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Abstract

Mental spatial transformation is usually modeled with highly
task-specific approaches, allowing high model accuracy and
valid explanations for effects in experimental data. These ap-
proaches however suffer from overfitting of models to data,
resulting in low general validity. Based on neuro-imaging re-
search suggesting a dedicated cognitive system for mental spa-
tial transformation, a theory for universal spatial transforma-
tive cognition and its implementation as an ACT-R module is
proposed. This spatial module enables the prediction of pro-
cessing time for mental spatial operations. Concurrently, a
mental folding experiment is conducted to gather participant
data for model fitting. Our data confirms an effect of trans-
formation difficulty on reaction times often found in related
research, as well as learning effects during the experiment.
These results form the foundation for ongoing development of
the spatial module, especially regarding the influence of trans-
formation complexity on spatial assessments.
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Introduction
Mental spatial manipulation of objects or scenes is a core
mechanism of human cognition. In this regard, understand-
ing an object in three-dimensional space allows us to reason
and make assumptions about quality, category, function and
other attributes associated with it (Kosslyn, 1996). Although
mental spatial transformation is often associated with men-
tal imagery, evidence for the distinctness of the two exists.
Spatial representations seem to be separable from mental im-
agery (Knauff & Johnson-Laird, 2002). A study by Gramann
(2013) implies the existence of inter-individual differences
in spatial cognition, including the proclivity for an egocen-
tric or allocentric reference frame during mental spatial tasks.
Mental spatial processing and mental imagery seem to be sit-
uated in separate brain areas, respectively: past research of
behavioral and neurophysiological data implies pathways for
spatial processing as well as a functional distinction between
egocentric and allocentric cognitive systems (Nadel & Hardt,
2004).

Different, partially compatible paradigms for mental spa-
tial transformation have been introduced, each proposing fac-
tors for the complexity of a spatial transformation. Shepard
and Metzler (1971) studied reaction times for the sameness

of two abstract 3D objects, of which one is rotated to a vari-
able degree. A linear relationship between angular disparity
and reaction time was found. As objects were only required
to be mentally rotated however, the explanatory power of this
study for general spatial cognition seems limited. A follow-
up study measured reaction time during a task based on cube
folding patterns (Shepard & Feng, 1972). In a recent varia-
tion of this cube folding paradigm (Wright, Thompson, Ga-
nis, Newcombe, & Kosslyn, 2008), a reference object must be
mentally manipulated to assimilate its shape to a target object.
Reaction time grew linearly with the folding complexity re-
quired by the target object. Additionally, higher complexity
levels were reported to be unsolvable within the given time
limit by most participants, which suggests an upper limit to
spatial transformation capacity.

Lotz and Russwinkel (2016) introduced a decay factor for
spatial representations. According to the authors, these de-
caying representations could only be upheld for a short period
of time before they required re-encoding by visual or mem-
ory processes. In another variant of mental rotation, a study
theorized that non-linear reaction time results are caused by
the intricacy of the transformations necessary for a correct re-
sponse (Neely & Heath, 2010). Based on this theory, higher
transformation complexity could be a factor especially in de-
manding tasks. Other possibilities of complexity measures
for spatial processing exist, such as object structure (Bethell-
Fox & Shepard, 1988), semantics (Smith & Dror, 2001) or
familiarity (Bethell-Fox & Shepard, 1988; Smith & Dror,
2001), and potentially many others. So far, no unequivocal
data reasonably demonstrates their effect, but these factors
should be kept in mind.

Modeling Spatial Cognition

The cognitive architecture ACT-R (Anderson et al., 2004)
consists of modules which represent cognitive systems for
e.g. visual, imaginal or motoric processing. Cognitive mod-
els rely on the interplay of these modules to simulate specific
task behaviors and cognitive processes by exchanging infor-
mation between buffers associated with each module. This
approach also allows for the prediction of brain activity, as the
neural representation of each cognitive system can be roughly



localized in the human brain (Borst & Anderson, 2015).
While ACT-R offers a unified approach for cognitive mod-

eling of mental imagery (Anderson et al., 2004), similar
mechanisms are so far not available for mental spatial trans-
formation. Such cognitive systems and their implementation
as a module for ACT-R have been proposed (Gunzelmann &
Lyon, 2007), but so far not scientifically validated. In this
paper, we seek to formulate a theory on mental spatial trans-
formative cognition, namely how effects shown in studies of
spatial cognition can be represented algorithmically, and im-
plement it in the form of an ACT-R module. The goals for the
module are:

