
Cognitive-Level Salience for Explainable Artificial Intelligence
Sterling Somers (sterling@sterlingsomers.com)

Konstantinos Mitsopoulos, Christian Lebiere (cmitsopoulos; cl; @cmu.edu)
Department of Psychology, Carnegie Mellon University,

Pittsburgh, PA 15213 USA

Robert Thomson (robert.thomson@westpoint.edu)
Army Cyber Institute, United States Military Academy

West Point, NY, 10996 USA

Abstract
We present a general-purpose method for determining the
salience of features in action decisions of artificial intelligent
agents. Our method does not rely on a specific implementa-
tion of an AI (e.g. deep-learning, symbolic AI). The method is
also amenable to features at different levels of abstraction. We
present three implementations of our salience technique: two
directed at explainable artificial intelligence (deep reinforce-
ment learning agents), and a third directed at risk assessment.
Keywords: computational model; salience; artificial intelli-
gence; reinforcement learning;

Introduction
In recent years, Deep Reinforcement Learning (RL) has
gained popularity for training agents engaged in activities as
diverse as playing Atari games, strategic games such as Go
and chess, and controlling robotic platforms. Despite recent
success, there is, perhaps, a lack of trust in applying RL in
real-world scenarios. The behavior of RL systems are often
qualitatively different from human behavior and they are in-
herently difficult to understand. Unlike traditional symbolic
AI systems, they are not easy to introspect upon. Further-
more, because RL agents are largely trained without human
supervision, there is often little reason to expect them to pro-
duce abstractions similar to our own. This makes the task
of mapping from human conceptual space to the RL agent’s
conceptual space a significant challenge.

Previous Work
The common input of RL agents is usually an image. Thus,
the agents are comprised of convolutional layers that map pix-
els to actions and reward expectations. For this reason, most
of the techniques that are used for saliency calculations in
image classification (Grün, Rupprecht, Navab, & Tombari,
2016) can be used in a RL setting.

One of the first and most common methods for understand-
ing Deep RL agents is to produce gradient-based saliency.
Typically, this method uses the gradient of a prediction with
respect to an input image to estimate the importance of pix-
els. In other words, how much the change of a pixel value
affects the prediction value (Simonyan, Vedaldi, & Zisser-
man, 2013). Other popular methods are perturbation methods
(Greydanus, Koul, Dodge, & Fern, 2017). Such methods rely
on comparing the resulting prediction (or decision) between
a modified input with the original one. This gives insights on
the importance of individual image regions.

Cognitive Salience
Although the above methods provide a visual explanation of
what the agent pays attention to, they often fail to do so con-
sistently. Frequently, the resulting saliences are challenging
for a human user to use in producing a meaningful interpre-
tation of the agent’s behavior. For this reason, we propose
a method that operates on a more abstract level than pixels.
More precisely, our cognitive approach involves modeling of
the agent’s behavior but assuming non-pixel features. Instead
the features are entities that a human can comprehend in order
to understand the underlying causes of the RL agent’s partic-
ular decision. Furthermore, the modeling process is model-
agnostic and can be used with any model or even humans.

Cognitive Model
We have chosen to develop the cognitive portion of our sys-
tem in ACT-R. ACT-R is a computational theory of cogni-
tion that accounts for the information processes in the human
mind (Anderson et al., 2004). The mechanisms in ACT-R are
task-invariant and constrained by the limitations of the brain
(see Anderson (2007) for an overview). ACT-R is a hybrid
architecture, composed of both symbolic and sub-symbolic
processing. The hybrid nature of ACT-R is particularly com-
pelling for our work because the symbolic level is inherently
explainable, while the sub-symbolic level has the potential
representation required to interface with other sub-symbolic
systems like neural networks. Furthermore, because we in-
tend to use the output as an explanation for human users, we
hope to rely on the constraints of the architecture to limit the
output.

Information processing occurs in ACT-R primarily through
the interaction of the production system and the declarative
memory. Declarative memory is represented as chunks of in-
formation. Each chunk has an associated activation level that
modulates its retrieval. Chunks are compared to the desired
retrieval pattern using a partial matching mechanism that sub-
tracts from the activation of a chunk its degree of mismatch to
the desired pattern, additively for each component of the pat-
tern and corresponding chunk value. Finally, noise is added
to chunk activations to make retrieval probabilistic, governed
by a Boltzmann distribution.

