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Abstract 
A range of dichotomies from across the cognitive sciences are 
reduced to either (a)symmetry or (non)monotonicity. Taking 
the cross-product of these two elemental dichotomies then 
yields a deeper understanding of both two key trichotomies – 
based on control and content hierarchies – and the Common 
Model of Cognition, with results that bear on the structure of 
integrative cognitive architectures, models and systems, and on 
their commonalities, differences and gaps. 

Keywords: Dichotomies; control; memory; learning; 
Common Model of Cognition; cognitive architectures. 

Introduction 
The cognitive sciences embody many dichotomies, with a 

broad range of work focused on either making a case for one 
side versus the other of individual dichotomies or on finding 
a hybrid approach that spans both sides.  Here, the focus is on 
two general clouds of dichotomies – one that is 
fundamentally reducible to (a)symmetry and the other to 
(non)monotonicity – with the overall aim of understanding 
them better both individually and jointly.  (A)symmetry 
concerns whether processing – whether conceived of as 
memory access, derivation, inference or computation – is 
valid in a single direction versus in arbitrary directions.  
(Non)monotonicity in its essence concerns whether 
processing accumulates results versus alters them. 

These are not necessarily the most familiar formulations of 
either dichotomic cloud, but each fundamentally captures the 
nature of its own cloud in a manner that enables a simple 
definition and a clear path for mapping the other dichotomies 
from the same cloud onto it.  Although such mappings may 
at times lose nuances, the main message concerns the 
commonality at their heart rather than the range of subtleties. 

Once the clouds are reduced to the two elemental 
dichotomies, their cross product yields a 2×2 framework that 
enables additional analyses.  It is first applied to two key 
cognitive trichotomies that are based, respectively, on control 
hierarchies – including one implicit in AlphaZero, a system 
that learns to best humans at challenging board games (Silver 
et al., 2018) – and content hierarchies.  Each trichotomy spans 
only three of the four cells but together they span all four. 

The framework is then applied to the Common Model of 
Cognition – an attempt to build a community consensus over 
the structures and processes that define a human-like mind – 
plus three cognitive architectures that heavily influenced its 
initial form (Laird, Lebiere & Rosenbloom, 2017): ACT-R 
(Anderson, 2007), Soar (Laird, 2012) and Sigma 
(Rosenbloom, Demski & Ustun, 2016).  The initial focus here 

will be on memory and control, with results highlighting one 
of the major capabilities missing from the Common Model, 
while clarifying the distinct ways the three architectures span 
the di/trichotomies.  This is followed by an analysis of 
learning that also includes AlphaZero. 

The methodology here is akin in general to the one behind 
the Common Model – based on abstract analysis and 
synthesis rather than detailed experiments and models – but 
the goal is to provide a start at a yet deeper understanding of 
key parts of cognition at a yet more abstract level of analysis 
and synthesis.  The overall structure of this paper is simple, 
focused on dichotomies, then trichotomies, and then the 
Common Model.  The results suggest new ways of thinking 
about existing architectures, models and systems, while also 
highlighting key commonalities, differences, and gaps. 

 Dichotomies 

(A)symmetry 
 (A)symmetry fundamentally concerns whether the 
processing of memory structures is valid in only one direction 
versus omnidirectionally.  For example, consider a rule 
versus a logical implication.  Both can be denoted by arrows, 
but the former only works moving forward whereas the latter 
works in both directions, and in fact, can even be replaced by 
a symmetric connective.  Or, consider a feedforward neural 
network versus a Bayesian network.  Here the former also 
only yields valid results moving forward whereas the latter 
can be used to infer values in any direction.  When reverse 
processing does happen in asymmetric structures – whether 
for abduction, planning or learning – it is of a fundamentally 
different form than the forward processing. 

In addition to rules and feedforward (including recurrent) 
neural networks, additional asymmetric forms include both 
traditional procedural programs plus more recent AI 
formulations such as arithmetic circuits (Darwiche, 2009) 
and sum-product networks (Poon & Domingos, 2011).  
Beyond logics and graphical models – such as Bayesian or 
Markov networks and factor graphs – additional symmetric 
forms also include constraints and Boltzmann machines. 