• Explainability: known effects in spatial cognition like
growing time costs with growing task complexity, differ-
ences in spatial strategies and others should be explained
by spatial module functions

• Universal applicability: the module should support mul-
tiple mental spatial transformation paradigms

• Validity: as models are able to refer to a unified imple-
mentation of spatial cognition instead of using highly task-
specific approaches, the overall validity of modeling spatial
processes is improved

One of the challenges of modeling mental manipulation lies
in correctly predicting the effect of inter-individual differ-
ences, for instance in the proclivity for egocentric or allo-
centric reference frames (Gunzelmann & Lyon, 2011). The
proposed addition to the ACT-R architecture should eventu-
ally account for these differences by providing the possibility
of multiple approaches to spatial transformation. Addition-
ally, identifying the source of effects like cognitive limita-
tions, time demands, inaccuracies and errors is essential for a
sufficiently predictive performance of the module.

As a starting point for the development of the spatial mod-
ule, we chose to conduct an experiment based on the men-
tal folding task developed by Shepard and Feng (1972), in a
variation by Wright et al. (2008) as described above. Con-
currently, two cognitive models are developed: one using
only default ACT-R modules (the baseline model), another
incorporating our spatial module (the enhanced model). The
baseline model will rely on default ACT-R capacities with
the goal of achieving as close a fit to human behavioral data
as is possible with ACT-R’s base mechanisms, while the en-
hanced model will make use of the spatial module described
in this paper. Thus, the baseline model will act as a bench-
mark - if the addition of a spatial module is indeed a rea-
sonable assumption, the enhanced model should reach a sig-
nificantly better fit while ideally explaining effects that the
baseline model can not.

Hypotheses
We expect our experimental results to show a linear effect
of task difficulty on reaction time, as previous studies have

shown (Shepard & Feng, 1972). Over the course of the ex-
periment, participants should also show learning effects, re-
sulting in shorter reaction times. The enhanced model should
subsequently show an improved fit compared to the baseline
model while being more cognitively plausible.

Methods
Mental Folding Study

Participants The study was conducted with 45 partici-
pants, of which 5 were excluded due to aberrant error rates,
reaction times or technical problems, leaving a sample of 40
participants (20 female, 20 male). All participants were se-
lected according to their orientation strategy measured via
the Reference Frame Proclivity Test (Goeke, König, & Gra-
mann, 2013) and completed a pretesting battery prior to the
mental folding task. Additionally, data from a 64-channel
electroencephalogram (EEG) was collected. Participant se-
lection, pretesting and EEG-Data are no further subject of this
paper.

Mental Folding Task A computerized version of the men-
tal folding task originally developed by Shepard and Feng
(1972) was created and adjusted into a comparison task sim-
ilar to the task designed by Wright et al. (2008). The men-
tal folding task consisted of reference figures in the form of
semitransparent 3D cubes, and 2D unfolded cube templates
as target figures, each with two black arrows on their sur-
faces and a blue square indicating the base, presented on a
black background. Each trial started with a one second pre-
sentation of a central fixation cross, followed by the display
of a reference figure, either on the left or right side of the
screen. Subsequently, after one more second, a target fig-
ure appeared on the other respective screen side. The par-
ticipants were asked to mentally fold the template together
and to decide then whether the arrows on reference and target
match. Judgements on matching or mismatching arrow po-
sitions were recorded via button presses on a response pad.
Vertically aligned buttons were used with one button for each
judgement type. The experiment consisted of 600 trials, sub-
divided in five blocks. Participants had to take at least one
minute breaks between the blocks and were instructed to al-
ways fold upwards, starting from the base. Task comple-
tion took 60 minutes on average and each participant passed
through 10 minutes of training with feedback in advance.

