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Abstract

Varied training in comparison to consistent training has been
shown to benefit transfer to novel conditions within the mo-
tor learning paradigm. However, it is unclear if these benefits
of variable training extend to complex skills such as driving.
Unlike simple motor skills, these complex skills require indi-
viduals simultaneously to learn the mapping between ones ac-
tions and their consequences and also to integrate this knowl-
edge into continuous and dynamic responses to the changing
demands of the environment. In the current work, we compare
observed data and an ACT-R model of complex skill acqui-
sition on a navigational video game task (Space Track). Par-
ticipants trained either on one or two levels of thrust. Perfor-
mance on a transfer test was better in the varied training condi-
tions in both humans and model. Performance in both humans
and model was also differentially influenced by the most re-
cently practiced thrust level. Further analyses revealed large
differences between model and human behavior on more de-
tailed measures, which suggests that that the model achieves
the same overall performance through different strategies. We
discuss these findings and their implications for the ACT-R
model of skill acquisition.
Keywords: varied practice; transfer; adaptation; ACT-R; com-
plex skill acquisition

Introduction
Transfer learning is the phenomenon in which practice on one
task facilitates the learning of a related task, which reduces
the time needed to attain a certain level of skill. This phe-
nomenon has been studied in various domains such as math-
ematical problem solving (e.g. Speelman and Kirsner, 2001),
perceptual categorization and discrimination (e.g. McGov-
ern et al., 2012), and sensorimotor learning (e.g. Goodwin et
al., 1998). Within the domain of sensorimotor learning, prac-
ticing on varied task parameters has been shown to facilitate
more transfer to new task parameters as compared to consis-
tent practice. For instance, when the transfer task is to toss a
beanbag to a target at a set distance, participants who trained
on different target distances excluding the transfer target per-
form better than those who trained on just one target distance
(Kerr and Booth, 1978).

In the tasks used to investigate the effects of varied prac-
tice, one common feature is that the goal of the task is often
closely related to the sensory consequence of the sensorimo-
tor mapping that the subject needs to learn. For example, the
goal in a visuomotor rotation task is to maneuver a cursor to-
wards a virtual target in the presence of perturbations (e.g.
Braun et al., 2009). These perturbations cause the motion
of the cursor to rotate with respect to the motion of the con-
troller and successful participants are hypothesized to learn

this new mapping between the motion of their hand and the
motion of the cursor. However, it remains unclear is unclear if
the benefits of varied practice extend to more complex tasks
in which the acquisition of sensorimotor maps is necessary
but insufficient for high performance. For example, assum-
ing that the goal of a driver is to get from point A to B in the
fastest and safest manner, successful driving involves not only
more than just learning how the movement of ones foot on the
accelerator translates to the cars motion, but also the ability
to come up with an action plan to navigate the upcoming ob-
stacles or road hazards. Hence, one of the goals of this study
is to answer the following question: When learning complex
skills, where the sensorimotor map is only a part of the skills
needed to accomplish the task goal, does varied training still
outperform consistent training with regard to the transfer of
performance to novel task parameters?

Task

Space Track was originally a video game developed by An-
derson et al. (in press) as part of a study on the transfer of
complex skills. Just like driving, mastering Space Track is
a complex skill because it requires one to integrate percep-
tual, motor, and cognitive components. Expertise arises from
having gained an intuitive understanding of the physics of the
game and the ability to use that knowledge towards planning
sequences of key presses to overcome various situations. In
Space Track, players control a space ship in a frictionless en-
vironment using three keys: thrust (W), rotate clockwise (A),
and rotate counterclockwise (D). Players earn 25 points by
successfully navigating the ship along each rectangular track
segment and lose 100 points when the space ship crashes into
the walls of the track. Figure 1 shows a schematic of the task.
Finding a good speed is crucial for performance one needs to
fly fast enough to cover as much distance as possible but also
slow enough to avoid losing control of the ship and crashing.

