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Abstract 

Phishing attacks are a significant threat to cybersecurity, while 
current defense methods do not adequately address the human 
factor of this threat: the role of experiences and cognitive 
biases. To better understand human susceptibilities to phishing 
attacks, we developed an Instance-Based Learning (IBL) model 
for predicting end-user’s behavior in a phishing email detection 
task. We present a phishing scenario that demonstrates that 
typically safe end-users can fall victims to phishing attacks in 
certain circumstances, and these situations are the result of 
cognitive mechanisms such as frequency and recency and 
similarities between memory events. We demonstrate the 
ability of an IBL model to predict human performance in a 
laboratory phishing detection task. While the results indicate 
that phishing detection was difficult for the model, it roughly 
reflects in the data the difficulty humans had. Future research is 
aimed at enhancing the IBL model to better predict end-user 
phishing detection, and to explore the ways in which this model 
can be used as a training tool and online aid for end-user 
detection of phishing attacks. 

Keywords: phishing; cybersecurity; decision making; instance-
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Introduction 

All it takes is one click in response to a phishing email to 

compromise the security posture of an entire organization, 

and as such phishing attacks pose the biggest threat for 

cybersecurity (Wombat Security report, 2018). Phishing aims 

to persuade end-users to share sensitive information using 

social engineering and psychological techniques (Jagatic et 

al., 2007). While phishing attacks exploit human weaknesses, 

defenders typically employ technological solutions to defend 

against them, such as machine learning filtering of phishing 

emails, email authentication tools, URL filtration, and 

blacklisting phishing URLs (Prakash et al., 2010; Marchal et 

al., 2014; Peng, Harris, & Sawa, 2018). Current methods of 

defense against phishing attacks are insufficient because they 

don't consider human cognitive biases and experience. Since 

the success of phishing attacks rely on the exploitation of end-

user’s cognitive and psychological weaknesses, it becomes 

essential to understand the detection capabilities, decision 

making, and cognitive biases of end users who respond to 

phishing emails (Canfield, Fischhoff, & Davis, 2016). 

Considerable research has been devoted to investigating 

how to best train end-users to detect phishing emails 

(Kumaraguru et al. 2009, Jensen et al., 2017), yet even trained 

end-users can still fall victim to phishing attacks. Recent 

research examining the interaction between attackers and end-

users revealed various strategies that attackers use to design 

phishing campaigns and their success on end-user’s detection 

of phishing emails (Rajivan & Gonzalez, 2018; Curtis et al., 

2018, Singh et al., 2019). In the current research, based on 

psychological theories of decisions from experience, and the 

insights of these recent phishing studies, we propose a 

cognitive model of end-user phishing email detection. Our 

insights suggest that phishing emails detection is influenced 

by the end-user’s prior history of emails, their recent 

experiences, and their innate and learned cognitive biases. 

In what follows, we first describe an example phishing 

scenario that reveals the process by which an end-user might 

fall trap to an attacker’s social engineering strategies. We then 

formalize a cognitive model of end-user email classification, 

built in the ACT-R cognitive architecture (Anderson & 

Lebiere, 1998), using Instance-based Learning Theory (IBLT; 

Gonzalez, Lerch, & Lebiere, 2003). Using the data set from 

Rajivan and Gonzalez (2018), we demonstrate that cognitive 

models of end-user detection of phishing attacks can be useful 

for understanding how and when humans are most vulnerable 

to attacks, providing insights on how to best train people to 

detect phishing emails, and could potentially serve as a 

powerful decision support tool to prevent phishing attacks. 

A Cognitive Model of Phishing Email Detection 

In the example phishing scenario, depicted in Figure 1, Alice 

is a representative persona for a class of members of a 

fictional organization. The cyber-security division is 

assessing vulnerabilities of phishing attacks and sends Alice a 

number of emails, some of which are phishing emails. Her 

task is to decide whether to click a link within an email. 

Alice represents a particularly savvy end-user, who usually 

recognizes malicious emails, and does not click on embedded 

links. In this scenario, Alice starts with a prior history of not 

clicking links from unknown senders (i.e., senders that she 

has not previously interacted with and whom she does not  



 
 

Figure 1: The Alice scenario: an example phishing attack scenario. 

 

recognize). She has a predisposition to click on links from 

trusted senders (e.g., coworkers and friends), particularly 

about topics that interest her (e.g., one of Alice’s interests is 

in dogs). She is then presented with three new emails, one at a 

time. The first is from an unknown sender about dogs, for 

which she does not click the link. The second is from a 

trusted coworker that mentions dogs, for which she clicks the 

link. In the third email, after observing and/or inferring 

Alice’s clicking behavior, the attacker spoofs the sender’s 

source address, pretending to be a colleague of Alice, and 

baits her with a topic and domain name related to dogs. Alice 

clicks the link and self-compromises her system. 