While the most active chunk is usually retrieved, a blend-
ing process (Lebiere, 1999) can also be applied that returns a

derived output reflecting the similarity between the values of
the content of all chunks, weighted by their retrieval probabil-
ities reflecting their activations and partial-matching scores.

Blending and Salience
The ACT-R blending mechanism retrieves an estimate of val-
ues based upon the previous experiences stored in memory,
and is computed with the following equation:

V = argmin
Vt

n

∑
i=1

Pi ·Sim(Vt ,vit)
2 (1)

The value, V is, therefore an interpolated value based on
matching chunks i, weighted by their retrieval probability Pi.
Sim(Vt ,vit) is a similarity function used to compare memory
chunks vit and candidate consensus values Vt . In the simplest
case where the values are numerical and the similarity func-
tion is linear, the process simplifies to a weighted average by
the probability of retrieval Vt = ∑

n
i=1 Pi · vit .

We consider ‘salience’ to be the influence a factor has on
a decision. The greater degree of influence, the more salient
it was when the decision was being made. We model the
decisions of an agent by tracing its action decisions and pop-
ulating a memory. The resulting memory is used in a similar
manner to instance-based learning theory (Gonzalez, Lerch,
& Lebiere, 2003), except our intent is not to learn to maxi-
mize reward, but rather to mimic the behavior of an agent.

We calculate salience by taking the derivative of the blend-
ing equation (1) with respect to each feature:

S(Dt , fk) =

c
n

∑
i=1

Pi · (
∂Sim(fk,vi,k)

∂ fk
−

n

∑
j=1

Pj ·
∂Sim(fk,v j,k)

∂ fk
)

(2)

with Pi = so f tmax(Mi/τ), c = MP
τ

and Mi = Ai +∑
l
k=1 MP ·

Sim(fk,vi,k). This is a novel extension of the blending mecha-
nism that exploits its analytical tractability to provide a closed
form of the gradient-based salience of its representational fea-
tures on its decisions.

Deep Reinforcement Learning Agent
In this work we are not interested in solving completely the
problem that the agent is facing. Instead, a basic Deep RL
architecture that receives relevantly a high score, in the do-
mains used here, will suit our purposes. For this reason, we
utilize the Advantage Actor Critic (A2C) algorithm which is
the synchronous version of the A3C (Mnih et al., 2016). We
adopt the same architecture and implementation details as in
Vinyals et al. (2017) but removed the spatial policy for the
drone domain. The agent as it is common in this setting at-
tempts to maximize the expected return by interacting with
the domain.

Methodology
The process of mapping between an agent (RL or program-
matic) and the cognitive model is common in all the cases de-
scribed below. Once we have an agent implemented (trained

or programmed), we gather data of its performance using
terms from a human ontology. In the RL cases, we create
a symbolic observation for each step, and record a symbolic
interpretation of the action chosen by the network. In the risk-
assessment case, we gather symbolic data about the situation,
and symbolic data describing the outcome. In each of these
cases, this data is gathered to comprise a “memory” for the
model. We treat those memories as the knowledge the model
has about its respective agent. That knowledge is used by
the model (through blending) to estimate what the agent will
do in a new (possibly unseen) situation. The derivative of
that process, as described, provides the salience. We, thereby,
attempt to communicate why the agent chooses the action it
does by allowing the user to build a mental model of what
feature(s) the agent considers most important in different sce-
narios.

StarCraft II
StarCraft II (SC2) is a real-time strategy game in which play-
ers (human or AI) control the production and placement of
buildings and the production, movement, and interaction of
of militaristic units, in order to defeat opponents. An API
and sample RL missions in SC2 are presented in Vinyals et
al. (2017). SC2 also supports smaller, constrained missions
in which points can be designated for certain achievements.
These mini games are useful in the RL domain because they
provide smaller tasks and straightforward rewards to be ex-
ploited by reward functions.

We used the go-to-beacon mini game presented by Somers,
Mitsopoulos, Lebiere, and Thomson (2018). The objective of
the go-to-beacon mini game is to move a unit to one of two
beacons: a low-value green beacon or a high-value orange
beacon. The beacons can be presented either individually or
in pairs. When presented in pairs, the optimal solution is to
prefer the orange beacon over the green beacon. Interaction in
this scenario requires the selection of a unit and then a mouse
click on the game map or mini map in the region of the chosen
beacon. The unit will then proceed, over time, to move to the
location of the mouse click. As soon the agent arrives at one
of the beacons, the score is increased by the value associated
with that beacon, the beacons disappears, and new beacons
are generated at random with four possible configurations: 1)
a sole green beacon (green-only scenario), 2) a sole orange
beacon (orange-only scenario), 3) both an orange and green
beacon presented in such a manner that the unit could take
a direct path to the orange beacon without stepping on the
green beacon (non-blocking scenario), and 4) both the orange
and green beacons presented in such a manner that the green
beacon is overlapping the direct path between the unit and the
orange beacon (blocking scenario).

