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Abstract
We present a spiking neuron model of attention-driven mem-
ory, where participants use a cue to indicate whether a word
on a list is to be remembered or not. This model is fit to in-
dividual differences on mean behavioural data and produces a
good match in terms of variance of performance on a recogni-
tion task, but not on a recall task. Neural activity patterns dur-
ing the memorization parts of the task are also well-matched,
but not during the time between when the attention cue is pre-
sented and when the word itself is presented. We believe this
indicates mechanisms are involved in the recall task which are
not considered as part of the current model.
Keywords: attention; memory; Neural Engineering Frame-
work; LIF neurons

Introduction
The overall goal of this work is to produce a neural-level ex-
planation of psychological phenomena: in this case, the abil-
ity to control (via attention) what items on a word list are
remembered, and which ones are not. In particular, we are
interested in how low-level effects (such as how well neurons
can represent, store, and transform information) can give ex-
planations for how tasks are performed, and how people dif-
fer.

In an experiment to ”isolate the neural mechanisms of at-
tention that lead to improved memory formation,” Wittig et
al. (2018) visually presented words for one second, followed
by a five second delay between words. Subjects were in-
structed to remember words that were preceded (cued) by a
row of asterisks, with no instruction given regarding uncued
words. Once the entire list was presented, subjects performed
distraction tasks (simple arithmetic problems) for 20 seconds
to suppress sub-vocal rehearsal and mitigate recency effects.
Then the subjects memory of the word list was assessed us-
ing recognition and recall tests (John H. Wittig, Jang, Cocjin,
Inati, & Zaghloul, 2018). This process is shown in Figure 1.

In the recognition (seen/unseen) test, subjects were shown
a second list of words (test list) and asked to identify which
words came from the list originally presented during the task
(task list). The test list consisted of a mixture of cued words
and uncued words from the task list, in addition to words that
were not part of the task list (foil words). The recall test re-
quired subjects to verbally recite as many of the cued words
as possible.

There were two recognition test criteria used to determine
whether sessions would be used in the analysis 1) there must
be a significant difference in recognition rates between cued
and uncued words 2) there must be a significant difference
in recognition rates between uncued and foil words. Signif-
icance was determined using a chi-squared contingency ta-
ble (we assumed the criterion was p<0.05, although this is

Figure 1: Task description, from (John H. Wittig et al., 2018).

not stated in the paper). While training subjects to perform
the task, the task difficulty was calibrated for each subject.
Task difficulty was set primarily by altering the length of the
task list such that subjects would meet both stated criteria.
Other parameters (e.g. fraction of cued words) were altered if
changing the list length was insufficient to meet the criteria;
however, these secondary adjustments were not considered in
the current work.

Adjusting the task difficulty allowed the testers to ”collect
isoperformance data across participants who showed a wide
range of natural aptitude for the task 1. Overall, 71/90 ex-
perimental sessions met both criteria, with training sessions
excluded from the analysis. The distribution of list lengths is
shown in Figure 2.

Representation
The goal of this work is to build a computational model of the
memory aspects of this task using spiking Leaky Integrate-
and-Fire (LIF) neurons. We use the Neural Engineering
Framework (Eliasmith & Anderson, 2003) to find the connec-
tion weights between these neurons such that a) each group of
neurons forms a distributed representation of a vector and b)
each set of connections between groups of neurons approxi-
mates some desired function on those vectors. The neurons
themselves have randomly chosen properties such as maxi-
mum firing rates, tuning curves, and preferred stimuli (a.k.a.
encoders) to give a realistic heterogeneous distribution

In particular, if a population of neurons is to represent the
vector x, then each neuron i has an encoder ei which is the
value of x for which it most strongly fires. If the neuron has
a randomly chosen gain αi and bias βi then the total current
flowing into the neuron would ideally be αiei · x+ βi. This
will cause the population of neurons to have a different firing
pattern for every value of x.

If one group of neurons represents x and another represents
y and we want y to be some function of x (i.e. y = f (x)), then



Figure 2: Distribution of list lengths among the 18 subjects,
from (John H. Wittig et al., 2018).

we can form connections between the two groups of neu-
rons. We solve for the weights ωi j between neuron i in the
first population and j in the second population such that the
spiking activity ai in the first population when representing
x will lead to the corresponding current flowing into the sec-
ond population to represent f (x). In other words, we want
∑i aiωi j = α je j · f (x). Given this formulation, the connec-
tion weights ωi j for any given function f (x) can be found
using least-squares minimization. We use the software pack-
age Nengo (Bekolay et al., 2014) to automate this process and
run the resulting model.