Alice’s behavior can be described as emerging from the 

interaction between her learned behavior/tendencies and 

changes to the environment. The cognitive model, described 

next, captures underlying cognitive mechanisms such as 

priming, transfer, and recency bias that reflect the statistics 

and dynamics of the environment and give rise to Alice’s 

behavior. As shown in Figure 2, Alice’s prior history of 

emails may cluster on dimensions of email topic (work, dogs) 

and sender (known, unknown). Emails about dogs from 

unknown senders cluster together and embedded links are 

typically not clicked. Whereas, emails about work topics from 

known coworkers cluster together, and embedded links are 

typically clicked. The first email is similar to past emails for 

which she did not click on embedded links, and so she 

doesn’t. The second email is from trusted coworkers, but 

mentions dogs, yet is more similar to past emails for which 

she clicked on links, and so she does. This expands the cluster 

of emails for which she previously clicked. Alice would 

typically not click on the link in the third email, because it is 

more similar to past emails for which she did not click 

embedded links. However, it is more similar to the recent 

second email, and so is pulled toward the cluster of emails for 

which she clicked links. Alice’s normal behavior has changed 

as a result of her interactions with the environment over time. 

 
 

Figure 2: Representation of Alice’s behavior. 

An IBL Model of Phishing Detection 

According to IBLT (Gonzalez et al., 2003), decisions are 

made by generalizing across past experiences, or instances, 

that are similar to the current situation. Typically, instances 

are encoded as chunks in declarative memory that represent 

the features of the decision: the context in which a decision is 

made, the action taken, and the outcome of that decision. For 

emails, there is usually a dissociation between the actions 

taken and feedback regarding whether the email was 

ultimately malicious. Therefore, for this task, only the context 

and the action are represented within each instance, but not 

the outcome. The context elements of an email include the 

sender’s email address, the subject line, the body of the email, 

and the link. The action slot includes the action taken (either 

click or not click the link). Initial past instances include those 

represented in Figure 1 under Prior History: five emails from 



unknown senders about various topics, including puppies, for 

which Alice did not click on the embedded links, and five 

emails from trusted coworkers, about work-related topics, for 

which Alice clicked on the embedded links. 

An IBL cognitive model was constructed in the ACT-R 

cognitive architecture (Anderson & Lebiere, 1998). For each 

new incoming email (see Figure 1, “New Emails”), the model 

takes as input the context of the email and generates an action 

by retrieving similar past instances. In ACT-R, the retrieval of 

past instances is based on the activation strength of the 

relevant chunk in memory and its similarity to each of the 

elements of the current context. The activation Ai of a chunk i 

is determined by the following equation: 

 
The first term provides the power law of practice and 

forgetting, where tj is the time since the jth occurrence of 

chunk i and d is the decay rate of each occurrence which is set 

to the default ACT-R value of 0.5. The second term reflects a 

partial matching process, where Sim(vk,ck) is the similarity 

between the actual memory value and the corresponding 

context element for chunk slot k, and is scaled by the 

mismatch penalty (MP) which was set to the default value of 

1.0. The term εi represents transient noise, a random value 

from a logistic distribution with a mean of zero and variance 

parameter s of 0.25 (common ACT-R value, e.g. Lebiere, 

1999), to introduce stochasticity in retrieval. 

The probability of retrieving a particular instance is 

determined according to the softmax equation (i.e., the 

Boltzmann equation), reflecting the ratio of an instance’s 

activation Ai and the temperature t (which was set to 1.0): 

 
The IBL model uses ACT-R’s blending mechanism 

(Lebiere, 1999, Gonzalez et al., 2003) to generate an action, 

based on past instances. Blending is a memory retrieval 

mechanism that returns a consensus value across all 

memories with similar context elements, rather than from a 

specific memory, as computed by the following equation: 

 

The value V is the one that best satisfies the constraints 

among actual values  in the matching chunks i weighted by 

their probability of retrieval Pi. Satisficing is defined as 

minimizing the dissimilarity between the consensus value V 

and the actual answer Vi contained in chunk i. In summary, 

the model matches memories to the current context and uses 

blending to generate the action. After generating an action, 

the experience (context plus action) is saved in declarative 

memory as a new instance, which affects future decisions. 

