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Abstract

We present a cognitively plausible model of non-verbal count-
ing and magnitude estimation. Unlike existing models, the
current model does not use a perfect representation of mag-
nitude, time, or memory. Instead, it calculates a magnitude
based on an imperfect rate of counting and determines when
to stop counting based on an internal timer. Empirical data
at both the individual and average level is matched to show a
range of performance.
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Introduction

Numerosity, magnitude, estimation, and counting are fun-
damental aspects to human life. Some researchers have
suggested that numerosity is one of people’s core concepts
(Carey, 2009). Other researchers have shown that animals
can count, even without an explicit (verbal) counting mecha-
nism (Platt & Johnson, 1971).

In fact, magnitude has been explored intensively using a
variety of methods including counting (Whalen, Gallistel,
& Gelman, 1999), size (Moyer & Landauer, 1967), math
(C. Gallistel & Leon, 1991; C. R. Gallistel & Gelman, 2000),
and perception of number (Wynn, 1992). Counting, while
being one of the purest measures of magnitude, has probably
been studied the least, at least in humans. Additionally, there
are relatively few cognitive models of counting, though there
are other models of size, perception and math.

Here, we are concerned with non-verbal counting, where
a person performs an action (e.g., lever-pressing) a specified
number of times without explicit enumeration (Whalen et al.,
1999). Mathematicians and philosophers have argued that
non-verbal counting is the basis of higher-order math (Bell,
1937). Non-verbal counting is also used in many everyday
situations, from determining how much trash is in a garage to
the number of people in a queue to the number of steps on an
escalator.

Previous researchers have suggested that non-verbal count-
ing occurs through an internal, noisy accumulator (Meck &
Williams, 1997; Gibbon, Church, & Meck, 1984; Meck &
Church, 1983). In these accounts, magnitudes have scalar
variability, varying in proportion to the mean of the mag-
nitude (C. R. Gallistel & Gelman, 2000). Because magni-
tudes have scalar variability, the discriminability of the val-
ues obeys Weber’s law because the degree of overlap between
representations remains constant as the ratio of the means is
held constant. Current accounts make these assumptions:

e An accumulator is incremented based on count (Cordes,
Gelman, Gallistel, & Whalen, 2001; Whalen et al., 1999)

or time (Dormal, Seron, & Pesenti, 2006; Meck &
Williams, 1997).

e The accumulator value has a perfect representation, but
when checked internally is noisy; the bigger the value of
the accumulator, the bigger the noise (C. R. Gallistel &
Gelman, 2000; Meck & Church, 1983; Meck, Church, &
Gibbon, 1985).

There are several major concerns with these assumptions,
however.

Over-reliance on perfect accumulators or perfect mem-
ory: First, most accounts that assume that the accumulator is
based on an actual count assume that the counter is perfect
(Cordes et al., 2001; Whalen et al., 1999), which is cogni-
tively implausible. In these approaches, the counter is repre-
sented perfectly, but is retrieved with noise. For accounts that
assume that the accumulator is based on an internal timer, the
assumption is that the timer is perfect (Meck et al., 1985).
We know from many studies of time sense that people do not
have perfect representations of time (Zakay & Block, 1997,
Matell & Meck, 2000) and that people are able to estimate
time more accurately at shorter intervals than longer inter-
vals. At least some of these approaches also assume perfect
memory (Gibbon et al., 1984). These assumptions allowed
early progress to be made on the initial models and theoriz-
ing, which clearly advanced the field. Unfortunately, these
assumptions have continued on through many of the current
models of counting and may lead to an incorrect understand-
ing of how people perform non-verbal counting.

Sampling problem: If a human counter samples mag-
nitude from a Gaussian distribution and periodically checks
that magnitude against a target goal, a trace of the magnitude
across a counting scenario will show it to sometimes become
negative or go backwards (a standard assumption of most ac-
cumulator models and inherent in consecutive random sam-
pling). If a further constraint is added so that the magnitude
must be positive and always increase, the magnitude will con-
sistently under represent the actual count. This under count-
ing will become greater the bigger the target is because there
is more opportunity for skipping a number.