Stimuli Four levels of difficulty were chosen for the task
(see Figure 1). The sum of squares carried (SSC) during the
series of folds necessary to compare the arrow positions de-
termined the level of difficulty, as defined by Shepard and
Feng (1972). The easiest level (A) was a direct visual com-
parison with arrow tips always meeting. The second level (F)
required to carry four, the third level (G) five and the fourth
level (H) six squares through the folding sequence. Six dif-
ferent template figures with three arrow variations each (for
Levels F, G and H: one variation with arrow tips touching,
two with arrow tips in different directions) were constructed



Difficulty

Level
A F G H

Squares

Carried
None 2 + 1 + 1 = 4 3 + 1 + 1 = 5 3 + 2 + 1 = 6

Example

Pattern

Figure 1: Difficulty levels used in the experiment, based on
the classification by Shepard and Feng (1972). Squares car-
ried refers to the amount of squares that need to be trans-
formed to reach an informed decision.

for every level and paired with reference cube figures with ei-
ther matching or mismatching arrow positions. This resulted
in 144 different trials. In order to shorten the length of the
experiment to one hour, 24 trials of the mismatch condition
were excluded by balanced randomization from each block.
Each mismatch stimulus type of each level was shown at least
three times over the whole experiment, resulting in 72 match-
and 48 mismatch trials per block. The sequence of trials and
the presentation sides were randomized in a balanced manner
within each block.

Baseline Model
Lacking a spatial module, the baseline model uses memory
retrieval as its main mechanism. Spatial structures and re-
sults of folding operations are encoded as world knowledge
and queried as needed. Cube and folding pattern are visually
presented to the model. Arrow directions and base square
positions are then saved in a mental representation and used
to create folding paths for each arrow on the folding pattern.
These paths are then subsequently folded up and the result-
ing mental images compared to the actual arrow positions
and directions on the reference cube. Additionally, a simple
instance learning mechanism is implemented, allowing im-
provement over time.

While the approximation of spatial processes through re-
peated memory retrieval processes is highly implausible, it
represents a reasonable approach using only the standard
ACT-R architecture, and thus a benchmark to be improved
upon by the enhanced model.

Spatial Module
The spatial module integrates seamlessly into the existing
modular structure of ACT-R. Its feature set is chosen with
mental rotation and mental folding paradigms in mind, al-
though other applications are possible. In its current version

the module supports translation, rotation, scaling and com-
parison of three-dimensional objects. As it is developed con-
currently to subject data acquisition, several design choices
are intuitive as of now. Results of upcoming research will be
consulted to confirm or improve the proposed module struc-
ture.

Structure The module is interfaced by use of its two
buffers:

• The spatial buffer acts as storage for a mental spatial image
of an object, which in turn can be a specific part of a larger
object or a group of smaller objects. These objects consist
of a three-dimensional representation and optionally of a
specific object class, a list of contingently attached objects
and a pointer to an origin object, if applicable.

• The spatial-action buffer is analogous to the imaginal-
action buffer in the way that transformations to the mental
representation are handled. It receives and handles trans-
formation requests or queries about the object in the spatial
buffer.

Point clouds form the structure for three-dimensional rep-
resentations, as they are versatile and easily transformable
through mathematical computation. Each point is formed by
xyz-coordinates, allowing objects to be represented with ar-
bitrary level of detail.

Buffer structure and amount were chosen to balance func-
tionality and parsimony - this module setup should allow ap-
plicability to all spatial tasks while limiting its complexity
and need of resources. This way, in contrast to the approach
of Gunzelmann and Lyon (2007), interaction with ACT-R’s
core module structure is facilitated: as spatial object chunks
are standard ACT-R chunks, functionality like object com-
parison or episodic memory can be achieved through or sup-
ported by default modules.

Configurable module parameters are module latency and
maximum transformation complexity.

Complexity of Spatial Representations The module ob-
serves an upper limit on the number of transformations ap-
plicable to the object. If this number is reached, no further
transformations will take place and the module will return an
error. This limit is an exploratory account of effects showing
that for tasks of high difficulty, a jump in reaction time occurs,
breaking the linear pattern (Shepard & Feng, 1972). The au-
thors assume that these jumps reflect re-encoding processes
- to continue the task, the preliminarily transformed object
needs to be harvested from the buffer, memorized and subse-
quently either recalled from memory or visually re-encoded
again. Further research will try to validate this assumption.