The scenarios are grouped into the four categories to ac-
commodate a human-level ontology that might help under-
stand the RL’s behavior. Despite the simplicity of the mission,
our RL agent learned a sub-optimal policy. In particular, the
RL fails to guide the SC2 unit around the green beacon to the
orange beacon, failing to distinguish the blocking and non-

blocking scenarios. In the context of this work, we did not
attempt to resolve this issue. Our aim in this paper is to ex-
plain why the RL agent acts the way it does, and to cast these
explanations using a human-level ontology.

SC2 Explanation The RL agent did not learn how to go
around the green beacon to reach the orange beacon. Our ap-
proach aims to explain the behavior of the RL agent in terms
of its internal states: what it perceives, what it knows, and
what actions it takes in response. We assume that actions
consistent with a going-around action require a spatial infer-
ence: that the green beacon is ‘between’ the agent and the
goal. In the SC2 case, we aim to communicate to a user that
the network has not acquired this concept and therefore fails
to act as expected.

In this particular task we are curious whether the agent has
an internal representation that is functionally consistent with:
a) a sole green beacon, b) a sole orange beacon, c) a non-
blocking scenario, and d) a blocking scenario. We collected
data of the RL agent by tracing its behavior while it played the
game, collecting chunk representations that described the sce-
nario and the action chosen in that scenario. The chunks had
the following structure: green:value, orange:value, block-
ing:value, internal representation:vector, select-green:value,
select-orange:value, select-around:value. Each value, aside
from the vector value, are binary 0 or 1. The green, orange,
blocking together describe the scenarios (a-d) and select-
green, select-orange, select-around are high-level descrip-
tions of possible actions taken. Note that these are repre-
sentations of ground-truth, not representations created by the
agent. We are attempting to assess when (and if) the RL agent
is behaving in a manner consistent with these representations.
We adopted the approach used by Somers et al. (2018) and
used a vector representation to capture the internal state of
the agent. The internal representation is used in the partial-
match portion of the blending process. Just as in Somers et
al. (2018), we use cosine as a similarity measure between two
vectors. Overall, we filter the data we collected to include at
least one example of each scenario and to maximize the dis-
tance between vectors. For the purposes of the present de-
scription, experience was filtered down to 20 examples.

We made a prototype of a display that could be used for
explanation. It outputs the results of the blending process
and salience calculation graphically, relying on the user to
create the proper inferences. At each step in the game, the
cognitive model makes a blend estimate of the action to be
chosen by the agent, and calculates the salience of the high-
level features: green, orange, blocking. A screen-capture of
this display is presented in Figure 1. A screen capture of the
corresponding SC2 scenario is presented in Figure 2.

The top graph in Figure 1 displays the three possible ac-
tion choices a human might expect the RL agent to make and
the cognitive architecture’s estimate of which action the RL
agent will choose. The example in the scenario is a blocking
scenario and, as the display correctly indicates, the RL agent
will choose to select the orange beacon.

Figure 1: Explanation display. Top panel illustrates the blend
value for the action decision. The three remaining panels dis-
play the associated salience for their respective decisions.

Figure 2: Screen capture of blocking scenario in StarCraft
II. In this image, the marine (controlled by the reinforcement
learner) is attempting to get to orange beacon.

The three bottom graphs in Figure 1 display the salience
for each decision available. The top displays the salience for
the select-green decision, the middle displays the salience for
the select-orange decisions, and the bottom graph displays
the salience for the select-around decision. As described
above, the salience indicates the degree of influence each of
the features (green, orange, block) have on the action deci-
sion. Given that the dominant action chosen by the drone is
select-orange in the blocking scenario, discussion will focus
on describing the bottom-middle graph, ”select-orange”. The
graph indicates that the presence of the green beacon has a
small negative salience in the action decision and the abstract
concept ”blocking” has a larger negative salience, with the
dominant influence being the presence of the orange beacon.
This makes sense given that the RL agent always tries to get
to the highest reward but appears to be unaware of the fact that
the green beacon is blocking the orange. The salience and the
associated lack of ‘go-around’ action communicate that the
agent has not formed the abstract concept, ‘blocking’.