Our goal here is to remove these problems and present a
process model of how people perform these implicit counting
tasks. We assume that people do not have a perfect sense
of memory, time, or magnitude when counting non-verbally.
We describe our model in the context of a classic counting
experiment by Whalen et al. (1999).



Method (Whalen et al., 1999)

A complete description of the experiment can be found in
Whalen et al. (1999).

Participants

Seven volunteers participated in the experiment over 8 1-hour
sessions (which included other related tasks as well).

Setup and Procedure

A trial began with a ”"Ready?” message in the center of the
screen. When the participant pushed a button, the "Ready?”
message was replaced with an odd number from 7 - 25 (inclu-
sive). Participants were instructed to push a key the specified
number of times, as fast as they could. Participants completed
a trial by pushing a different key. Participants performed 40
trials for each odd number from 7 - 25. No feedback was
given regarding their accuracy.

Participants were specifically instructed not to verbally
count the number of presses made, but to arrive at their target-
goal “by feel.”

Measures

The target-goal and the number of actual keypresses was
recorded and averaged for each participant. The standard
deviation and coefficient of variation was also measured for
each participant.

Results and Discussion

Participants were reasonably accurate for most target-goals.
The average number of presses increased linearly with the
target value. For all participants, the standard deviation of the
number of key presses varied in direct proportion to the target
magnitude.

The most surprising finding, however, concerned the coef-
ficient of variation (the ratio of standard deviation and mean).
Specifically, the coefficient of variation was constant across
target size. Figure 1 shows the averaged data across the seven
participants (digitally extracted from the original article).

Participants were presumably not performing overt or
covert verbal counting because the rate that they were able
to push the key (~120ms/item), is much faster than subvo-
cal counting can occur (~240ms; Klahr, 1973).  In fact,
when participants were instructed to explicitly subvocalize,
their RT was significantly and consistently longer than when
they performed the non-verbal counting task. The difference
between subvocalizing and non-verbal counting was much
bigger when the numbers had more syllables (e.g., “nine” vs.
“seventeen”).

Architecture and Model Description

ACT-R is a hybrid symbolic/sub-symbolic production-based
system (Anderson et al., 2004) ACT-R consists of a number of
modules, buffers, and a central pattern matcher. Modules in
ACT-R contain a relatively specific cognitive faculty usually
associated with a specific region of the brain. For each mod-
ule, there are one or more buffers that communicate directly
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Figure 1: Average performance of the seven individuals in
the Whalen et al. (1999) study. The x axis in all three graphs
is the target count (the goal that the participants were given).
The top panel shows the (remarkably accurate) accuracy on
counting. The middle panel shows the increasing standard
deviation the higher the target goal becomes. The bottom
panel shows the flat coefficient of variation. The darker cir-
cles show the data digitally extracted from the original article
while the lighter triangles show the model fit.



with that module as an interface to the rest of ACT-R. At any
point in time, there may be at most one item in any individual
buffer; thus, the module’s job is to decide what and when to
put a symbolic object into a buffer. The pattern matcher uses
the contents of the buffer to match specific productions.

ACT-R uses if-then rules (productions) that will fire when
their preconditions are met by matching the contents of the
buffers. If there is more than one production that can fire,
the one with the highest utility (production strength) will fire.
Each production can change either internal state (e.g., buffer
contents) or perform an action (e.g., click on a button).

ACT-R interfaces with the outside world through the visual
module, the aural module, the motor module, and the vocal
module. The architecture supports other faculties through in-
tentional, imaginal, temporal and declarative modules.

Because most researchers believe that numerosity is a core
concept (Carey, 2009) and many animals can actually count
non-verbally, we have created a new ACT-R module, called
the magnitude module.

The Magnitude Module

The magnitude module provides a mechanism for performing
non-verbal counting until a specific target-goal is reached.