At the moment, the upper limit of subsequent object trans-
formations defaults to 4, in line with the instantiation fingers
(or finsts) of the declarative and visual modules that work
as similar limitations. If a valid transformation is requested
on the object in the spatial buffer and the upper limit is not
reached, a complexity equation is consulted to compute the
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Figure 2: A rough outline of the process underlying the en-
hanced model. Visual representations get encoded, then rel-
evant surfaces of the folding pattern are mentally folded up
and subsequently compared to the reference arrow positions
and directions.

time delay required for the operation. As data of mental spa-
tial studies (e.g. Shepard and Metzler (1971), Shepard and
Feng (1972)) shows a linear relationship between the discrep-
ancy of the spatial object to its required transformation state
and reaction times of human participants, a linear equation of
the form f (x) = b+mx is used as a basis for the complexity
equation. We assume the intercept b is given by ACT-R’s de-
fault mechanisms such as production firing or the forming of
mental representations. The rest of the equation (i.e. factor
m) is proposed to be as follows:

Crequest = F ∗M ∗ x∗N2

• F : a latency factor, set as a module parameter. Its default
value will be fit based on current experiment data.

• M: a compensation factor used to equalize discrepancies
between transformation types like rotation or translation.
Potentially depending on the specific function called, this
factor equals 1 for now.

• x: the change value for the transformation, i.e. degrees,
distance units or others.

• N: the current number of transformations applied to the
mental spatial object since it was put into the spatial buffer.
This implements research by Neely and Heath (2010), im-
plying that reaction times grow with increasing transfor-
mation complexity.

Capabilities of the Module The spatial module is able to
translate, rotate and scale spatial objects consisting of point
clouds in 3D space. For comparison between two spatial ob-
jects, so far two operations are available: A simple compar-
ison is implemented that compares the mean euclidean dis-
tance between point pairs from two point clouds. If the point
clouds have unequal sizes, the distance from the spare points

to the origin substitutes the missing pairs. For instance, an
object compared to itself would return a mean euclidean dis-
tance of 0, while deviating objects return larger values de-
pending on their scale and significance. Furthermore, a com-
putation of the angle between vectors is implemented to allow
for the comparison of e.g. reference and target arrows.

The module offers these tools for modeling mental spatial
transformation, however certain task-specific operations like
reacting to specific thresholds or perception of the spatial ob-
jects still need to be implemented on a model level.

Enhanced Model
An enhanced model for the mental folding task that incor-
porates the spatial module is currently in development. The
underlying process is based on the baseline process model,
but instead of memory retrieval processes, spatial informa-
tion is now processed by the spatial module, which calculates
the time needed for each spatial operation based on the above
equation. Each square of the folding pattern is now foldable
in 3D space, while arrows are represented as direction vec-
tors. Once all relevant surfaces have been folded to their re-
spective cube positions, these direction vectors are compared
to the reference arrows and used to form a decision. A pro-
cess diagram of this model is depicted in Figure 2.

As the enhanced model foregoes memory retrieval pro-
cesses for spatial operations, it exhibits stronger cognitive
plausibility, as forming representations through declarative
knowledge is unlikely to occur in spatial problem solving.
Additionally, the resulting process model is less rigid and
allows for easier backtracking, required for modeling phe-
nomenons like loss of concentration or validation.

Comparison to Experiment Data
The models are compared to participant data through correla-
tion and root mean square error (RMSE) of averaged reaction
times and model output, respectively.

Results
Experiment Data
Behavioral data was analyzed to investigate effects of the fac-
tors Difficulty Level and Experiment Block on participant re-
action time. Only trials with correct responses were selected
for analysis. Trials with reaction times lower or higher than
2 standard deviations from the levels mean within each par-
ticipant were considered outliers and therefore excluded from
further analysis.