To create changes in the task environment, we manipulated
the amount of thrust the ship receives for the same duration
that the thrust key is depressed. When the thrust key is de-
pressed, a vector of x pixels per second in the current direc-
tion of the ship is added each game tick, which is 1/30th of
a second. For the same duration of key press, a game with
higher thrust would cause the ship to fly faster than a game
with lower thrust. Mastery of the game relies on adequately
predicting and controlling the motion of the space ship. Thus,
players would have to retune their control parameters when



faced with a different thrust level.
We created three game types, each with a different thrust

level. High thrust games (H) added 0.6 pixels / tick to the
ships velocity vector for each tick that the thrust key was de-
pressed. Medium (M) and low (L) thrust games added 0.4 and
0.2 pixels / tick respectively. With these three game types,
we created four training conditions as follows: LLLLM, HH-
HHM, LHLHM, and HLHLM, where each letter stands for
one block of 8 x 3-minute games. Figure 2 provides a picto-
rial representation of the task design. For instance, a player
in the LLLLM condition would play 4 blocks (32 games) of
low thrust followed by 1 block (8 games) of medium thrust.
For our analyses, the first 4 blocks will be referred to as the
training blocks, and the last block of medium thrust in all con-
ditions will be referred to as the test block. Participants in the
consistent training group will be assigned to either LLLLM
or HHHHM, while those in the varied training group will be
assigned to either HLHLM or LHLHM. Our rationale for us-
ing two different conditions in the consistent training group
is to separate adaptation effects due to consistent vs. varied
training and effects due to training on a high vs. low thrust.
We used two different conditions in the varied training group
to account for possible block order effects.

Figure 1: Schematic of Space Track. The goal is to navigate a
space ship along a racetrack with rectangular segments. The
dashed line displays a potential trajectory along two consec-
utive segments.

Experiment
80 participants, 22 females and 58 males, ranging in age
from 21 to 65 years old (mean = 31.0) completed both ex-
periment sessions through Amazon Mechanical Turk. Partic-

Figure 2: Task design. Each row represents one condition,
and each box represents one block of 8 games.

ipants were paid $5 for the first session and $10 for the second
session plus a bonus of $0.03 per 100 points.

The experiment consisted of two sessions. In the first ses-
sion, participants filled out a demographic questionnaire, then
proceeded to complete the first 20 games. Participants that
passed a set of inclusion criteria were then invited to the sec-
ond session, which consisted of another 20 games. During a
game, if 20 seconds elapse without the participant pressing a
key, a pop up with a ready to restart button will appear. The
inclusion criteria for the second session are 1. No more than
3 resets due to inactivity and 2. Either at least 500 points in
at least 3 out of the 20 games, or that the average of games 17
to 20 is at least 100 points higher than the average of game 1
to 4. These criteria were put in place to maximize recruiting
only players who were sufficiently attentive and showed signs
of learning. Using those criteria, 66 number of players who
finished the first session were excluded from participating in
the second session. Recruitment continued until 20 partici-
pants per condition successfully completed both sessions.

Behavioral results
Figure 3 displays the points per game for each condition; the
following analyses will focus only on data from the human
players (in red). To get a measure of test performance for
each participant, we averaged each participants points across
their 8 games of the test block (games beyond the rightmost
dashed line in Figure 3).

We then fitted a linear regression with average test points
as the dependent variable. The independent variables of in-
terest were training group (consistent or varied) and the thrust
type on block 4, which is the last practiced thrust type be-
fore the transfer test (high or low). To account for the possi-
ble effects of video gaming experience and other participant
characteristics on transfer performance, we included the fol-
lowing as nuisance variables: age, gender, the dominant hand
used to control movement in games, and the number of hours
per week spent on different genres of video games.



Variable training outperforms consistent training
on transfer test
From the results of the regression (adjusted r2 = 0.32), var-
ied training (β = 265.46, Std. Error = 103.11, p < 0.05), low
thrust on block 4 (β = −272.38, Std. Error = 98.08, p <
0.05), hours per week spent on 2D action (β = 204.88, Std.
Error =51.78, p < 0.05) and 3D shooter games (β = 111.04,
Std. Error = 37.02, p < 0.05) significantly predicted test
points. Notably, players who received varied training were
predicted to outperform their consistent counterparts on the
transfer test by 265.46 points. This advantage of varied train-
ing is aligned with the variability of practice hypothesis.

Changes in performance depends on the direction
and magnitude of switch in thrust level
Thrust type on block 4 also strongly predicted transfer perfor-
mance (β = 185.521, Std. Error = 76.376, p < 0.05), where
participants trained on high thrust outperform those trained
on low thrust. While we did not predict an effect of recent
thrust level, it might be that training with higher thrusts is
more difficult and that switching to lower thrust levels is akin
to switching to an easier task, which has been shown to facil-
itate transfer (e.g. Barch and Lewis, 1954).