An important feature of the model is how similarities are 

computed between slot values. Typically, similarities between 

numeric values are computed on a linear function scaled 

between 0 and -1.0, where 0 is a perfect match and -1.0 is 

maximally dissimilar. However, for non-numeric information, 

unless a value is specified for relation, they are either 

maximally similar or maximally different. For emails, the 

context is non-numeric, often several words to paragraphs in 

length. It is sensible then that two texts that are semantically 

similar should have higher similarity values (closer to 0) 

compared to texts that are semantically very dissimilar. 

In order to compute similarities between slot contents 

involving textual information, we used the University of 

Maryland Baltimore County’s semantic-textual-similarity tool 

(Han et al., 2013). The tool uses a combination of latent 

semantic analysis (LSA) and WordNet to produce semantic 

similarity values between two texts. The two input texts can 

be of any word-length and it produces a value between 0.0 

and 1.0, with 1.0 being maximally similar in meaning. For 

example, the similarity between “happy dog” and “joyful 

puppy” is 0.65, whereas “happy dog” and “sad feline” is 0.34, 

and “happy dog” and “hot tea” is 0.0. We subtract one from 

this value to produce a dissimilarity value for use in blending. 

This technique has proven to be a useful methodology for 

producing meaningful similarity values for textual content. 

Demonstration of the IBL Model Behavior 

Figure 3 shows the model behavior during a typical run 

through the Alice scenario. The first column shows the new 

incoming emails. The second column shows Alice’s prior 

history of emails stored in memory: the top stack shows 

emails for which Alice previously did not click on the 

embedded link, while the bottom stack shows emails for 

which she did click. For each new email, the model retrieves 

a decision based on its similarity to prior emails. The darker 

the email, the less recent it was experienced and encoded in 

memory. Darker, fuller arrows indicate greater activation 

strength (purple) or decision weighting (orange). The third 

column shows the blending values (i.e., the relative weighting 

given to each option based on activation and similarities) next 

to the two possible decisions (Click or Not-Click). The 

decision made is that with the greater blending value. 

 

 
 

Figure 3: Example model behavior in the Alice scenario. 



For example, for Email #1, its context is more similar to 

past emails from unknown senders than to those from trusted 

coworkers. The blending mechanism produces a distance 

metric from each possible decision, and since there are only 

two possible decisions, blending values can be translated 

directly into the weighted probability of making each 

decision. Therefore, for this particular run, the model decides 

to not click the link with a weighting of 75.21%. For Email 

#2, its context is more similar to emails from trusted 

coworkers, and the model decides to attack with a weighting 

of 75.7%. For the critical Email #3, although the contents are 

typically more similar to unknown senders, it also shares 

similarity with the most recent email from a trusted coworker 

giving more weight to the decision to click on the link (e.g., 

recency bias to click on a link about dogs from a David, 

because of the similarity to the contents of Email #2). On this 

run, the combination of activation strength and similarity 

across past instances result in a decision to click on the link 

with a weighting of 52.99%. 

This example shows how under certain circumstances a 

relatively safe user could sometimes get caught performing an 

unsafe act. To generate stable predictions of human behavior, 

the model was run 1000 times to highlight its activation 

dynamics. For Email #1, the model decided to click the link 

on less than 1% of the 1000 runs, with a mean weighting in 

favor of not clicking of 66.3%. For Email #2, the model 

clicked the link on 98.8% of runs, with a mean weighing in 

favor of not clicking of 66.2%. For Email #3, the model 

clicked the link on 56.6% of runs, with a mean weighing in 

favor of clicking of 50.8%. Of course, that action itself will 

make further dangerous actions more likely. 

The IBL model of the Alice phishing scenario shows how a 

user’s response to phishing emails may be highly constrained 

by cognitive mechanisms, especially activation in declarative 

memory, which reflect the statistics and dynamics of the 

environment in the user’s memory. Alice’s behavior is a 

result of manipulating that environment in a way that can 

change well established behaviors. As demonstrated, it only 

takes a short history of human behavior, and their interests, to 

personalize a model to an individual user and make 

predictions about whether the user might perform an unsafe 

act when encountering a malicious email. 

Validation of the IBL Model Against Humans 

To assess performance of the IBL model described above, it 

was adapted to predict human behavior in a laboratory 

experiment, reported in Rajivan and Gonzalez (2018). Their 

data set includes 340 participants as end-users in an email 

management task. Participants were presented with 20 emails, 

one at a time; 10 were benign emails and 10 were phishing 

emails, randomly distributed. Their task was to assist a 

fictional office manager by examine each of her incoming 

emails and decide how to respond: 1) respond immediately; 

2) flag the email for follow up; 3) leave the email in the 

inbox; 4) delete the email; or 5) delete the email and block the 

sender. An email rated as 1 can be viewed as more benign 

and important, while an email rated as 5 is more malicious. 