With respect to actual dichotomies, rules versus logics 
(with, for example, model-based semantics) is a traditional 
symbolic AI one that maps directly onto (a)symmetry.  In 
expert systems, a more abstracted variant occurs as rules 
versus first-principles reasoning (Davis, 1983), with the latter 
focusing on flexible use of small amounts of general 
knowledge, whether logical or not, to yield a wide variety of 
results that might otherwise require many rules.  Abstracting 



 

this even further, but still within expert systems, yields 
shallow (or surface) versus deep reasoning (e.g., Hart, 1982). 

Function-based versus model-based approaches – where 
the former may, for example, comprise feedforward neural 
networks or arithmetic circuits and the latter graphical 
models such as Bayesian networks – expresses a related 
dichotomy that arises in probabilistic AI (Darwiche, 2018).  
Likewise, within neural networks, we get the dichotomy of 
heteroassociative versus autoassociative networks (e.g., 
Rizzuto & Kahana, 2001).  Feedforward networks are 
heteroassociative, generating outputs from inputs but not vice 
versa, whereas Boltzmann machines are autoassociative.  It 
may seem jarring to view this distinction between types of 
neural networks in a manner akin to that between rules and 
logics, but that is a clear conclusion from this analysis. 

In (machine) learning more broadly, we see classification 
versus clustering, supervised versus unsupervised learning, 
and discriminative versus generative learning (e.g., Ng & 
Jordan, 2001).  The first element in each pair acquires a 
structure that is to be used in only one direction, whereas the 
second enables processing in arbitrary directions. 

A dichotomy familiar in both symbolic AI and cognitive 
science is procedural versus declarative memory.  In a 
classical cognitive architecture, such as ACT-R or Soar, 
procedural memory is based on rules and declarative memory 
on facts.  Rules are asymmetric structures.  Facts are static 
structures that don’t themselves mandate a direction of 
processing.  However, they do mandate a means for accessing 
them.  Typically, this involves a mechanism for retrieving the 
best candidate(s) given any set of cues; a form of symmetric 
processing, whether as partial match, spreading activation, a 
holographic memory, or an autoassociative network. 

It may even be that it is this symmetric processing rather 
than the nature of the facts themselves that defines declarative 
memory and distinguishes it from procedural memory; an 
idea worth capturing as an explicit hypothesis. 

(A)symmetric Memory Hypothesis: Procedural and 
declarative memory are fundamentally distinguished by 
differences in processing symmetry rather than content. 

Particularly attractive about this hypothesis is how simple yet 
fundamental the underlying distinction is, and how it thus 
obviates the need for a messier attempt at distinguishing 
procedural versus declarative content.  It also enables directly 
mapping varieties of neural networks (e.g., heteroassociative 
versus autoassociative), symbolic structures (e.g., rules 
versus logics), and probabilistic structures (e.g., arithmetic 
circuits versus Bayesian networks) onto procedural versus 
declarative memory, respectively. 

Although a difference in (a)symmetry has long been 
recognized in how knowledge is retrieved from procedural 
versus declarative memories, the key difference here is that 
(a)symmetry is proposed as definitional rather than ancillary, 
yielding a bottom-up mechanistic definition rather than a top-
down content-based one.  In the process, the hypothesis has 
direct implications that would be difficult to derive from 
distinctions concerning memory content. 

Given that procedural and declarative memory fully cover 
the (a)symmetry dichotomy, and that it appears to be a true 
dichotomy rather than just the endpoints of a more graduated 
dimension, the possibility is also raised that there is no further 
conceptual room for other forms of memory along this 
dimension.  There may, however, be variations of these along 
other dimensions; for example, image memory may simply 
be a subsymbolic form of symmetric memory, and thus in a 
deep sense akin to declarative memory.  The two may also be 
combined; for example, both episodic memory and analogy 
combine symmetric access to memory structures with 
subsequent asymmetric processing of the structures, via 
mapping or succession, respectively. One of these memories 
may even be used to implement or emulate the other, such as 
when a rule description is stored in declarative memory, 
retrieved and interpreted to yield procedural behavior; or 
when an autoencoder is implemented via a pair of 
feedforward networks. Still, none of this fundamentally 
changes the essential nature of the dichotomy. 

Two additional dichotomies that are sometimes associated 
with procedural versus declarative memory are procedural 
versus declarative semantics (in AI) and implicit versus 
explicit representations (in cognitive science).  The former 
concerns whether or not structures have fixed, a priori 
semantics, whereas the latter concerns whether or not there is 
awareness of the structures during processing.  Declarative 
memory does appear to more naturally support both fixed 
meanings and awareness, but neither is actually inherent to it, 
nor does either derive directly from symmetry, so an in depth 
understanding of these dichotomies is left for future work. 

