
Cognitive Models as a Computational Correlate of Theory of Mind for
Human-Machine Teaming

Leslie M. Blaha (leslie.blaha@us.af.mil)
Air Force Research Laboratory, Carnegie Mellon University

Pittsburgh, PA 15213 USA

Abstract

I delve into an initial discussion on the nature of the theories
of mind needed to support effective human-machine teaming.
Effective human-machine teaming will require humans to have
a theory of mind about machine intelligence and for machine
intelligence to have a theory of mind about human teammates.
The latter will require a machine to be able to make inferences
about the cognitive states related to observable behaviors by
the human and to predict future states and actions consistent
with the human’s beliefs, goals, and desires. This paper pro-
poses that cognitive models can provide the computational cor-
relates to enable a machine theory of mind to reason about its
human counterparts.
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Introduction
The purpose of this paper is to spark an exploration around
the nature of the theory of mind required to support human-
machine intelligence teaming. I begin with the claim that a
theory of mind is necessary for humans and machine intel-
ligence to work together in collaborative teaming situations.
These are situations in which a machine has autonomous ca-
pability, meaning it can act alone without human supervision
or direct intervention, can take direction or feedback from a
human, can give direction or feedback to a human teammate,
and leverages some form of artificial intelligence to process
information, learn and adapt to complete tasks and achieve
the team’s goals.1

Human-machine teaming of this type is predicated on the
assumption that humans and machine intelligence understand
each other. We can see this in claims that increasing trans-
parency of automation will allow humans to properly cali-
brate their trust and reliance on the technology (Lee & See,
2004). Or it is similarly implied in the claims that artificial
intelligence endowed with the ability to explain its decisions
(so called explainable AI or XAI) will aid human users to
reason about the correctness and sources of error in the ma-
chine’s output (Hoffman, Klein, & Mueller, 2018). The push
for real-time state assessment in humans is partially driven by
the goal of representing the human in ways that can be inter-
preted and adapted to by machine systems (e.g., Borghetti &
Rusnock, 2016). Across these research topics and engineer-
ing endeavors, there is a common theme of measuring, iden-
tifying, and representing the unobservable states of agents to

1At this junction, I am agnostic to whether that intelligence is
embodied in a robotic form and to the specific nature of the inter-
actions and communications between the human and machine intel-
ligence. These details not change the present argument, though are
critical for engineering actual systems.

make them understandable to the other team members, par-
ticularly between heterospecific team members.

We have been implicitly demanding a theory of mind to
support effective human-machine teaming.

Theory of Mind Defined for Human-Machine
Teams

Theory of mind (ToM) is the term ascribed to the processes
an agent uses to impute the internal “mental” states of itself
and other agents (c.f. Fodor, 1992; Mahy, Moses, & Pfeifer,
2014; Premack & Woodruff, 1978). Note that herein, I am
using the term mental state both for humans and machines
to refer to the internal information processing mechanisms
and representations that are only indirectly observable by the
other agent. In various social and developmental lines of
ToM research, this inference process is usually considered
conceptually from the perspective of an exemplar human or
primate, the “subject” of the study. The social interactions,
and therefore relevant ToM, is about the subject’s ability to
reason about itself and one or a small number of other agents,
usually other humans.

One level of reasoning within ToM emphasizes the sub-
ject’s ability to interpret observed actions of the other as goal-
directed behaviors. That is, the ToM must support the inter-
pretation of a sequence of actions as representing a trajectory
through a state space toward a goal state. Any time the agent
is seeking the same goal state, it is likely to exhibit similar
sequences of behaviors. A subject could reason over these
trajectories to abstract a degree of meaning about the goals
driving the observed behaviors. However, ToM is usually in-
voked at a deeper level: the inferences by the subject should
be representing the intentions, emotions, prior experiences,
mental state, awareness, and goals of the other agent. That is,
we hypothesize that a subject capable of full ToM is attempt-
ing to represent to him or herself the latent factors within an-
other agent that contextualize the goal-oriented behaviors.

The dominant theories about ToM generally argue that ei-
ther people rely on their own mental mechanisms to simulate
the experiences of other agents (e.g., Scholl & Leslie, 1999),
or they rely on their ability to reason over internal concep-
tual representations of cognitive mechanisms (e.g., Gopnik &
Wellman, 1994). A key commonality across theories is the
reliance on an internal representation of the mechanisms of
mind. This brings us to the crux of the challenges in defining
a ToM for human-machine teaming, which can be summa-
rized in three questions:

1. What are the mechanisms of mind for machine intelli-



gence?