Drone Domain
A second domain that we have applied the cognitive salience
technique to is a drone operations domain. Currently, our
drone environment is a 3D gridworld abstraction of MAVSim
(Youngblood, Kravacic, & Le, 2018). Once trained, the RL
agent can be deployed in MAVSim.

The aircraft we are simulating are fixed-wing drones.
The missions generally include search and provisioning lost
hiker(s) with any combination of food, water, first-aid, and
communication devices. The rules of the environment are
an abstraction that capture the constraints of flight dynamics.
Although, at our current level of simulation, the specifics of
the aircraft are not captured, the rules of the environment are
sensitive to flight constraints more generally. The rules of the
environment constrain the turning radius, maintains forward
motion, and restricts elevation changes, just to name a few.
Sensors on the aircraft are sensitive to altitude. Package sur-
vival (once dropped) depends on underlying terrain and will
fall differently when dropped at different altitudes.

We have trained an RL agent to navigate to a hiker vis-
ible on a topological map and to drop package(s) near the
hiker. Currently, programmatic solutions are used to carry out
other segments of the flight including: loading the packages,
searching for the hiker, and returning to the airport. Our ex-
plainable AI challenges in this domain are many and we have
only begun to touch the explainability potential in the drone
domain. We present here two example prototype uses of our
salience technique within the drone domain: risk assessment
and egocentric salience.

Risk Assessment As we move from low to high levels of
fidelity, there is an increasing number of moving parts to deal
with the increasing level of detail and, as a result, a large
potential decision space to explain. Anticipating our needs,
we have begun to prototype different explanation interfaces
for different aspects of a mission. In this simplified exam-
ple, we imagine the provision-loading process, and when it
might need explanation. The most obvious situation where
we might want some form of explanation is when there is a
failure. After a large number of simulations, for example, we
may want some form of risk analysis that is sensitive to the
particular constraints of any given example case. We use the
following simplified example, where the ground truth about
a package loading module is described. In this example, the
operator is unaware of the ground truth and is attempting to
diagnose a problem with the package loading module.

The package loading module is given as input the needs
of the hiker(s). This module has a number of flaws that we
know a priori for this example but are not known by the user:
1) it always loads communications equipment, regardless of
needs. 2) It always loads food, regardless of needs. 3) It never
loads water, regardless of needs. We characterize success and
failure in the following manner: A) if the hiker needs a provi-
sion and does not get it, there is a failure. B) If the hiker does
not need a provision, and a provision is loaded, this is also
considered a failure. We chose to consider this a failure be-

cause the aircraft we are modeling has limited space for pro-
visions. Loading unnecessary provisions can prevent loading
required provisions and lead to increased fuel consumption,
which could lead to the drone making multiple, unnecessary
trips, putting the hiker(s) in unnecessary risk. To remove any
confusion, we also include a third success/failure condition:
C) even though we know, a priori, what is wrong with the
drone, we remember that, for the purposes of the example,
when the hiker does not need a provision (in this example,
water) and that provision is not loaded (because there is a flaw
preventing it), we consider that a success even though, under-
lying that success, is a failure in the mechanism. In other
words, the salience mechanism in this case only has access to
the behavior of the drone, without any knowledge of its in-
ternals. These are the rules that describe the success/failure
conditions in this example.

Following those rules we generated data to simulate the
erroneous module described. The data includes all sixteen
possible binary combinations of package-loading require-
ments: food needed/not needed, water needed/not needed,
first-aid needed/not needed, communications needed/not
needed; as well as traces of their success and failure:
food-success yes/no, water-success yes/no, first-aid-success
yes/no, communications-success yes/no. This is represented
in ACT-R as chunks with 8 slot/value pairs.

Once we have data, we can probe the module with a new
case to perform a risk assessment in a specific situation.
For example: Food: needed; Water: not needed; First-Aid:
needed; Communications: not needed

There are two aspects to the output. First the blend pro-
vides an estimate of the values (randomly generated exam-
ple presented in Table 1). The values are intuitively what we
might expect (given the module described above): a value
of 1 for both radio and food (which is always loaded by the
erroneous module). Water is estimated to be zero (which de-
ceptively makes sense, since it was not requested). Finally,
First-Aid is estimated to be 0.68, which could be rounded to
1 (given our binary example). These results are consistent
with the rules described above.