(Non)monotonicity 
(Non)monotonicity fundamentally concerns whether 
processing is additive, cumulative or increasing versus 
modifiable, retractable or reducible.  For example, one of the 
core pieces of the Common Model is a cognitive cycle that 
runs at ~50 msec in humans.  In Soar and Sigma this cycle is 
structured as a (mostly) monotonic elaboration phase during 
which new information is added about the current situation, 
followed by a nonmonotonic decision (or adaptation) phase 
during which the situation is actually changed. 

This dichotomy also maps to a distinction in cognitive 
science between automatized versus controlled behavior 
(Schneider & Shiffrin, 1977), with monotonic processing 
safely allowed to proceed automatically, while controlled 
decisions are needed to determine which nonmonotonic 
change to make.  Taking this a step further, it maps onto the 
dichotomy of parallel versus serial processing, where the 
absence of interactions or conflicts in monotonic processing 
authorizes parallelism whereas the need for control and the 
possibility of interactions among nonmonotonic options 
implies a need for seriality  The mapping for both of these 
dichotomies is not perfect, as control may be needed to limit 
parallelism and parallelism may be possible for 
noninteracting nonmonotonic components; however, the 
essential commonalities are again what matter here. 



 

Aligning these last two dichotomies yields one form of 
processing that is autotomized and parallel, plus a second that 
is controlled and serial.  This aggregate dichotomy clearly 
maps onto both the dichotomies of reactive versus 
deliberative behavior in cognitive control and fast (System 1) 
versus slow (System 2) behavior in Kahneman (2011).  It has 
also been characterized in terms of knowledge versus search, 
or a bit more precisely, as knowledge (K) search versus 
problem space (PS) search, with the former being monotonic 
search over what is already known and the latter 
nonmonotonic problem-space search over the space of 
combinatoric possibilities (Newell, 1990). 

A key takeaway for cognitive science from this is again 
worth capturing as an explicit hypothesis. 

 (Non)monotonic Control Hypothesis: Reactive (System 1) 
and deliberative (System 2) are fundamentally 
distinguished by differences in processing monotonicity. 
Shifting from cognitive science to the cognitive sciences 

more broadly, and in particular to various subfields of AI, a 
number of additional variations on this same dichotomy can 
be found.  In constraint solving, there is monotonic 
propagation (where existing constraints on some variables 
induce additional constraints on others) versus nonmonotonic 
conditioning (where hypothetical commitments are made to 
particular variable values) (Dechter, 2003)).  In causal 
reasoning, the first two steps on the Ladder of Causation 
(Pearl & Mackenzie, 2018) are association (monotonic 
probabilistic reasoning) and intervention (nonmonotonic 
action changes).  In logic, the distinction between monotonic 
and nonmonotonic logics depends on whether inferences 
made remain valid forevermore versus being retractable.  
Finally, in search over multimodal spaces, making monotonic 
moves that never decrease the current value only guarantees 
a local optimum whereas reaching a global optimum may 
require interim nonmonotonic moves to lower-valued states. 

(A)symmetry × (Non)monotonicity 
The cross product of these two elemental dichotomies yields 
the 2×2 framework outlined in Table 1.   Other such cross 
products have previously been explored in cognitive science, 
such as one in ACT-R and CLARION (Sun, 2016) that spans 
(a)symmetry – under two different names – and 
(sub)symbolic.  However, replacing (sub)symbolic with 
(non)monotonicity in the analysis yields new opportunities 
for a deeper understanding. 
 

Table 1: 2×2 Framework. 
 

 Asymmetry Symmetry 
Monotonicity   
Nonmonotonicity   
Of particular interest here is how this 2×2 framework 

structures cognitive architectures, models and systems, and 
how it reveals commonalities and differences among them.  
With one last explicit hypothesis, it also helps reveal gaps in 
them. 

 (A)symmetric×(Non)monotonic Necessity Hypothesis: 
General intelligence necessitates appropriate processing 
and learning in all four cells of the (a)symmetry × 
(non)monotonicity framework. 

Initial evidence for this hypothesis will, in what is to come, 
take the form of how all four cells are required to handle both 
trichotomies, plus the three architectures that most influenced 
the initial form of the Common Model of Cognition. 