If there were behavioral differences between games of dif-
ferent thrust levels, one would expect the largest differences
to manifest when initially switching to a new thrust. Hence, to
further investigate the effect of switching thrust levels, we an-
alyzed the point difference obtained by subtracting the points
earned on the last game of a block from the points earned on
the first game of the subsequent block. Point differences are
then sorted by switch type. For instance, the point difference
between games 33 and 32 for a HHHHM participant would
be considered a H to M switch, whereas the point difference
between the same numbered games for a LLLLM participant
would be considered a L to M switch. Point differences for H
to L (games 8 to 9 and 24 to 25 for HLHLM and games 16 to
17 for LHLHM) and L to H (games 16 to 17 for HLHLM and
games 8 to 9 and 24 to 25 for LHLHM) were gathered from
participants in both varied conditions. Switch types were then
re-coded as thrust differences to express a quantitative differ-
ence in thrust levels (L to H = 0.6 0.2 = 0.4; L to M = 0.2; H
to M = -0.2; H to L = -0.4).

A regression model (adjusted r2 = 0.3308) with thrust dif-
ference as the sole predictor of point difference estimated a
slope of −949.45 (Std. Error = 95.02, p < 0.05). This sug-
gests that increasing thrust by 0.2 would result in a drop of
189.89 in points, providing further evidence that switching
from low to high thrust decreases performance while switch-
ing from high to low thrust increases performance.

Adaptive Control of Thought – Rational
In a recent study, Anderson et al. (in press) demonstrated
that an ACT-R model produced the same learning trajectory
as humans do (r = 0.96) in a Space Track task where play-
ers would play 40 games at a thrust level of 0.3. There are

four key features of ACT-R that enabled this successful sim-
ulation. First, there are limits on various human cognitive
processes such as attention and response times that constrain
how human skill acquisition proceeds. The ACT-R cognitive
architecture incorporates realistic performance constraints on
the speed and accuracy of perception and action. Second, hu-
man participants do not begin learning from scratch, but are
informed by explicit instructions about the controls and goals
of the task. Through instruction following, ACT-R models
also utilize task knowledge to accelerate learning in the ini-
tial stages. Third, the improvement in performance with ex-
perience is partially governed by increased automaticity and
faster deployment of knowledge. ACT-R models capture this
by production compilation, a process that gradually proce-
duralizes declarative knowledge and reduces the time cost of
having to retrieve declarative knowledge for action execution.
Fourth, human skill mastery also relies on tuning the control
parameters of ones actions to predictors of success or fail-
ure in the task environment. This is captured in ACT-R by a
new Controller module that explores continuous dimensions
of performance to identify how to control actions. For in-
stance, one dimension that was explored in Space Track was
the speed of the ship that would yield an optimal trade-off
between number of segments cleared versus ship crashes.

An open question about the new controller module is
whether it responds to environmental changes in the same
way humans do. Thus, it becomes of interest to see how it
responds to the changes investigated in our experiment.

Control Tuning
Through practice, the model learns the optimal values for 5
control variables: aim, ship speed, thrust duration, when to
start making a turn, and the ship’s orientation with respect
to the angle of the upcoming intersection. For each control
variable, the model samples values within a preset range and
evaluates the mean rate of return for the sampled values ac-
cording to relevant feedback. Using that feedback, the mod-
ule then estimates a quadratic function that describes the re-
lationship between rate of return and control value, which in
turn influences how the module samples the next set of con-
trol values to try. This process is repeated iteratively through-
out the experiment, and the model eventually converges to a
truer estimate of the relationship between return and control
values.

For the model, relevant feedback comes from two sources:
the number of crashes and the number of segments cleared.
The weights on these sources determine the contribution of
each source of feedback to the estimated rate of return. Dif-
ferent source weights potentially relate to differences in risk
attitudes; for instance, a player might adopt a riskier ap-
proach, clearing more track segments but also crashing more
often than a more cautious player.

For our first set of model simulations, we compared mod-
els with different weight ratios on the control variables. The
reference model weights both features equally (-1 for a crash,
+1 for a cleared segment). One modified model reflects the



difference in point values assigned by the game to these fea-
tures and weights a crash four times the benefit of clearing
a segment (-4 to +1). Another modified possibility reflects a
loss aversive player by weighting crashes as being eight times
a cleared segment (-8 to +1).

