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Introduction
In the past two decades, neuropsychological research into
the cognitive bases of learning and behavior has increasingly
benefited from the application of computational models of
learning, such as those derived from reinforcement learning
(RL) theory. Despite advances in RL, many studies continue
to rely on the older Rescorla-Wagner (RW) learning model.
While the RW model is missing many of the more modern RL
features, it is still applied in an attempt to describe multiple
aspects of brain functioning and participant behavior such as
ERP dynamics related to response and feedback (Cavanagh,
Frank, Klein, & Allen,2010). Here, we demonstrate that un-
der a simple target-discrimination/stop signal task, three RL
model variants with increasing constraints are indistinguish-
able in terms of fit to participant data, despite converging to
different regions of the parameter space.

Reinforcement Learning Models
Model Architectures
We implemented three RL models (“single-update”, “double-
update”, and “targeted-update”) to model participant behav-
ior under a target-discrimination/stop-signal task. Partici-
pants had to learn the correct stimulus-response mappings
through trial-and-error while monitoring for potential stop
signals, resulting in “Go” and “Stop” trials (see Reinhart &
Woodman,2014 for additional task details). Each model uti-
lized a standard update rule:

Q(st+1,at+1) = Q(st ,at)+αδt (1)

Where Q(st ,at) is the Q-value associated with performing
action a in state s at time t, α is a parameter that controls the
rate of learning, and δt is defined as:

δt = [rt+1 −Q(st ,at)] (2)

These estimated Q-values are transformed into a distribu-
tion of probability of selection over the range of possible ac-
tions on any given trial through a softmax action selection
rule:

P(a) =
eQt (a)/β

∑
n
b=1 eQt (b)/β

(3)

These three equations comprise the entirety of the single-
update model.

The double-update model is almost identical to the single-
update model, with the additional assumption that reward un-
der the task is anti-correlated. That is, if taking one action
generates positive reward, then any other action would have
generated negative reward (and vice-versa). This assumption
allows the model to make a second update on each trial, ap-
plying the opposite of the reward (“antiReward”) that was
received to every action that was not taken. While uncom-
mon, this updating approach has been utilized to some suc-
cess (Reiter et al.,2016).

However, human participants generally begin with some
knowledge regarding the dynamics of a new task, such as
through instructions given in a lab setting. As such, we cre-
ated a third model that attempted to encode two pre-existing
expectations: that “Go” trials should be responded to, while
“Stop” trials should not be responded to. To encode these ex-
pectations, model updates on any given trial were “targeted”
so that positive/negative reward was more appropriately allo-
cated to the response options.

Under standard initialization conditions, all three models
have only two free parameters, the learning rate α and the
noise in action selection β.

Model Initialization
In RL modeling, Q-values are typically initialized as “0” for
every potential state-action pairing (standard initialization)
so that every potential action is equally probable before any
learning occurs. An alternative manner of encoding initial
expectations (the goal of the “targeted” model) is to initialize
some state-action pairings with a nonzero value. We took this
approach by estimating a third parameter “initVal” for each of
the three models, representing some negative value that two
general state-action pairings are initialized at: responding to
“Stop” trials, and not responding to “Go” trials (alternative
initialization).



Figure 1: Estimated α versus β parameter of each participant
for the three model architectures, under both standard and al-
ternative initialization conditions. The points circumscribed
in black are mean parameter estimates across participants.
Horizontal and vertical lines indicate standard deviation for
the α and β parameters, respectively.

Results and Discussion
Differences in model fits (pseudo-R2) and parameter es-
timates were examined through Welch’s paired-samples t-
testing. We observed no differences in model fit between both
model architectures (single/double/targeted updates) and ini-
tialization approaches (standard/alternative).

Comparing estimated learning rates (α parameter) between
model architectures initialized in the standard manner re-
vealed that the double-update model’s α was significantly
greater than that of the single-update model (paired t(14.7)
= -2.70, p = 0.017), while the targeted-update model’s α

was significantly greater than that of the double-update model
(paired t(11) = -4.51, p < 0.001). However, when comparing
model architectures under the alternative initialization proto-
col, the double-update model’s α was no different than that
of the single-update model (paired t(10.3) = 1.5, p = 0.16),
while the targeted-update model’s α was again significantly
greater than that of the double-update model (paired t(10.4) =
-3.5, p = 0.005). When comparing between model initializa-
tion protocols, no significant differences in estimated α was
found. This suggests that our alternate initialization proce-
dure conveys information to the model that it would quickly
learn through double-updating; when both are present, no ad-
ditional benefit is gained. However, comparing the learning
rate α of the “targeted-update” model to that of the “double-
update” model makes clear that the “targeted” nature of the

updates speeds learning above and beyond that of alternative
initialization/double-updating.

Under standard initialization, the estimated noise in ac-
tion selection (β parameter) was significantly greater for the
targeted-update model, when compared to the double-update
model (paired t(14.9) = -4.2, p < 0.001). For alternative
initialization, the single-update model’s β was significantly
greater than that of the double-update model’s (paired t(10.2)
= 4.4, p = 0.001), and again, the targeted-update model’s
β was significantly greater than that of the double-update
model’s (paired t(13.9) = -4.5, p < 0.001). When compar-
ing between model initialization protocols, the single-update
model’s estimated β was significantly greater under the alter-
native initialization protocol (paired t(16.9) = -2.6, p = 0.02),
but no differences were observed for the double-update or
targeted-update models.

Finally, it was observed that the single-update model’s esti-
mated initialization value (under the alternative initialization
protocol) was significantly less than that of the double-update
model’s [paired t(17.5) = -2.3, p = 0.04], but there was no dif-
ference between the initialization values of the double-update
and targeted-update models. The fact that the “initVal” pa-
rameter was estimated as fairly negative across the three mod-
els indicates that our participants were less likely to perform
actions that they had been instructed were not advantageous.

The apparent flexibility of the α and β parameters in the
presence of additional update mechanisms and an alternate
initialization protocol suggests that the core mechanism of
these models (described by equations 1, 2, and 3) is capable
of fitting participant data in the presence of (or perhaps in
spite of) a number of incidental factors. As a consequence,
the effect of well-motivated model features have the potential
to be obscured by over-flexibility of more “core” model ele-
ments. This adaptability poses concern for researchers who
seek to explain behavioral, neural, or other forms of data
through this approach. In the process of determining the va-
lidity of a model, researchers would be well-served by testing
multiple model variants under various starting conditions and
examining the relationships between model fits, parameter es-
timation, and differences between model architectures.
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