Table 1: Blend Estimate of Random Example

Provision Requested Estimate
Food 1 1
Water 0 0
First-Aid 1 0.68
Communications 1 1

The salience provides further, useful information that could
potentially be used to diagnose a faulty module. Since the
blend is produced for each output factor (food, water, first-
aid, communications), we generate a set of saliences for each.
The salience derivative is computed with respect to each fea-
ture, so each factor has 4 saliences values associated with it.
The salience values for the Food and Communications are

identical but their values are so small (10−8) that we do not
display them. The small values are important in the explana-
tion, however, because they indicate the blend is not strongly
influenced. This makes sense, given that we know that the
agent always loads food and always loads communications.

The salience of Water is zero for all features and, therefore,
not displayed. This is particularly telling, a very strong sug-
gestion that the loading of water is not sensitive to any factor.
This makes sense given the ground truth about the module
(always fails to load water).

Finally, the salience of First-Aid is presented in Figure 3.
This display is telling, indicating salience values near zero for
Water, Food, and Communications (Radio).

Figure 3: Display of salience for assessment of First Aid pro-
visions.

Egocentric Salience While the risk assessment is derived
from synthetic data generated by a programmatic agent, our
final example, which we term, ‘egocentric salience’, results
from a model trace of an RL drone agent. The input to the
RL is an egocentric image and an allocentric image. Exam-
ple inputs are illustrated in Figure 4 and the bottom display
of Figure 5. The first image is a 20 unit by 20 unit allocentric
map of our environment. The different green and brown col-
ors represent different kinds of vegetation. The purple arrow,
pointing downwards, represents the drone; with the direction
of the arrow indicating the drone’s heading. The drone’s color
indicates its altitude. The red cross indicates the location of
the hiker for which the drone is attempting to drop off a pack-
age.

The second image (bottom of Figure 5) is a 5 unit by 5
unit egocentric view that corresponds to the first image. This
image is a vertical slice of the first, in the region around the
drone’s action space. At any step the drone can head directly
forward, diagonally forward, or turn 90 degrees in either di-
rection. Furthermore, any of those directions can be com-
bined with a single change of altitude. With the options of
left, diagonal left, center, diagonal right, and right, multiplied
by: no altitude change, an increase in altitude, or a decrease
in altitude; the drone has an action space of 15 possible grid
square in a 3D gridworld. A sixteenth action to drop a pack-
age is also available. The movement actions are entirely cap-
tured by the five by five units of the egocentric input image.

Figure 4: 20x20 unit allocentric view. Greens and browns in-
dicate different forms of vegetation (largely trees and grass).
The purple triangle indicates the drone (facing the bottom of
the image). The red cross indicates the location of the hiker.

The drone is super-imposed on this picture and provides the
drone an explicit representation of its altitude. The column

Figure 5: Top frame: the bars above the egocentric view in-
dicate the salience of the columns in the egocentric view.
Bottom frame: 5x5 unit, egocentric input to the network. This
image corresponds to the allocentric image and changes each
step of the simulation.

on the left-most of the egocentric view corresponds with the
grid-square directly to the right of the drone (from the per-
spective of Figure 4) but corresponds to the square imme-
diately to the left of the drone (from the perspective of the
drone). This is the case because the drone is actually facing
downward in the allocentric view. The column second from
the left in the egocentric view corresponds to the patch of
grass to the diagonal left of the drone (down and to the right
in the allocentric image). The three remaining columns rep-
resent obstacles (trees) surrounding the drone centre and all
the way to the right. If the drone were to fly left, forward,
diagonal right, or right, it would crash into a tree.

The drone exhibits a reasonable capacity to carry out the
two segments of the mission it has been trained on (travers-
ing the map and dropping the package). However, despite
its success, the drone does exhibit unusual behavior: some-
times taking a bizarre path to the hiker, or circling the hiker
many times before dropping a package. This successful yet

unusual behavior is a good candidate for explanation because
a participant viewing the mission might want to resolve why
the behavior is markedly different from what a human might
do. Explaining this type of behavior can furnish trust in the
system if the human understands (and accepts) the reasoning.

Figure 5 depicts a prototype explanation for the scenarios
presented in Figure 4. Unlike the other examples, the con-
cepts we are associating salience with in this example are pri-
marily spatial. The idea behind egocentric salience, is still,
however, quite abstract. The data is collected under the as-
sumption that the RL drone responds to features at altitude,
trying to avoid crashing, for example, regardless of the spe-
cific identity of the object. The aim of the explanation is to-
wards understanding how the drone responds more generally
to its environment. It would be used, for example, to allow a
user to rewind to a point where they thought the drone started
to behave oddly, and get a sense of what it was ‘attending’ to
considering in its decision.