While points are the primary indicator of performance on
the task, two players could conceivably achieve the same to-
tal points through different strategies. For instance, a player
might adopt a riskier approach to the game, clearing more
track segments but also crashing more often than a more cau-
tious player. To further investigate how switching thrust types
influences more fine-grained behavior in both models and hu-
mans, we also analyzed the mean speed, number of segments
cleared, and the number of crashes per game. For each point
of comparison, we obtained the sum of squared errors (SSE),
which measures the absolute deviation the average model ex-
hibits with respect to the average human across all 4 condi-
tions and 40 games. These results are presented in Table 1.

Different ratios of good and bad weights

The first set of comparisons comprise of the following mod-
els: the base (reference) model with a weight ratio of 1:1, a
model with a ratio of 4:1, and a (loss aversive) model with
a ratio of 8:1. Of the three models, the worst performing
model by far on all measures is the base model. The other
two models perform comparably, with the loss aversive model
performing slightly better than the 4:1 model on all measures
except total points earned. The relatively small differences
in model fits possibly suggest that the weighting function
of some human players might be best characterized by the
4:1 ratio, which reflects the corresponding contributions of
crashes and segments cleared to the total points earned, while
the weighting function for other players might be better char-
acterized a the 8:1 ratio, which reflects a disproportionately
heightened sensitivity to crashes over segments cleared. For
the sake of simplicity, we proceeded to incorporate the 4:1
ratio in our subsequent model simulations.

Figure 3 displays how the average points change as a func-
tion of game number for both humans and the 4:1 model in
all four training conditions; notice that the model shows the
same increases and decreases in performance when the thrust
level switches as do humans.

Adding slowdown and a decay on past experiences

While the 4:1 ratio model does qualitatively simulate hu-
man behavior adequately on the number of crashes, segments
cleared, and the overall points earned (refer to Figures 3 and
5), it does a poorer job of capturing how human players
modulate their mean speed across games. Referring to Fig-
ure 6, it appears that the model drastically changes its speed
whereas human players only make small changes in response
to changes in the thrust level. This then motivated the next
set of models, where we added slowdown, the ability for the
model to actively reduce the spaceship’s speed when it over-
shoots its desired control speed value.

Another model manipulation we investigated was to have
the model discount its old experiences. Because the Space
Track task used in Anderson et al. did not change its parame-
ters over time, it was unsurprising that a model that weighted
all experiences equally would be able to perform comparably
with those that discounted old experiences. However, as the
task used in the current study does introduce changes in the
task parameters, it might be reasonable to expect that a model
that decays the weight of old experiences would be able to
adapt better to the changes in thrust level. When the task pa-
rameters change, it is likely that the same control value will
result in different payoffs. For instance, pressing the thrust
key for 1 second in a low thrust level will increase the ship’s
velocity by a smaller amount than pressing the key for 1 sec-
ond in a high thrust level.

There is evidence from the memory literature for an expo-
nential decay function on the retention of past items in mem-
ory (e.g. Rubin et al., 1999). Hence, we chose to discount
the weight of a past experience by .995t where t is the time in
seconds.

The second set of comparisons comprise of four models:
the 4:1 weight ratio model, which also serves as the reference
model for this comparison, an exponential decay model, a
model with slowdown, and a model with both slowdown and
an exponential decay.

Between the four models, there are two that best fit the hu-
man player data; the exponential decay model for total points
(SSE = 5594241) and crashes (SSE = 1064) , and the slow-
down and decay model for segments cleared (SSE = 2564)
and mean speed (SSE = 15.2). The presence of a decay
function in both models suggests that human players might
adapt to their current thrust level by discounting the weight
of their past experiences, especially if those experiences were
obtained from a different thrust level.

Of the four measures, a model’s match on total points is the
least important because the total points earned is a compos-
ite of the segments cleared and crashes measures. Focusing
on the other three measures, the slowdown and decay model
appears to be the overall better model, especially because the
pure decay model’s advantage over the slowdown and decay
model in crashes appears to be relatively smaller than its dis-
advantage in segments cleared and mean speed.