Trichotomies 

Tri-level Control Hierarchy 
The (non)monotonic dichotomy by itself provides a classic 
two-level control hierarchy, whether one thinks of it as 
reactive versus deliberative or System 1 versus System 2.  
However, a number of approaches go beyond this to three 
levels.  One canonical form spans reactive (immediate 
response), deliberative (action sequences), and reflective 
(metacognition), which when mapped to the 2×2 framework 
bends the normal linear trichotomy into an L shape (Table 2). 
 

Table 2: 2×2 Mapping of Tri-Level Control Hierarchy. 
 

 Asymmetry Symmetry 
Monotonicity Reactive  
Nonmonotonicity Deliberative Reflective 
The vertical leg retains the general mapping from earlier of 

reactive onto monotonic and deliberative onto nonmonotonic 
but restricts them to the corresponding asymmetric cells.  The 
reactive level in control hierarchies unsurprisingly focuses on 
procedural rather than declarative memory, due to the 
former’s focus on control, and thus maps to the top-left cell.  
Declarative memory can clearly play a role in control, but this 
is typically ignored in control trichotomies. 

At the elbow of the L is deliberative processing, consisting 
of a controlled action sequence that yields a single 
asymmetric path through situations in the world.  Following 
the horizontal leg to the right yields reflective use of action 
models to explore simulated paths between arbitrary states – 
that is, models of situations – thus yielding the ability to 
search omnidirectionally in a metacognitive problem space. 

Tables 3-4 show how this all works for two tri-level control 
hierarchies from very different contexts: a classical robot 
control approach (Bonasso et al., 1997); and the AlphaZero 
approach to board games.  Although these examples are, 
respectively, from robotics and (neural) ML/AI, and each 
implements the cells in the hierarchy differently, they both fit 
this same trichotomic framework, as do also the three 
cognitive architectures that are analyzed later. 
 

Table 3: 2×2 Mapping of the 3T Architecture. 
 

3T Architecture Asymmetry Symmetry 
Monotonicity Skill Manager  
Nonmonotonicity Sequencer Planner 



 

 
Table 4: 2×2 Mapping of AlphaZero. 

 
AlphaZero Asymmetry Symmetry 
Monotonicity Neural Networks  

Nonmonotonicity Game Moves Monte Carlo 
Tree Search 

Tri-level Content Hierarchy 
Tri-level content hierarchies are less common than tri-level 
control hierarchies, but they do exist, and bear an interesting 
relationship to the other.  One version of this can be seen in 
Table 5, for affective content (Ortony, Norman & Revelle, 
2005).  The development of this hierarchy began with a tri-
level control hierarchy, but then the distinct nature of the 
emotional content at each level was identified.  As in control, 
both nonmonotonic cells are filled, but with emotional 
content.  The larger difference, however, is that the 
monotonic level is now symmetric rather than asymmetric, 
corresponding to declarative rather than procedural memory. 
 

Table 5: 2×2 Mapping of the Affect Hierarchy. 
 

Affect Asymmetry Symmetry 
Monotonicity  Proto-Affect 

Nonmonotonicity Primitive 
Emotions 

Cognitively 
Elaborated Emotions 

Another tri-level content hierarchy, but from AI, is the 
Ladder of Causation mentioned earlier (Table 6).  The tri-
level content hierarchy here includes Bayesian reasoning 
(association level), reasoning about actions (intervention 
level), and hypothetical, or metacognitive, reasoning 
(counterfactual level).  One major point of Pearl’s work is 
that causal reasoning isn’t all just (monotonic) Bayesian. 
 

Table 6: 2×2 Mapping of the Ladder of Causation. 
 
Causality Asymmetry Symmetry 
Monotonicity  Association 
Nonmonotonicity Intervention Counterfactuals 

The asymmetric monotonic cell, where procedural 
memory resides, is unsurprisingly blank in both of these 
content hierarchies.  As with the corresponding gap in control 
hierarchies, the missing memory could be used, but it is at 
best of secondary importance, and thus not typically a focus. 

Common Model of Cognition 
The Common Model of Cognition is being developed as an 
evolving community consensus concerning the structures and 
processes that yield human-like minds, in service of creating 
a cumulative reference point for the field while guiding 
efforts to both extend and break it.  The question of interest 
here is to what extent the 2×2 framework can help to better 
understand the Common Model.  The first step involves a 
mapping of its memory and control aspects (Table 7), 

followed by corresponding mappings of ACT-R, Soar and 
Sigma (Tables 8-10).  Learning is then mapped, with 
AlphaZero added to the mix for this analysis. 