For this task, the chunk definitions of the model were 

modified to represent the information available to 

participants. For these emails, there was no sender 

information available, but links were represented both as the 

HTML link as well as the observable text in the email. 

Therefore, the context slots include the subject, body, link, 

and link text. The decisions were recoded to be analogous to 

the conceptual model, with ratings of 1 and 2 recoded as 

“respond” (i.e., the equivalent of clicking a link) and ratings 

of 3 through 5 recoded as “do not respond” (i.e., the 

equivalent of not clicking a link). Therefore, for the model, 

the possible decisions are respond or not-respond. All 

parameters were left the same as for the conceptual model. 

Results 

The model was run 10 times for each participant and was 

presented the same stimuli experienced by the human. The 

first 10 emails experienced served as training instances for the 

model and were encoded as an initial declarative memory. 

The model then made a decision for each of the next 10 

emails, and its predictive accuracy was evaluated. 

The model performed better than chance (50%), accurately 

predicting the human’s decision on 58.6% of benign emails 

and 63.4% of phishing emails, on average. The model was 

more accurate on phishing emails than benign emails, F(1,9) 

= 10.12, p = 0.001. There were no differences across trials 

and the interaction was not significant, both p’s > 0.43. 

The confusion matrices presented in Figure 4, show the 

percentage of trials in which the model and human agreed in 

their decisions to respond to the email or not, for phishing 

emails (top) and benign emails (bottom). D-prime for 

phishing emails is 0.60, while it is 0.43 for benign emails. 

Figure 4 also shows the phishing detection accuracy of 

humans and the model. For both phishing and benign emails, 

the model and humans decided to respond to ~40% of emails 

or more. As a result, the model more accurately predicts 

human decisions to not respond to an email than to respond. 

Like humans, the model responded to a large proportion of 

phishing emails (39.7% and 39.0% respectively). Although, 

while humans responded to more benign emails (47.9%), the 

model responded to only 39.5% of benign emails – almost the 

same rate as phishing emails, indicating that distinguishing 

between ham and phishing emails was difficult. 

Discussion 

Humans were less cautious in the email management task 

than they might normally be in real-world circumstances, and 

the IBL model reflected this behavior, and responded to many 

phishing emails. Overall, the model was better than chance at 

predicting human performance, but the task proved difficult 

for both the humans and the model without rewards or 

feedback to aid learning. The model was trained on the first 

10 trials of human data, and therefore reflects the overall 

tendencies to not respond. However, while the model is 

similarly as biased as humans to not respond to emails, it has 

a slightly more difficult time distinguishing a benign email 

from a phishing email than humans. 



 
 

Figure 4: Confusion matrices comparing the model 

predictions of human decisions (in percentages) for phishing 

emails (top) and benign emails (bottom). 

 

The benign emails in Rajivan and Gonzalez (2018) were 

ham emails that came from businesses and senders, and were 

about topics and accounts, that the end user could not know 

were relevant to their fictional office manager. Without 

context, the benign emails look and sound very similar to the 

phishing emails, making the detection of phishing emails 

difficult. In fact, when looking into the UMBC similarities 

within and between benign and phishing emails, the values 

are very close to each other. The mean similarities between 

benign emails are the highest, but still relatively low, at only 

0.43. Meanwhile, the phishing emails are as dissimilar to each 

other (0.36) as they are to benign emails (0.39). The model 

accurately captures overall human tendencies, but has more 

difficulty than humans in classifying a benign email as safe. 

Limitations and Future Directions 

There is clear room for improvement for the IBL model. It is 

limited by its representation of the relevant features for 

detecting phishing emails. Research in human susceptibility 

to phishing scams has revealed important cues and indicators 

of phishing emails that end-users should be trained to detect 

(Vishwanath, Harrison, & Ng, 2018). While the sender, 

subject line, URL, and the email body are all important 

features to use for detection, representing only the semantic 

content limits the model’s ability to discriminate. Some 

features that could be extracted from the email to enhance the 

representation include grammar and spelling ratings, 

emotional tone of the email, and sentiment. Future research is 

aimed at exploring and expanding the features that represent 

the context of an email. It is also unclear at this point what 

features the model relies on most to make decisions or if any 

do not affect decisions. The features need to be accurately 

represented in the context to accurately reflect the statistical 

dynamics of the environment. Representing user interests, as 

well as background knowledge of known senders, are 

additional features that would greatly improve the model’s 

ability to predict a particular individual’s behavior. 

