantitatively, the same link was vis-
ible in the organization of phonetic L2 maps in the optimized
model: either early L2 acquisition or high exposure lead to
well-organized L2 phonetic maps and high naming perfor-
mance, while low exposure and late acquisition led to defi-
cient map organization and naming ability.

In this way, models based on known theories, and designed
to account for quantitative data on a more abstract level, can
still provide additional insight and generate unexpected ex-
planations for mechanisms underlying a given phenomenon –
in this case, about the way in which AoA and exposure mod-
ulate lexical acces through phonetic map organization.

Note that, while BiLex was used as a concrete example
throughout, the method extends to similar models, and aims
to make parameter fitting of complex neural network models
to limited human data workable in general.

Finally, while evolution can help models such as BiLex ex-
plain normal human cognition and capture the ways in which



Figure 5: L2 phonetic maps of individual EA-optimized
BiLex models. (A) Early age of acquisition (AoA) and high
exposure leads to well-organized L2 phonetic maps. (B)
Early AoA leads to well-organized maps despite low expo-
sure. (C) Late L2 AoA impacts both global organization of
the phonetic map even at high exposure. (D) Late AoA and
low exposure lead to deficient global and local map organiza-
tion. Taken together, the maps offer a mechanistic explana-
tion for AoA/exposure effects seen in humans.

underlying brain mechanisms, environment, and cognitive
function interact, the resulting models of normal cognition
can also serve as a basis to investigate how these functions
break down, and potentially inform the development of im-
proved diagnostic methods and clinical interventions.

In current research, EA-optimized BiLex models are used
in this way to create individual models of bilingual pa-
tients suffering from Aphasia; the resulting pre-morbid pa-
tient models are then used to simulate the onset of Aphasia,
and to predict outcomes of alternative interventions. The ap-
proach is currently evaluated in an ongoing clinical trial, mak-
ing it (to our knowledge) th first time a neural network model
has been used in this way – the systematic, mechanical way of
optimizing the model that was introduced in this paper makes
novel modeling application such as these possible.

Conclusions
This paper proposed an evolutionary approach designed to
make fitting complex NN-based models of higher cognition
to limited data workable in practice. An Evolutionary Al-
gorithm was introduced and evaluated by optimizing training
parameters for BiLex, a connectionist model of the bilingual
lexicon. Using EA-optimized parameters, BiLex was able to
capture the complex interactions between exposure to differ-
ent languages and the resulting individual differences in bilin-
gual lexical access, demonstrating how evolution can help
build the next generation of computational models of cog-
nition.
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