Like the earlier trichotomies, the Common Model is 
incomplete, spanning only three of the framework’s cells.  
However, in contrast to the two trichotomies, the Common 
Model spans both monotonic cells while omitting a 
metacognitive, or reflective, capability in the symmetric 
nonmonotonic cell.  This lack. However, reflects that a 
consensus is needed rather than that there is a consensus 
against such a capability (Kralik, et al., 2018). 
 

Table 7: 2×2 Mapping of the Common Model. 
 

Common Model Asymmetry Symmetry 

Monotonicity Procedural Declarative 

Nonmonotonicity Action Selection 
& Execution  

Three Cognitive Architectures 
The Common Model, as a partial consensus over cognitive 
architectures, lacks aspects such as metacognition that may 
exist in the architectures from which it is derived.  So, as a 
follow up step, it is useful to extend this analysis to the three 
architectures that heavily influenced its initial development – 
ACT-R, Soar and Sigma (Tables 8-10) – each of which 
includes some form of metacognition. 
 

Table 8: 2×2 Mapping of ACT-R. 
 

ACT-R Asymmetry Symmetry 
Monotonicity  Rule Match Facts 

Nonmonotonicity Selection & Execution Imaginal 
Buffer 

 
Table 9: 2×2 Mapping of Soar. 

 
Soar Asymmetry Symmetry 

Monotonicity Parallel Rule System Facts & 
Episodes 

Nonmonotonicity Selection & Execution Reflection 
 

Table 10: 2×2 Mapping of Sigma. 
 

Sigma Asymmetry Symmetry 

Monotonicity Asymmetric Graphs Graphical 
Models 

Nonmonotonicity Selection & Execution Reflection 

In conjunction with Table 7, these mappings show how the 
three architectures fulfill the Common Model’s requirements 
for its three cells, and fill in its blank cell, while highlighting 
the diverse ways they implement such capabilities. 



 

All three architectures support rules in procedural memory, 
but in ACT-R it is only their match process that is monotonic, 
with a rule then being selected to yield a nonmonotonic action 
execution.  Soar matches and fires its rules in parallel, making 
the whole rule system – but not final action (or operator) 
selection – part of procedural memory.  Sigma uses a 
unidirectional extension of its graphical models that 
subsumes not only parallel rules but also feedforward neural 
networks (Rosenbloom, Demski & Ustun, 2017) and sum-
product networks (Joshi, Rosenbloom & Ustun, 2018); with 
action/operator selection also separated out. 

One implication of this analysis of procedural memory is 
that the 2×2 framework may draw boundaries that are 
somewhat askew from those found in standard analyses.  The 
approach here splits off nonmonotonic aspects that would 
traditionally be considered part of procedural memory and 
includes them instead as part of action selection and 
execution.  Whether this is ultimately the correct view 
remains to be seen, but either way, such boundary shifts are 
an important part of what falls out of these analyses. 

In declarative memory, all three architectures can represent 
facts, although Soar decomposes this general memory 
capability into distinct semantic and episodic memories, and 
Sigma’s factor graphs provide a broader range of possibilities 
that includes not only these two but also other forms of hard 
and soft constraints.  All three architectures also support 
selecting the best partial match from declarative memory, but 
this does involve asymmetric and nonmonotonic processing.  

Soar and Sigma are similar in the nonmonotonic layer, due 
to Sigma’s approach being based on Soar’s, with the 
asymmetric cell being action related and impasse-driven 
reflection providing the ability to leverage models for search 
within the symmetric cell.  However, Sigma’s selection 
process for declarative memory shares much with its 
procedural selection, whereas in Soar they are distinct, 
including an asymmetrical form of spreading activation.  In 
ACT-R, rule selection and action execution provide its 
asymmetric component, while its symmetric component is 
based on an imaginal buffer that can represent hypotheticals. 

Learning 
Table 11 shows an abstract mapping of forms of learning that 
blends terms from the tri-level control hierarchy and the 
Common Model.  Combining this with an extension, to all 
four cells, of the Common Model’s notion that structure and 
parameter learning are needed in both procedural and 
declarative memory, we can jointly analyze learning in the 
Common Model, ACT-R, Soar, Sigma and AlphaZero to 
better understand its overall structure, how the approaches 
compare and contrast, and what gaps may show up in them. 
 