Referring to Figures 4 and 6, the slowdown and decay
model shows a large reduction in both the number of seg-
ments cleared and its mean speed compared to the reference
(4:1) model. This reduction is particularly apparent during
the high thrust level blocks, and enables the slowdown and
decay model to align better with the mean speed of human
players across all conditions. Despite the model’s success, it
should be noted that the model still exhibits larger modula-
tions in its mean speed in response to changes in thrust level
than human players do, suggesting that human players might
actively aim to maintain the ship speed within a range of val-
ues instead of completely adapting the ship speed to optimize
the points earned in games of different thrust levels.



Table 1: Model comparisons

Sum of Squared Errors (SSE)

Model Weight Ratio Slowdown Decay Total Points Segments Cleared Crashes Mean Speed

Base -1 : +1 25647698 11064 5087 119.8

Weight=4 -4 : +1 6789958 9413 1370 69.7

Weight=8 -8 : +1 7398453 7383 1299 54.2

Slowdown -4 : +1 19404654 3178 1516 15.5

Decay -4 : +1 Exponential 5594241 11660 1064 82.1

Slowdown + Decay -4 : +1 Exponential 15901165 2564 1327 15.2

Figure 3: Points by game number for each training condi-
tion. Mean human points are in red (n=20 per condition);
mean slowdown + decay model points are in green (n=100);
mean -4 : +1 weight ratio model points are in yellow (n=100).
Shaded areas are S.E.M. Dashed lines indicate the start of a
new block.

Conclusion and Further Work
The behavioral results suggest that the variability of practice
hypothesis extends beyond simple motor skills to more dy-
namic and complex skills that require integrating perceptual,
motor and cognitive components. However, our results also
indicate that a person’s performance on a new thrust level
is influenced by their most recently experienced thrust level.
Thus, transfer performance depends not only on whether one
receives consistent or varied practice, but also on the specific
parameters within a consistent or varied training schedule.

Switching from a high thrust to a low or medium thrust
improves performance while switching from a low thrust to a
high or medium thrust decreases performance. However, it is
unclear why these switch effects occur, and why there is an
asymmetry in these effects. One possible extension involves

Figure 4: Segments cleared per game.

investigating how different thrust levels affect motor varia-
tion. Motor learning often involves the minimization of mo-
tor variation such that one is better able to precisely execute
an intended action (refer to Dhawale et al., 2017 for a review).
In a high thrust game, a small deviation in the duration of a
thrust key press from the intended duration would cause the
ship to slow down or speed up more drastically than for the
same deviation in a low thrust game. Hence, it might be that
players trained on high thrust games have more pressure to
control and minimize their motor variation. When switching
to a lower thrust level, these players easily adapt to the new
thrust because they can immediately apply a suitable degree
of control on their thrust key presses. In comparison, players
trained on low thrust games have less pressure to minimize
motor variation. When these players switch to a higher thrust
level, they would be forced to grapple with learning a level of
control that was previously unnecessary.

Our model comparisons reveal that the best fitting ACT-
R models weight negative events more severely than positive
ones. As players are rewarded depending on how many points



Figure 5: Crashes per game.

Figure 6: Mean ship speed per game.

they earn, it is reasonable that some players would weight
avoiding crashes over clearing track segments in a ratio that
reflects their relative contribution to points. Alternatively, as
humans have been shown to demonstrate loss aversion in the
face of equally valued gambles (e.g. Kahneman and Tversky,
1979), it is also reasonable that some players would place
an even greater emphasis on avoiding crashes. Future work
would involve investigating if the variability between indi-
vidual players could be explained by models with different
weight ratios.

Our comparisons also provide evidence for including a de-
cay on past experiences. As different thrust levels likely re-
sult in different payoffs for the same control setting, a player
that discounts old experiences from a previous thrust level
would update their estimated payoffs faster when adapting
to a new thrust level. More generally, adaptation to changes
in the environment is facilitated by prioritizing information
learned from recent experiences as these would better reflect
the state and reward structure of the current environment.

Finally, while adding the ability to slowdown does improve
the models’ fit to the human players’ mean ship speed, the
models still exhibit larger modulations than humans players
do when switching between thrust levels. One possibility is
that human players are not using points as feedback for ship
speed but perhaps using some sense of a comfortable speed.
Further work needs to be done to see whether maintaining
desired speed can be used as a feedback for the Controller
module. Speed control was successfully used as a feedback
signal in another video game, YouTurn, described in Ander-
son et al.; that YouTurn model used speed control to tune one
control variable, while using point-related measures to tune
other control variables.
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