The egocentric salience is a little more difficult to inter-
pret. The bars above the egocentric view (Figure 5) are meant
to communicate how salient the columns of that view are to-
ward a single decision. This particular example could be in-
terpreted as all dark green objects (obstacles), at altitude 1
(counting from the bottom, from zero), are highly salient,
with the single safe column, with a low degree of salience.
The low-degree of salience was an unexpected result but, with
some interpretation, seems to make sense. The areas where
objects are lower in altitude than the drone’s current altitude
generally will not influence the drone’s behavior. Instead of
thinking about the drone as going to a safe area, per se, the
drone seems to be avoiding dangerous areas (the result of
which is functionally the same, going to a safe area).

As with our other examples the blending process also
makes an action estimate. Because the action space is so large
(15 movement actions), we do not blend for each value. In-
stead we blend a single action value across the range. In this
case, the estimate is 6.8. Rounded to 7 an action of forward
and to the left, which would result in action following the path
in the forest.

Discussion
The work presented here is targeted at explainable AI and
is still in an early phase of development. Our goal builds
upon (Kümmerer, Wallis, & Bethge, 2015) to eventually
unify pixel-level, cognitive-level, and artificial intelligence-
level salience computation in a model-agnostic framework.
Although we have thus far concentrated on explaining AI, we
are interested in exploring salience for human-generated data,
specifically in the context of instance-based learning (IBL)
as IBL models have been used in a wide variety of models
including social dilemmas (Gonzalez, Ben-Asher, Martin, &
Dutt, 2015) and two-person games (West & Lebiere, 2001).

References
Anderson, J. R. (2007). How Can The Human Mind Occur In

The Physical Universe? New York, NY: Oxford University
Press.

Anderson, J. R., Bothell, D. J., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004, oct). An integrated theory
of the mind. Psychological review, 111(4), 1036–60. doi:
10.1037/0033-295X.111.4.1036

Gonzalez, C., Ben-Asher, N., Martin, J. M., & Dutt, V.
(2015). A cognitive model of dynamic cooperation with
varied interdependency information. Cognitive science,
39(3), 457–495.

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-
based learning in dynamic decision making. Cogni-
tive Science, 27(4), 591–635. doi: 10.1016/S0364-
0213(03)00031-4

Greydanus, S., Koul, A., Dodge, J., & Fern, A. (2017). Vi-
sualizing and understanding atari agents. arXiv preprint
arXiv:1711.00138.

Grün, F., Rupprecht, C., Navab, N., & Tombari, F. (2016).
A taxonomy and library for visualizing learned fea-
tures in convolutional neural networks. arXiv preprint
arXiv:1606.07757.

Kümmerer, M., Wallis, T. S. A., & Bethge, M. (2015).
Information-theoretic model comparison unifies saliency
metrics. Proceedings of the National Academy of
Sciences, 112(52), 16054–16059. Retrieved from
https://www.pnas.org/content/112/52/16054 doi:
10.1073/pnas.1510393112

Lebiere, C. (1999). The dynamics of cognition: An ACT-
R model of cognitive arithmetic. Kognitionswissenschaft,
8(1), 5–19. doi: 10.1007/s001970050071

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T.,
Harley, T., . . . Kavukcuoglu, K. (2016). Asynchronous
methods for deep reinforcement learning. In International
conference on machine learning (pp. 1928–1937).

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013).
Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint
arXiv:1312.6034.

Somers, S., Mitsopoulos, C., Lebiere, C., & Thomson, R.
(2018). Explaining decisions of a deep reinforcement
learner with a cognitive architecture. In Proceedings of
the sixteenth annual conference on cognitive modeling (pp.
144–149). Madison, WI: Lawrence Erlbaum Associates.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhn-
evets, A. S., Yeo, M., . . . others (2017). Starcraft ii: a
new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782.

West, R. L., & Lebiere, C. (2001). Simple games as dy-
namic, coupled systems: Randomness and other emergent
properties. Journal of Cognitive Systems Research, 1(4),
221-239.

Youngblood, G. M., Kravacic, B., & Le, J. (2018). Mavsim.
https://gitlab.com/COGLEProject/mavsim. GitLab.