While the above method can be used to create biologically
plausible implementations of any computation, the neurons
never perfectly approximate that computation. For example,
if a group of neurons is connected back to itself with con-
nection weights approximating the function y = x, then this
would ideally be a perfect memory, storing the information x
over time without change. However, the neural activity will,
in practice, gradually change, leading to drift in the value x
that is being represented. The purpose of this paper is to ex-
plore how that sort of low-level implementation detail affects
the performance of an attention-driven memory system.

Because this is our goal, here we only present a model of
the attention-driven memory. We do not include here a model
of the visual recognition of cues and words, or the cogni-
tive control needed to perform the task itself, as these aspects
have been previously modelled using the Neural Engineering
Framework (Eliasmith et al., 2012). We also do not model
the decision-making process required to decide whether or
not a particular word was in the remembered list. Instead,
we directly decode out the vector x in the memory (also via
least-squares minimization) and compare it to the vectors for
different words using the dot-product to measure similarity.
This was done for simplicity, and is equivalent to (but less
noisy than) more detailed decision-making models that have
previously been published (Sharma, Komer, Stewart, & Elia-
smith, 2016; Hurzook, Trujillo, & Eliasmith, 2013).

Figure 3: The spiking model of attention-driven memory.

Model
To model the memory aspects of this task, we use a group of
51,200 neurons representing a 512-dimensional vector (Mem-
ory Neurons). These neurons are recurrently connected to
compute the function y = x. This means that, in the absence
of any input, the neurons will maintain their firing pattern,
creating a memory (mathematically, it will compute the in-
tegral of its input). The presented word is represented us-
ing another group of 51,200 neurons, representing a 512-
dimensional vector (Word List Neurons). The effect of the
cue is represented with an attention signal: 100 neurons rep-
resenting a scalar value of how much attention to pay to the
current word (Attention Signal Neurons. The 102,400 Prod-
uct Neurons multiply the attention value by the word vector,
sending the result into the memory.

To model the task, we present as input the (randomly cho-
sen) vector for the current word, and a scalar value of how
much attention to pay to that word. This will be larger for
cued words than for uncued words, but the exact values are
fit to account for individual differences between subjects. We
apply varying amounts of white noise to the memory, also
to account for individual differences. An illustration of this
model can be seen in Figure 3.

The word list is represented by N randomly chosen 512-
dimensional normalized vectors, where N is the length of the
list. The attention signal is either high (cued words) or low
(uncued words) for the one second the word is presented, and
zero for the five second delay between words. When the at-
tention signal is zero, the memory neurons are only affected
by the white noise input and the inherent error involved in ap-
proximating a perfect memory using spiking neurons. For all
simulations, exactly half the words in the list are cued, mir-
roring the original experiment conditions considered here.

The memory vector acts as an information compass, where
the direction it points in the 512-dimension space indicates
what information it represents. As the product of the inputs
accumulates in memory, the memory vector gradually turns
toward the direction of the word vector. How far the mem-
ory vector turns depends on the magnitude of the input (i.e.
whether the attention signal is high or low), how long the



word is presented for (one second in all cases), and how much
information has previously been imprinted on the memory
space. These effects can be seen in Figure 4. In all cases,
we plot the dot product (i.e. the cosine similarity) of the vec-
tor decoded from memory and the ideal (randomly chosen)
vector for each word.

The subjects memory at the time of testing is represented
by the decoded memory vector at the end of the simulation.
The 20 seconds of distraction tasks are represented by a 20
second period of zero input, during which no mechanism is
applied to simulate rehearsal or other memory-enhancing ef-
fects. Although the recognition test was performed before
the recall test in the experiment, for this work we did not con-
sider how to model this interaction, which may be addressed
in future work.

Since the model’s memory vector represents the history of
words imprinted on it, how strongly those words are held in
memory can be calculated as the dot product of the original
word vectors and the memory vector. Henceforth, we refer
to this as cosine similarity. In the compass analogy, the mag-
nitude of similarity indicates to what degree the memory and
word vectors are pointing in the same direction. Cosine sim-
ilarity can result in a value between 0 and 1, with 1 being
perfect alignment and 0 being perfectly orthogonal. Since
we are not yet building a full model of the decision-making
process for extracting information out of memory, here we
simply choose a threshold (different for each individual) for
this similarity value.