On a related note, while the UMBC semantic similarity tool 

proved useful, many of the similarity values between emails 

are in the range of 0.33-0.66. Adjusting these values so they 

fill the full range of 0.0-1.0 could help to increase the 

dissimilarity between the benign and phishing emails while 

increasing the similarity within email types. Additionally, the 

similarities are computed between entire email bodies. These 

bodies could be parsed into separate phrases to uncover more 

fine-grained features. Future research is aimed at exploring 

these possibilities. 

Improving the cognitive model of phishing detection is an 

important goal for gaining a better understanding of end-user 

susceptibility to phishing emails. Additionally, there is a wide 

array of possible applications in cybersecurity, including 

using cognitive models to help train end users to detect 

phishing attacks. A cognitive model that can track a user’s 

experience helps reveal instances when a user may be more 

susceptible to a phishing scam. The model can make the user 

aware of such instances to improve their detection. Predicting 

individual end user behavior is a challenging task but could 

be extremely helpful in aiding end users in online detection. 

After improving the cognitive model, the model can be 

scaled up to larger applications. For example, cognitive 

models could also be used to estimate the risk of new 

phishing samples, or as part of a larger simulation testbed for 

cyber defense exercises, or to test tools. For applications such 

as these, scalability becomes an issue for computing semantic 

similarities. Tools like UMBC’s similarity tool typically look 

up information from very large databases. If you only need to 

compute a few values per iteration, then computation costs 

are minimal. However, computation time increases 

exponentially as the number of instances in the model’s 

declarative memory increases. One technique that proved 

useful for us was to build a hash-table that stores similarity 

values between two phrases, thereby eliminating the need to 

re-compute values for distinct pairs of phrases. If the corpus 

of emails is known, then these values can be computed prior 

to running the model. Otherwise, the model would only be 

able to reuse values after the first experience. Another 

approach is to use vector embeddings, then compute 

similarities as distances between vectors. 

In the Rajivan and Gonzalez (2018) study, participants saw 

a large proportion of phishing emails compared to benign 

emails (50% precisely). Using the same dataset, Singh et al. 



(2019) conducted another study to investigate how the 

frequency of experiencing phishing emails during training 

affected detection in a later testing phase. Participants 

completed three phases in a phishing detection task: pre-

training, training, and post-training, where participants were 

trained on different frequencies of phishing emails (25%, 

50%, or 75%) and tested before and after training with 20% 

frequency of phishing emails. The results showed that 

participants that saw a larger proportion of phishing emails 

during training had higher hit rates but also higher false alarm 

rates in detecting phishing emails. This, in addition to the 

similarity between the benign ham emails and the phishing 

emails, can explain the bias to not respond to emails in the 

Rajivan and Gonzalez task. In the future, we will adapt the 

cognitive model to the task performed in Singh et al. to test 

other predictions of the IBL model, given that frequency of 

instances is one of the driving cognitive factors that influence 

decision making. A similar line of research will explore the 

model’s ability to predict end-user behavior in situations 

where the statistics of the environment are more similar to 

that in the real world (e.g., where a very small proportion of 

emails are phishing emails). 

Conclusions 

In this paper we demonstrated that a cognitive model of end-

user detection of phishing emails can be useful for 

understanding human susceptibility to phishing attacks. As 

the Alice scenario showed, normally safe end-users can get 

caught performing unsafe actions under the right set of 

circumstances. Human decisions are constrained by cognitive 

mechanisms (e.g., memory, spreading activation, and pattern 

matching) that reflect the statistics and dynamics of the 

environment. By manipulating that environment, new patterns 

can arise that change well-established user behavior. 

The IBL model developed here is a first attempt to model 

phishing detection using ACT-R, and captures the cognitive 

mechanisms and biases that could give rise to unsafe actions. 

It is also a first step toward developing a cognitive model that 

predicts human performance based on the similarity of emails 

confronted. According to IBLT (Gonzalez et al., 2003), 

decisions are based on the similarity of the current email to 

past emails for which the user clicked links, the recency of 

those past emails, and the frequency of phishing emails in 

comparison to benign emails. The model performed similarly 

to the actions taken by humans, neither the model nor humans 

were highly accurate in classifying phishing emails. The 

nature of the task made classification difficult for both. Future 

research will investigate the various cognitive aspects that 

influence classification decisions, and improve the context 

representation in the model to reflect the relevant features for 

phishing detection. A cognitive model that is highly accurate 

at predicting end-user susceptibility to phishing attacks can 

greatly enhance current cybersecurity practice. 
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