Table 11: 2×2 Mapping of Learning. 
 

Learning Asymmetry Symmetry 

Monotonicity Procedural Declarative 

Nonmonotonicity Deliberative  Reflective 

Procedural – i.e., asymmetric monotonic – learning 
includes rule creation via composition/chunking (Common 
Model, ACT-R and Soar) and parameter learning via 
backpropagation (Sigma and AlphaZero).  None of these 
models/systems are thus complete with respect to procedural 
learning.  The Common Model is described in a way that 
appears to be complete, but that is due to considering 
reinforcement learning (RL) – which learns to select actions 
from experience with action sequences – as procedural.  But, 
by the analysis here, RL is an asymmetric nonmonotonic 
form of learning, and thus belongs instead in that cell. 

On the positive side, by including RL, all five 
models/systems do thus span asymmetric nonmonotonic 
parameter learning.  None of them, however, learns new 
primitive actions, although Soar at least learns new high-level 
actions by combining primitive ones (Mohan & Laird, 2014). 

For declarative – i.e., symmetric monotonic – learning, the 
Common Model acquires facts and the quantitative metadata 
that facilitates their use.  Both ACT-R and Soar directly 
implement such a combination.  In Sigma, facts are instances 
of predicates with typed arguments.  The only actual structure 
learning at present is type extension, whereas quantitative 
metadata is learned via Hebbian-style symmetric learning.  
Adding facts to declarative memory occurs not by structure 
learning but by raising probabilities above 0.  AlphaZero has 
no declarative memory, and thus no role for its learning. 

Symmetric nonmonotonic, or reflective, learning can be 
thought of as the acquisition of models and their parameters.  
The Common Model does not include these forms of learning 
due to its general lack of metacognition, even though all three 
of the architectures mentioned do embody some form of it.  
AlphaZero uses action models in model-based RL, but it does 
not appear to learn these models. 

Conclusion 
The first step in this paper was to reduce two distinct clouds 
of dichotomies down to simple computational forms.  In the 
process it was hypothesized that the distinction between 
procedural and declarative memory – along with many other 
dichotomies (Table 12, left column) – can be grounded in the 
more elemental terms of (a)symmetry.  The possibility was 
even raised that although there may be other variants or 
combinations of these two basic types of memory, there may 
be no further basic types along this dimension.  It was then 
also hypothesized that the distinction between reactive and 
deliberative behavior can be grounded in the more elemental 
terms of (non)monotonicity, also along with many other 
dichotomies (Table 12, right column). 

The cross product of these dichotomies yields a 2×2 
framework that enables analyzing two key trichotomies and 
the Common Model of Cognition, providing a common 
means for understanding and comparing across divergent 
integrations of cognitive capabilities.  It also identifies gaps, 
when accompanied by a hypothesis relating to the processing 
and learning that is necessary in all four cells.  It further helps 
understand how apparently ad hoc but highly successful 
systems such as AlphaZero can fit within the same coherent 



 

framework for memory, control and learning as more 
traditional cognitive architectures, models and systems. 

 
Table 12: Summary of Dichotomy Mappings. 

 
(A)symmetry (Non)monotonicity 

Rules vs. Logic 
Rules vs. First Principles 
Shallow vs. Deep 
Function vs. Model 
Hetero. vs. Autoassociative 
Classification vs. Clustering 
Supervised vs. Unsupervised 
Discriminative vs. Generative 
Proc. vs. Decl. Memory 

Elaboration vs. Decision 
Automatized vs. Controlled 
Parallel vs. Serial 
Fast vs. Slow 
System 1 vs. System 2 
K vs. PS Search 
Propagation vs. Conditioning 
Association vs. Intervention 
Mon. vs. Nonmon. Logic 
Local vs. global 

In future work, this analysis needs to be extended to more 
systems and architectures, to more precise mappings onto the 
framework, and to a deeper level of understanding of the full 
dichotomic clouds.  A complete analysis of cognition should 
also ultimately provide a coherent story over all relevant 
dichotomies and their combinations.  Additional dichotomies 
of relevance may include discrete versus continuous, central 
versus peripheral, explicit versus implicit, symbolic versus 
subsymbolic, conscious versus subconscious, and short-term 
versus long-term.  Additional combinations of dichotomies 
will also be of central importance; possibly even eventually 
up to a full combination of all relevant, distinct dichotomies. 
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