Simulating the recognition and recall tests involved creat-
ing cosine similarity threshold values above which a word
is represented strongly enough in memory to be considered
”recognized” (seen) or to be ”recalled”. These were taken as
separate threshold values, as it was assumed that the mental
process for recognizing a word is different than for recall-
ing one. In order to establish threshold values that would
reflect the experimental responses, experimental data was
used to determine thresholds for each of the categories “seen
cued”, “seen uncued”, “seen foil”, and “recalled”. Thresh-
olds were calculated using the experimental correct response
rates, which can be seen in Figure 5 below. For each cat-
egory, the value above which the proper percentile of word
cosine similarities lay was taken as the threshold. For exam-
ple, in the experimental results, approximately 90% of cued
words were correctly identified in the recognition test. There-
fore, the “seen cued” threshold was calculated as the value
above which 90% of cued words cosine similarities lay, see
Figure 4. The calculations were performed over 20 sessions
to reduce sample size error, and account for the volatility in-
dividual sessions.

Note that foil words are a separate randomly generated list
of word vectors that are never presented to memory. They
represent words that are not part of the task list, but are shown
during the recognition tests. The rate of foil words recognized
(seen) is the false-alarm rate of the test. Even though the
words are never presented, and therefore are never imprinted

Figure 4: (Top) Spiking output from 50 randomly chosen
Memory Neurons. This is the neural activity from which we
decode the memory vector used for the other two parts of
this figure. (Middle) Strength of task list words in memory,
represented by the normalized cosine similarity of the mem-
ory vector with each studied word at each point in time. The
calculated thresholds for the recognition and recall tests are
shown for this subject (see below). (Bottom) Strength of foil
words in memory. No foil words are imprinted on memory
during simulation, so any similarity is simply due to the ran-
dom foil word vectors existing in the same vector space as
the memory vector. In this case, one foil word was incor-
rectly identified as being seen during the task. The ”Seen
Word Threshold” has the same value in the upper and lower
plots.



on memory, their cosine similarity values are non-zero, since
they exist in the same 512-dimension vector space as mem-
ory. This allows us to calculate a false-alarm rate for the sim-
ulation, representing random chance, which is analogous to
the foil word recognition rate in the experiment.

Since the recognition test involved three different cate-
gories, three separate recognition thresholds were calculated.
However, in order for a word in memory to be recognized, it is
irrelevant which category that word comes from. Therefore,
model parameters were adjusted such that the recognition
thresholds for the three seen categories were close enough
that using their average would produce results similar to the
individual thresholds. This allowed us to calculate a single
recognition threshold representing all ”seen” categories. It
was found that various combinations of parameters could pro-
duce approximately overlapping recognition thresholds for
the three categories. This led to the creation of individual pa-
rameter profiles for each participant, examples of which can
be seen in Table 1.

Tuning for Individual Differences in Task Difficulty
The original experiment used 18 subjects, whose correspond-
ing word list lengths are shown in Figure 2. For the simu-
lation, we created 18 subject profiles, tuned for list lengths
matching the distribution of the original subjects. Tuning in-
volved adjusting parameters such that the three “seen” cat-
egory thresholds were similar in four out of five simula-
tions. The parameters manipulated were the attention signal
high/low values and the level of white noise added to memory.
Once the subject profiles were determined, 30 simulations
were run for each profile. The first 20 simulations were used
to calculated recognition and recall cosine similarity thresh-
olds, and the final 10 simulations were used as test sessions,
upon which the analysis is performed.

White noise negatively affects the memory neurons abil-
ity to hold a value over time. Without the white noise, the
“seen cued” and “seen uncued” thresholds were much higher
than the “seen foil” threshold, which would have caused
foil word recognition rates of near zero. Thus, adding this
noise was necessary to accurately reflect the experimental
responses. Another option for reducing the stability of the
memory would have been to adjust the number of neurons.
However, using white noise produced a much smoother ef-
fect on performance, making it easier to find parameter set-
tings which matched particular subjects.

The experimental criteria described in the Task Description
section were used to determine whether sessions were valid
for analysis. Significance was calculated using a chi-squared
contingency table, as described in the experimental method-
ology, using p<0.05.