Instead of relying on a perfect counter or a perfect sense
of time, the magnitude module only has imperfect representa-
tions of time and counting. Note that the magnitude module is
not used for exact, verbal counting, but rather for non-verbal
numeric estimation (exact verbal counting can be performed
easily by traditional ACT-R).

A key component to non-verbal counting is deciding when
to stop. We propose here that the internal temporal module
(Taatgen, Van Rijn, & Anderson, 2007) is used. The tempo-
ral module tracks time intervals and is quite accurate at short
timer scales, becoming progressively less accurate and nois-
ier at longer time scales. The temporal module simply keeps
track of how long it has taken since counting began. A rate
of counting is calculated based on the (noisy) timer and an
updated previous magnitude. Finally, a target amount of time
can be determined based on the rate and the target number.

High level description of the magnitude module

There are three components to each model: start, count, fin-
ish.

Start The model prepares to begin counting by setting a
target-goal (e.g., 17) and preparing to count (e.g., by putting
their finger on the counting key). The rate is undefined at this
point.

Count The model counts by making a call to the magni-
tude module for every count it makes. Every count initiates a
physical keypress as well. Every count, several quantities are
updated.

Rate A current rate is calculated based on the amount of time
that has passed since counting began and the successor of
the last magnitude.

Magnitude The current magnitude is calculated based on cur-
rent time and the current rate. Note that because magnitude
is based on the model’s imperfect sense of time and an im-
perfect rate, it never has a perfect representation of count.
Because the timer is more accurate at short time intervals,
it is frequently (but not always) correct at smaller counts.
Subitizing is not explicitly modeled and in fact previous re-
searchers have suggested that subitizing is not needed dur-
ing non-verbal counting (Cordes et al., 2001).

Time-to-stop Time to stop is based on the rate X target-
goal. Because people have different levels of accuracy
for non-verbal counting, a mean-scalar (m) and a standard-
deviation-scalar (sd) are included in this calculation.

Notice that magnitude ends up having scalar variability. In
this account, scalar variability arises because of the imperfect
time sense that people have.

Finish The model finishes counting when the current time
is greater than or equal to the computed time-to-stop.

These three components occur in the natural order: Start
begins a trial, while Count performs the counting itself, and
then Finish ends the trial.

Model Fit

The data was presented in the original Whalen et al. (1999)
study as a series of graphs of the seven individuals. A sin-
gle graph of average performance by participant was not pre-
sented (presumably to show that the coefficient of variation
was constant across every single participant). The individ-
ual data was digitally extracted and averaged into the graph
shown in Figure 1. A model was fit to every single participant
as well, show in in Figure 2.

Model fits were created by running the model 250 times
for both the overall average and each individual. 250 was se-
lected because it provided stability across the entire range of
participants and variables. All standard ACT-R parameters
were left at their defaults. Two magnitude parameters (mm and
sd) were fit for each participant and for the average perfor-
mance. Both parameters stayed within a narrow range (.1 -
.7 for m and .3-.5 for sd); changes to these parameters only
impacted the strength of the individual fit, not the overall pat-
tern.
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Participant R> RMSD
1 99 48
2 99 7.1
3 99 35
4 99 23
5 99 4.0
6 99 1.2
7 99 49

All Participants .99 3.2

Table 1: Model fit table for counting accuracy (top panels).

Participant R> RMSD
1 79 35
2 .87 .70
3 92 .67
4 92 .63
5 90 .53
6 88 .74
7 86 .54

All Participants .94 .42

Table 2: Model fit table for counting standard deviation (mid-
dle panels).

R? and RMSD fit metrics between the empirical and model
data were generated for each individual participant and the
average of all participants. Table 1 shows the fit metrics for
the count data (how accurate the counting was; top panels).
Table 2 shows the fit metrics for the standard deviation data
(how the standard deviation increased across target count;
middle panels). Table 3 shows the fit metrics for the coef-
ficient of variation data (the relatively constant values across
target count; bottom panels). For count data and standard de-
viation, a high R? and a low RMSD shows a good fit. For
the coefficient of variation fit metrics, R? should be close to 0
because it is a constant, while RMSD should be low.