2. How do we represent machine mechanisms of mind in hu-
mans to be reasoned over?

3. How do we represent human mechanisms of mind in ma-
chines to be computed about?

The nature of human-machine teaming and the fundamen-
tal differences between human cognition and computational
processes require that we expand the concept of ToM to in-
clude multiple types of ToM models and mechanisms. In
spite of our often-useful analogy of cognition as computa-
tion, the nature of the ToM for machines reasoning about ma-
chines, machines reasoning about humans, and humans rea-
soning about machines must be different than human ToM
about other humans. Elucidating the nature of these new theo-
ries of mind is a hard problem. Indeed, I note that developing
an artificial theory of mind to support human-robot interac-
tion was listed as one of the top grand challenges in humanoid
robots today (Yang et al., 2018).

The human ToM within a human-machine team will likely
operate as a classical ToM: introspection about self and in-
trospection about other people (particularly for multi-human,
multi-agent team configurations) will continue to engage pro-
cesses of simulating and theorizing about mental states based
on our own experiences with self and interacting with other
people. But now human ToM must also provide introspec-
tion about machine intelligence. Properly supporting such
heterospecific introspection will require the development of
appropriate mental models for machine intelligence capabil-
ities. Deeper discussion about human mental models of ma-
chine intelligence is beyond the current scope.

Let us make the working assumption that a machine ToM
parallels human ToM. It must enable a machine intelligence
to “introspect” about itself.2 It must enable a machine intel-
ligence to introspect about other machine agents. In some
cases, the other agents may employ similar artificial intelli-
gence algorithms, but machine learning, which is sensitive
to input data and conditions, may have produced deviating
internal representations of the world. In other cases, other
machine agents may have completely different algorithms,
chip architectures, and system structure. It could potentially
take a complex set of representations and savvy abstractions
to enable machines to reason about other agents. Recently,
Rabinowitz and colleagues (2018) have made headway in de-
veloping machine ToM that abstracts all agent behaviors into
state-action trajectories and engages pattern recognition for
inferences between agents (see also Winfield, 2018, for a can-
didate abstraction in robots).

Finally, a machine ToM for human-machine teaming must
enable the machine to reason about human teammates. I ar-
gue that it will not be enough to abstract a human into a sim-

2I use the term introspection here loosely and without proper def-
inition at the present time. This definition will need to delve into the
nature of computational inference and state assessment of computa-
tional algorithms, which is beyond the present scope.

ple, observable state-action sequence for pattern recognition.
Analogous to human ToM, the machine intelligence will need
to make inferences about the mechanisms of mind, the emo-
tions, intentions, beliefs, and goals of the humans. There may
also be cases where the machine must make inferences about
physical states and capabilities, too.

The reason we must go beyond simple state-action pattern
recognition is that our intentions for human-machine team-
ing capabilities entail intelligent machines that anticipate and
adapt to their human teammates in addition to adapting to dy-
namic task environments and data. This will require that ma-
chines can predict future human states and likely actions (and
sometimes likely consequences).3 For machine ToM about
humans to achieve prediction or anticipation, it must incorpo-
rate a representation of the internal states, intention, beliefs,
and goals of the human. It is not enough for the machine
intelligence to be reactive to the behavior or action of the hu-
man, which may facilitate pattern recognition but not predic-
tion of future actions contextualized by the mental state of the
human teammate. It is here that cognitive models of the men-
tal mental mechanisms and processes supporting the human
states have a critical role to play.

Cognitive Models in the Machine ToM
We now come to a primary question for consideration by
the cognitive modeling community: can cognitive models
provide the algorithmic framework(s)—computational corre-
lates, if you will—to enable machine intelligence to have a
ToM about human teammates? A limitation of the few current
artificial theories of mind is that they do not offer a human-
specific representation that differentiates human teammates
from other environment variables or computational agents,
though the need for such representations to support effective
interactions is recognized within social robotics at least (Yang
et al., 2018). Winfield (2018) states that the artificial ToM for
robots based on a consequence engine is most effective for
conspecific agents; that is, reasoning about another agent is
most effective when the agent is the same type as the robot.
Scassellati (2002) had demonstrable success integrating mod-
els of fundamental perceptual skills into humanoid robots to
encourage behaviors consistent with the emergence of higher
level ToM-related behaviors (e.g., gaze tracking). While be-
havior consistent with a machine ToM about human team-
mates is promising, we can go further by not only leverag-
ing models of elements of perception and cognition but lever-
aging models instantiating full decision-action processes and
information processing systems or even full architectures of
cognition and conceptualizing them as the machine’s ToM
about the human teammate. In this way, the cognitive models
provide a computationally tractable representation of human
mental mechanisms, states, beliefs, intentions, and goals—

3I note for completion that there is an analogous need for humans
to predict the future states, likely actions, and likely consequences of
machine activity in the human-machine team. This is related to the
need to examine the nature of human mental models about machine
intelligence and is left to future exploration.



all those elements critical for deeper introspection within a
ToM. And because computational model implementations are
in computational languages, they can be integrated into sys-
tem architectures and intelligent processes.