It was found that subjects tuned for list lengths of four
words resulted in a large majority of failed sessions (5/30 met
the recognition test criteria). In a four word task list, two
words are cued and two are uncued. Therefore, only two data
points are available for calculating the ”seen cued” and ”seen
uncued” thresholds. This made individual session thresholds

Table 1: Subject Profile Examples.

Tuned Parameter Sub #1
(N = 8)

Sub #13
(N = 16)

Sub #15
(N = 24)

Cued (High) Attention 0.7 0.9 0.9
Uncued (Low) Attention 0.4 0.5 0.5
White Noise 0.01 0.008 0.003

Simulation Output
”Seen Cued” Threshold 0.081 0.050 0.058
”Seen Uncued” Threshold 0.087 0.060 0.059
”Seen Foil” Threshold 0.073 0.074 0.071
Average Seen Threshold 0.080 0.061 0.063
Recall Threshold 0.128 0.106 0.106

for four word task lists quite volatile, with a large variance
across the sessions used to calculate the average threshold.
Consequently, the average thresholds for these subject pro-
files were not properly representative of the data, resulting in
a high number of failed tests. Furthermore, the tests that did
pass the statistical criteria, did not provide recognition rates
in the expected ranges. Therefore, subject profiles with four-
word task lists were removed, leaving 15 subject profiles for
analysis. Additionally, Figure 2 shows only one subject with
a task list length of zero. This subject was replaced with one
where N = 16.

Since the thresholds were based upon the experimental
data, and the parameters were tuned such that the seen thresh-
olds would overlap, there was some concern about over-
tuning the model. This is investigated in the Model Explo-
ration section below.

Stages of Analysis

The model is analyzed in two independent stages. Any
changes made to the model parameters affecting the first stage
of analysis changes the simulation data used in the second
stage of analysis. Therefore, second stage parameters were
much easier to adjust and re-analyze than the first stage.

The first stage consists of creating the subject profiles and
determining the associated recognition and recall thresholds,
as described above. Once the thresholds are set for a particu-
lar subject profile, the first stage of analysis is complete. The
second stage of analysis involves running test simulations.
Using the thresholds from the first stage, the simulated recog-
nition and recall test results are calculated and compared to
the experimental data.

This means that the subject profiles parameters (attention
signal values and white noise), and other model parameters
(e.g. number of neurons) which would affect the simulation
output (i.e. threshold values) cannot be altered in the second
stage of analysis without repeating the first stage of analysis
as well. This created time constraints on the number of pa-
rameters that could be investigated, as the first stage of analy-
sis requires many hours of simulation for each subject profile.



Figure 5: Comparison of experimental and simulated test re-
sults (John H. Wittig et al., 2018). In each case, only sessions
that met both specified criteria were used (71/90 valid experi-
mental sessions, 132/150 valid simulated sessions). Each data
point represents the average recognition rate for an individual
subject over 10 test sessions.

Table 2: Statistical Comparison of Test Data.

Category Cued Uncued Foil Recalled

Experimental
Variance 50.7 174.3 79.7 534.3

Simulation
Variance 39.4 190.9 44.4 23.3

Task Performance
The model’s performance is compared to experiment in the
rates of recognition and recall for each subject. Since the
recognition and recall thresholds were generated using the
experimental test data, it is expected that the simulated tests
would produce similar average rates of recognition and recall.
Therefore, we will focus instead on the variance of correct re-
sponse rates for each of the two tests. These variances can be
visually compared in Figure 5, and the calculated statistics
are summarized in Table 2.

There is a large differences in variance between the exper-
imental recognition and recall tests; however, the simulated
results do not share this difference. Additionally, experimen-
tal and simulated sessions failed the performance criteria at
approximately similar rates (Exp. = 79%, Sim. = 89%).

Figure 6 (Top) shows the activity of neurons measured by
(John H. Wittig et al., 2018) during the experiment. It can be
seen that the presence of a cue corresponds to a drop in ac-
tivity immediately before presentation of the word. The red
bar above the plot indicates where this effect is statistically
significant. Figure 6 (Bottom) is the analogous plot show-
ing neuron activity of our model. During the word presen-
tation and the period after the word presentation, our model
shows no difference in neural activity for cued versus uncued
words. This is consistent with the empirical data. However,

Figure 6: (TOP) Experimental neuron activity represented by
high-frequency power electrode feedback, from (John H. Wit-
tig et al., 2018). (Left) Single electrode. (Right) Population
average across all electrodes. A red bar at the top of each
plot indicates where there is a statistically significant differ-
ence between the cued and uncued responses. (BOTTOM)
Average neuron activity from the model, for cued and uncued
conditions. Note that the current model does not include the
points in time between the cue and word presentation.

our model does not include the extra processing needed to
remember the cue, and thus we do not expect to see a corre-
sponding drop in activity in our model.