A two-way ANOVA with the within-factors Difficulty
Level (A, F, G, H) and Experiment Block (1, 2, 3, 4, 5)
was conducted on logarithmized reaction times. ANOVA
results, adjusted per Greenhouse-Geisser, display signifi-
cant main and interaction effects of the factors Difficulty
Level and Experiment Block on reaction time (Difficulty
Level: F1.74,67.96 = 282.86, p < .001; Experiment Block:
F2.16,84.22 = 144.17, p < .001; Interaction: F5.94,231.84 =
12.57, p < .001). Reaction times increased with increasing
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Figure 3: Error bars depict 95% confidence interval. (a) Reaction times in seconds averaged over participants and blocks,
showing the mean effect of difficulty level. Level A requires no folding operation. The sums of squares carried necessary during
folding are 4 in Level F, 5 in Level G and 6 in Level H, respectively. (b) Average participant reaction times in seconds per
Difficulty Level and Experiment Block. Black solid line denotes the learning effect, averaged over levels of difficulty. Dashed
line shows model learning effect for comparison. (c) Model reaction times in seconds per Difficulty Level and Experiment
Block. Black solid line denotes learning, averaged over levels. Dashed line shows human learning for comparison.

level of difficulty. Tukey-corrected post-hoc comparisons re-
veal that the increase in reaction time with increasing level
of difficulty is significant in all blocks, with the exception
of the difference between difficulty Levels F and G which is
only significant in the first two experiment blocks. Overall
the ANOVA results seem to imply a learning effect that is es-
pecially pronounced for higher difficulty levels. Means and
standard deviations are summarized in Table 1. The latency
factor parameter of the spatial module was fit based on the av-
eraged reaction times for each difficulty level (see Figure 3a),
suggesting a factor of around 0.6 per necessary folding oper-
ation.

Model Data
Baseline Model The baseline model output is sufficiently
similar to participant data (see Figures 3b and 3c). Due to
its mechanisms being based on world knowledge retrieval in-
stead of actual spatial processes, model reaction times are
uniformly higher than for participants. While a comparison
of model and human reaction times over the factor difficulty
showed no significance (r = .89, p = .11 with an RMSE of
3.14), a comparison over experiment block showed a high
correlation with high significance (r > .999, p < .001 with an
RMSE of 3.09).

Discussion
Discussion of Results
Both human and model data show a clear improvement over
time, correlating highly and showing a learning effect that
seems well explained by instance memorization. This sug-
gests an important role of pattern memorization for improve-
ment in spatial tasks.

The effect of task difficulty - as in the sum of squares car-
ried over all necessary folding operations to obtain the correct
arrow positions and directions - is clearly pronounced in the

experimental data. The baseline model shows a similar influ-
ence of the difficulty factor in its output, but shows no cor-
relation to the human data. Interestingly, reaction times for
the highest difficulty setting seem to diverge from the linear
influence of required folding operations, implying other fac-
tors. This might support the aforementioned idea that with
more complex mental spatial transformations, re-encoding
processes take place (Neely & Heath, 2010).

The data also shows a slight decrease of variance in the
reaction times for higher difficulty levels that grows smaller
over the course of the experiment (Figure 3b). This variance
seems to be within-subject, meaning that solvability of the
puzzles in higher difficulties differed strongly for unexperi-
enced solvers, but gradually improved.

Revisiting our original hypotheses, we found a mostly lin-
ear effect of task difficulty, with slightly longer reaction times
for the highest difficulty level at the start of the experiment
than a linear relation would suggest. Learning effects over the
course of the experiment in the form of decreasing reaction
times were also found. The baseline model showed highly
similar learning effects, but remains much slower than hu-
man participants and relies on cognitively implausible mech-
anisms for mental spatial transformation.

Open Questions
The specifics of the spatial module are chosen for simple
integration into the existing module structure of ACT-R, its
functional requirements and buffer parsimony. These might
be challenged by upcoming neurophysiological results of hu-
man problem solving in mental folding and rotation tasks.
Potential consequences range from showing the existence of
multiple systems to a lack of evidence for a dedicated spatial
system altogether.