As can be seen in the fit tables and the graphs, the model
fits the data quite well on all three primary variables: count,
standard deviation, and coefficient of variation.

Participant R? RMSD
1 .02 .02
2 .04 .04
3 .02 .04
4 .04 .03
5 .04 .02
6 .00 .04
7 .09 .02

All Participants .06 .02

Table 3: Model fit table for counting coefficient of variation
(bottom panels). Note that the R? should be close to 0.

General Discussion

We described a process model for non-verbal counting. Our
model has several advantages over existing models. First,
current models typically rely on an internal representation
that is perfect — of magnitude, time, or memory. Consistent
with most of people’s representations, we believe that none
of these are represented perfectly.

The current model does not have a perfect model of time.
Previous models use ’clock time’ to calculate rates and there-
fore magnitude. However, there is a great deal of evidence
that people’s sense of time is quite good for short intervals
and becomes worse at longer intervals (Matell & Meck, 2000;
Taatgen et al., 2007). Thus, this model uses a cognitively
plausible measure of time intervals (Taatgen et al., 2007).

The current model does not have a perfect model of magni-
tude. Magnitude is represented as a scalar value that increases
over time and in the non-verbal counting task we have mod-
eled here it is created directly from the rate of counting. The
model suggests that magnitude estimation is inherently im-
perfect because people do not have a perfect representation
of time.

The current model does not have a perfect representation
of memory, though it inherits that memory imperfection from
ACT-R (Altmann & Trafton, 2002). In the current model,
memory is not explicitly used, but certainly if the model
needed to store, remember, and retrieve a magnitude the ma-
chinery exists to do so.

The current model also solves the sampling problem dis-
cussed earlier. Because this model determines when to stop
based on time, this model never has a negative or backwards-
going magnitude. Nor does this model consistently under-
count because of a greater chance of skipping numbers.

The current model can presumably explain non-verbal
counting in animals as well. Animals seem to represent mag-
nitudes in the same way that people represent non-verbal
magnitudes (Church, 1984; Gibbon et al., 1984; Meck &
Church, 1983), and this model would capture the same fea-
tures (e.g., scalar variability) of animal counting that have
been described in the literature (Platt & Johnson, 1971).

It is interesting to note that both magnitude and time sense
have similar representations: they both have scalar variability,
more accurate at smaller numbers and less accurate at bigger
numbers. This remarkable similarity suggests that both time
and magnitude are intimately connected. In our model, we
connect them directly: people’s sense of time is critical to
how magnitude estimations occur. Without a sense of time
(or if time-sense is being used for something else), the model
suggests that magnitude estimation is exceedingly difficult —
perhaps so difficult that another strategy would need to be
used.

ACT-R is well known for modeling average behavior, and
equally well known for not being able to model variability
very well. A typical model fit, for example, shows empirical
means and model means overlapping. However, these mod-
els very rarely adequately model the variability inherent in



the empirical data. This model, however, models not only the
mean data, but also the variability. This emphasis on model-
ing the full distribution of behavior is a core strength of our
approach here.

We should emphasize that the current model is for non-
verbal counting only. Other researchers have studied other
forms of numerosity — estimating the number of objects on
a screen; explicit counting; approximate counting, and oth-
ers. Exactly how this model will scale to those other tasks is
for future work. Certainly a similar model could presumably
capture the observed empirical patterns: examining density
and then extrapolating based on how long it took to determine
density may be a method to estimate the number of objects on
a screen.

In summary, the current model emphasizes non-verbal
counting using cognitively plausible — and imperfect — core
mechanisms. We modeled one of the best known empirical
examples of non-verbal counting (Whalen et al., 1999) and it
is the only existing model we know of that captures the full
range of non-verbal counting through a high-fidelity process
model.
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