Model Exploration
As a test to check for extreme over-fitting in recreating the
experimental correct response rates, we also ran the partici-
pant profiles to list lengths both longer and shorter than what
they were tuned for. Longer lists should produce lower rates
of correct responses for tests involving task list words, while
shorter list lengths should produce higher rates of correct re-
sponses in the same tests. There should be no significant ef-
fect on the foil word rates as this represents random chance.
The results of these modifications can be seen in Figure 7.

Discussion
In Figure 5 we see that the model behaves similarly to hu-
man subjects in the recognition test. We were able to choose
a single cosine similarity threshold that produced results with
significant differences in recognition rates between the cued,
uncued and foil word categories, meeting the performance
criteria. Table 2 illustrates that the variance in test perfor-
mance is similar to experiment for the recognition test, but
not for the recall test.

One possible explanation for the model’s ability to match
human behaviour well in the recognition test, but not the re-



Figure 7: Effects of altering list length on task performance
for three patients. The subject profile of patient 3 is calibrated
for list lengths of N = 8, patient 13 for list lengths of N = 16,
and patient 15 for list lengths of N = 24.

call test, is the way these tests were designed in the simu-
lation. The simulated recognition test mirrors the experiment
in that both involve presenting the subject with the word, then
determining whether the subject recognizes that word. In the
experiment, subjects are visually shown the word and must
decide whether the word came from the original task list. In
the simulation, the word vectors are compared to the final
memory vector through cosine similarity. Conversely, in the
experimental recall test subjects recall words from memory
without a prompt, whereas in the simulated recall test cosine
similarity is used again. This may indicate that using cosine
similarity is a reasonable approximation of how the human
brain performs the recognition test, but that humans use a dif-
ferent mechanism in performing the recall test.

The cosine similarity time plot (Figure 4) shows that the
memory neurons of the model store information in an intu-
itive way. Words that are introduced to the memory space first
are represented more strongly than those introduced later, re-
gardless of whether or not they are cued. Therefore, the first
word in a list will be imprinted most strongly on memory,
since it is the only information stored in memory at that time.
This effect is seen in Figure 4, where the first word is uncued,
yet has the greatest similarity of all words when first intro-
duced. After the fourth word of the list, the difference be-
tween high and low attention signals is more evident, as there
are enough words affecting memory at this point that recency
bias becomes less influential. This pattern reflects the way we
would expect humans to remember words in a list.

Figure 7 illustrates that the model responds as expected
when changing the difficulty of the task by altering the task
list length for a subject profile. For cued and uncued words
in the recognition test and cued words in the recall test, the

simulation performance reduced as the task list length in-
creased. This is the type of behaviour that we would expect
from human subjects as the difficulty of the task, represented
by task list length, increased. Performance for the foil words
remained relatively flat, which is also as expected. This indi-
cates that the fitting of the model parameters reasonably gen-
eralizes to other conditions, and produces predictions about
individual performance on varying list lengths.

The simulation activity plot, Figure 6 (Bottom), does not
show a difference between cued and uncued words. This is
likely due to the design of the model. In the model, there is
no analog for the cue, prior to the word being presented. The
memory input simply represents a visual stimulus, multiplied
by an attention value. This was done to keep the model sim-
ple, with the goal of comparing simulation and experimental
results. In a further iteration of this model, a proper cue mech-
anism could be added examine the effects on model spiking
activity.

Overall, we have presented a model showing a possible
neural implementation of attention-driven memory. By tak-
ing the simple approach of representing words as vectors fed
into a memory, and by scaling those vectors based on the
amount of attention paid to them, we achieve a reasonable ap-
proximation of human behaviour in the recognition test, but
the actual empirical data on the recall test has a much higher
variance. Furthermore, we do not currently include the part
of the task involving remembering the cue. Future work will
address these concerns by including both the cue memory and
the decision-making process to extract information out of the
memory.
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