We must ask then, if cognitive models are to be thought
of as a correlate for machine ToM about humans, do they
provide the same support to machines that neural correlates
of human ToM provide to humans? Within their review of
neural correlates of ToM from the social and developmental
psychology perspectives, Mahy et al. (2014) offer some initial
criteria we can use to evaluate conceptual consistency.

A correlate for ToM should support mental simulation.
One key hypothesis for ToM is that people simulate them-
selves in novel situations and then project inferences about
what will happen onto other people (Fodor, 1992; Scholl &
Leslie, 1999). Such simulation relies on people having di-
rect access to their own mental states and past experiences.
Cognitive models, whether computational cognition formal-
ized in cognitive architectures or mathematical models in-
stantiated in computational algorithms, can simulate human
behavior. While the “mental states” of a specific model de-
pend on the mechanisms instantiated in it, generative cog-
nitive models are theoretically grounded in known cognitive
mechanisms. In this way, cognitive models might provide
machine intelligence teammate direct access to the internal
model/mechanism states. Traces of the model history or di-
rect representations of memory, such as declarative memory
in ACT-R, provide access to past experiences. The simulated
representation of a human (or multiple simulations), can then
be compared to observed human behavior to further inform
the machine ToM.

A correlate for ToM should be modular in nature. Mul-
tiple theories of mind postulate the existence of dedicated,
even innate, neural correlates and cognitive mechanisms sup-
porting reasoning about self and others. Modularity of mech-
anisms is important for the reasoner to keep the inferences
about self separate from inferences about others. In our case,
then we want to construct human-machine teaming systems
where the cognitive models constitute their own module that
keeps the representation of human teammates unique from
the representations of the task, environment, data or ma-
chine’s own capabilities. It is not inconsistent to consider the
cognitive models within the machine intelligence in a mod-
ular way. Designing machine intelligence-based systems in
a modular way would enable the system to access its ToM
about human teammates when operating with those team-
mates and to operate autonomously when the human team-
mates are not present. The representation of the human re-
mains consistent even as the structure or mission of the team
changes.

A correlate for ToM supports reasoning over multiple
perspectives. A mature ToM is able to hold multiple per-
spectives in working memory and reason over them inde-
pendently. This helps someone to differentiate inferences

about themselves from inferences about each other individ-
ual. Cognitive models have been used as independent agent
representations within larger systems. One example is the
use of model to support human-robot interaction using ACT-
R to simulate human predictions to inform robot planning
(Lebiere, Jentsch, & Ososky, 2013). This system enables rea-
soning about potential human states together with computa-
tion about the robot itself. Another example is the develop-
ment of cognitive-model based synthetic teammates for train-
ing (Ball et al., 2010) where the system tracks the synthetic
agent and models human learning behavior simultaneously.
As long as they are incorporated into systems with adequate
processing resources, cognitive models are capable of being
used in a modular way in parallel with all other relevant ma-
chine intelligence algorithms and artificial ToM about other
machine agents.

A correlate for ToM should support theoretically
grounded conceptual learning. Human ToM evolves over
time, as people learn about themselves and others. They move
from simpler to more complex conceptual representations.
They evolve to account for observations about other that are
inconsistent with currently held conceptions. It is argued
that relevant conceptual knowledge must reside in theory-like
structures that support the human ToM (Gopnik & Wellman,
1994).

Cognitive models are theoretically grounded in the mech-
anisms of cognition. As such, they can provide the theo-
retical structures needed for evolution of conceptual under-
standing about the human within the machine ToM. Cogni-
tive models can further be equipped with human-like learning
mechanisms that enable the model representations to evolve
in human-like ways. Consistent with the assumptions of ToM
development, this concept learning can be captured through
experiential changes in the model and age-related changes in
a model operating at a longitudinal scale. This is critical for
the machine to have conceptual, or theoretically grounded,
representations of how the human’s mental state is or could
be changing, even if the machine is not learning or reasoning
in a human-like way.

Open Questions
Conceptually, cognitive models are capable of supporting ma-
chine ToM about human teammates. As we are early in the
process of exploring ToM for human-machine teaming, there
are a number of open questions that must be debated, includ-
ing but not limited to:

• Do we need full computational cognitive architectures or
unified theories of cognition instantiated in machine intel-
ligence to make useful inferences?

• How detailed must a human’s mental model of the machine
be for useful inferences?

• What are the critical tests that a cognitive-model based ma-
chine ToM is, in fact, a full theory of mind?



• When would it disadvantage a human-machine team to re-
quire a full ToM in the system?

As we evolve our vision for the capabilities of human-
machine intelligence teams, and as the evolution of such
teams changes the way we even conceive of what be ca-
pable, the need for the human and machine to understand
each other will remain a constant system requirement. It be-
hooves us to consider now what it means for humans and ma-
chines to understand each other and how establishing human-
machine teaming theories of mind will inform that under-
standing. Cognitive models have an important role to play
in meeting the grand challenge of developing an artificial the-
ory of mind and a critical role to play when those artificial
minds interact with our own.
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