With the claim of modeling universal mental spatial cogni-
tion, information from several paradigms needs to be evalu-



Block Difficulty Mean SD

1 A 0.17 0.35
1 F 0.84 0.39
1 G 1.02 0.49
1 H 1.32 0.59
2 A -0.01 0.33
2 F 0.67 0.40
2 G 0.81 0.47
2 H 1.08 0.63
3 A -0.10 0.32
3 F 0.58 0.40
3 G 0.66 0.49
3 H 0.91 0.60
4 A -0.13 0.34
4 F 0.48 0.41
4 G 0.57 0.53
4 H 0.76 0.60
5 A -0.17 0.34
5 F 0.40 0.41
5 G 0.47 0.51
5 H 0.69 0.55

Table 1: Mean and standard deviation of logarithmized reac-
tion times by Experiment Block and Difficulty Level.

ated and used to fit the spatial module. However, it will still
need to be falsifiable - changes to the module need to be done
in a way that do not introduce task-specific information, but
try to make as few general assumptions necessary to be able
to interpret as much spatial processing as possible.

The presented complexity function should work well in the
context of mental folding, but its applicability to other spatial
paradigms (e.g. non-transformative or non-object-oriented
tasks) is still unexplored. While it is based on past research on
mental transformation processes, a plethora of amendments
or alternatives to the equation is conceivable.

A central issue inherent to the object representation lies in
the omission of surface textures. Many paradigms require
access to interpretable texture information like arrows, num-
bers, colors etc. While some features can be encoded as an
additional object or point cloud information, this approach is
highly restrictive.

The necessity for an equalizing factor for different transfor-
mation modalities is unclear. For example, rotation and trans-
lation can be reasonably assumed to have different effects on
reaction times due to their handling of input as degrees or
distance units, respectively. On one hand, a factor specific
to the transformation modality could offset this disparity. On
the other hand, translation can be interpreted as being based
on view angle instead of arbitrary distance units, allowing a
closer comparison to rotation. Differences in modalities may
not just arise from a disparity in change value however, but
from their application difficulty or their neurophysiological

basis as well. Additionally, a differentiation between trans-
formations changing the object and those simply changing
its perceived orientation could be necessary - a simple rota-
tion seems less resource-intensive than folding parts of an ob-
ject and subsequently influencing its form or function. In this
regard, reference frame proclivity seems especially informa-
tive.

Work on the enhanced model is currently ongoing. A chal-
lenge remains in finding an optimal ontology for spatial ob-
jects, able to represent both internal (e.g. single aspects of an
object like cube faces or physical connections between ob-
jects) and external (e.g. comparisons of objects or measures
of object sameness) relations in and between objects, and ad-
justing both spatial module and model accordingly.

Outlook

The proposed spatial system is developed in parallel to re-
search into mental spatial transformation. As such, in addi-
tion to being subject to change, many details of the imple-
mentation are still unclear and highly exploratory. Data from
current and future research will aim to provide answers and
solutions to these challenges.

On completion, the enhanced model will serve as a first
testbed for the spatial module as well as a competitor for the
baseline model regarding data fit. Altogether, it forms an
important landmark for the validation or falsification of the
assumptions laid out in this paper. While spatial reference
frame proclivity seems to be an important inter-individual
trait for the prediction of performance in mental spatial trans-
formation tasks, it is unclear how spatial processing, and a
potential implementation thereof, differs between egocentric
and allocentric perspective takers. With the possibility of fol-
lowing distinct neural pathways, a spatial module incorporat-
ing this distinction could be comprised of a structure far dif-
ferent than the one described here, e.g. with additional buffers
as originally proposed by Gunzelmann and Lyon (2007). This
issue will be explored in-depth based on forthcoming imaging
data for spatial transformation tasks, with the module being
adjusted accordingly.

Upcoming research will incorporate data from a mental ro-
tation study into the spatial module. The additional evaluation
of available EEG and eye tracking data for both mental fold-
ing and mental rotation will give insight into the functional
localization of specific spatial brain functions and improve
process models for mental spatial transformations. To enforce
the module’s universality claim, additional paradigms for spa-
tial tasks like mental scanning or spatial navigation could be
investigated in the future.
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