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Abstract

Syntactic priming (SP) is the effect by which, in a dialogue, the
current speaker tends to re-use the syntactic constructs of the
previous speakers. SP has been used as window into the na-
ture of syntactic representations within and across languages.
Because of its importance, it is crucial to understand the mech-
anisms behind it. Currently, two competing theories exist. Ac-
cording to the surprisal theory, SP is driven by the mismatch
with internal predictions and enhanced by factors that enhance
surprise (i.e., use of low-frequency verbs). According to the
declarative theory, SP is driven by the re-activation of declara-
tive memory structures that encode template structures. Here,
we propose a third and novel hypothesis, namely, that SP is
driven by the successful application of procedural knowledge,
in agreement with Ullman’s model. This hypothesis makes
the unique prediction that SP will be reversed when the prime
sentence includes grammatical errors, but not semantic errors.
The theory is supported by a computational model. An exper-
iment confirmed the prediction of the theory.
Keywords: Syntactic Priming, Procedural Knowledge, Rein-
forcement Learning, Computational Modeling

Introduction
Syntactic Priming (SP, also known as “Structure Priming”) is
the linguistic phenomenon by which speakers tend to re-use
syntactic structures across utterances (Bock,1996). Its exis-
tence is often touted as the strongest evidence that the same
syntactic mechanisms are used in both language comprehen-
sion and language production. As such, manipulations that
affect SP can be used to gather insight into how brain per-
ceives, represents, and applies syntactic structures. For ex-
ample, two notable studies (Loebell & Bock,2003;Hartsuiker,
Pickering, & Veltkamp,2004) have show that that SP effects
occur across languages, demonstrating that syntactic struc-
ture is represented in a way that is language-independent.

In this paper, we will use a novel manipulation of SP ef-
fects to investigate whether syntactic structures are repre-
sented within declarative or procedural memory. Our results,
backed by computational models, strongly suggest that SP is
based on procedural representations, and that these represen-
tation are learned and refined through Reinforcement Learn-
ing.

Background
In the past few decades, many researchers have attempted
to determine the most likely mechanistic explanation for SP
(Hartsuiker et al.,2004;Reitter, Keller, & Moore,2011;Chang,
Dell, & Bock,2006). Experimental studies show that a range

of factors could impact the strength of priming. For example,
the priming effect is enhanced by the presentation of multiple
primes, which is referred as the cumulativity of SP (Jaeger
& Snider,2008). Not only the occurrence of primes mat-
ters, the lexical overlapping between prime and target also en-
hances priming, which is known as the lexical boosting effect
(Pickering & Branigan,1998). Moreover, there is evidence
for an inverse frequency interaction, showing that that the less
frequently used syntactic structures are associated with with
stronger priming effects (Jaeger & Snider,2008).

These effects have been used to support different un-
derlying mechanisms that might account for SP. A main
source of disagreement between these putative mechanisms
is whether syntactic processing is relying on declarative or
procedural representations. A group of researchers, for exam-
ple, advocate a short-term residual activation mechanism ac-
count (Snider,2008;Jaeger & Snider,2008;Pickering & Brani-
gan,1998) that implies a declarative representation, while
another group of researchers believe that syntactic persis-
tence is depending on implicit learning mechanisms (Chang
et al.,2006;Bock & Griffin,2000) that point to a procedural
representation. By incorporating both short-term activation
account and long-term implicit account, a further dual mech-
anism account, Declarative/Procedural model of language is
proposed by (Ullman,2004). Based on different mechanisms,
different computational models have been developed to ac-
count for structural priming effects.

Most psycholinguistic studies have investigated syntactic
priming effects using carefully controlled experimental items,
ensuring that the linguistic stimuli have no mistakes and are
produced flawlessly. However, in natural conversation, disflu-
encies and errors are very common when people are speaking.
Usually, erroneous message is considered as interference that
either slows down the processing or impedes peoples compre-
hension. Speech errors include ungrammatical construction,
inappropriate word choice, ambiguous meaning, or absolute
nonsense. Even though people may ignore minor speech er-
rors in daily conversation, there is evidence that erroneous
information does affect language processing, and might pro-
vide a further cue to the underlying representation of syn-
tax. For example, people often change their mind and correct
themselves mid-sentence while speaking. Slevc and Ferreira
(2013) examined the priming effect in the context of correct-



ing speech errors. They found that SP is significantly reduced
when primes are corrected to the alternative syntactic struc-
ture.

The prediction error (i.e., surprise) associated with the syn-
tactic structure of prime also affects subsequent language pro-
cessing. There was evidence that the more surprising the
prime is, which means higher prediction errors, the more
likely to expect the same structure would occur later (Jaeger
& Snider,2008).

The role played by errors in SP introduces a third point
of view on the nature of SP, which can be catalogued un-
der the “procedural” account. According to this point of
view, syntactic structures are represented procedurally and
their selection is guided by their perceived utility in terms of
Reinforcement Learning, i.e., their estimated future amount
of “rewards” or positive feedback signals (Sutton, Barto, et
al.,1998). It is widely accepted that procedural knowledge,
in general, is refined in a Reinforcement Learning-like man-
ner through the backpropagation of reward or feedback sig-
nals. In fact, procedural knowledge and reward signals share
the same computational substrate, in the dopamine-rich basal
ganglia (Schultz, Dayan, & Montague,1997;Yin & Knowl-
ton,2006). Furthermore, although the basal ganglia are not
considered part of the cortical language network, an increas-
ing number of studies have shown their involvement in lan-
guage processing (Friederici,2006;Stocco, Yamasaki, Natal-
enko, & Prat,2014).

The connection between reward signals and procedural
knowledge is apparent in some prominent general theories of
cognition. For example, in the ACT-R cognitive architecture
(Anderson,2009;Anderson et al.,2004), procedural knowl-
edge is represented as production rules or simply produc-
tions, and productions are typically used to represent syn-
tactic micro-operations in ACT-R models of language pro-
cessing (Lewis & Vasishth,2005;Stocco & Crescentini,2005).
But, in ACT-R, productions are selected on the basis of their
expected , a scalar quantity that represents future rewards and
is updated through repeated feedback signals according to a
standard Reinforcement Learning rule:

Ut+1(p) =Ut(p)+α× (Rt −Ut(p)) (1)

where Ut(p) represents the utility U of production p at time
point t.

In the case of linguistic phenomena, feedback signals could
be provided directly by the process of successfully compre-
hending or producing a sentence. Thus, according to this
view, SP would be the effect of increased utility of a syntactic
structure following its successful use in comprehension.

If that is the case, we expect that ungrammatical sentences,
in which rules are applied unsuccessfully and lead to a error
signal and a re-analysis of a sentence, would result in negative
feedback signals. These negative feedback signals would ul-
timately decrease the utility of the corresponding production,
thus making the application of the same syntactic structure
less likely to occur.

In this study, we set forward to test this alternative, RL-
based account for syntactic priming, and to answer the ques-
tion of whether perceiving incorrect linguistic information
such as ungrammatical syntactic constructions would affect
peoples subsequent language representation, particularly in
syntactic choices of production. Furthermore, we will attempt
to explain the observed patterns under Reinforcement Learn-
ing theory and simulate the behavioral results using ACT-R
model.

Theoretical Hypotheses
Based on the proposed theories of SP, we can derive three
different predictions about the effect of syntactically incor-
rect primes (See Figure 1). Across all predictions, we expect
that syntactic priming effect will occur regardless of syntactic
correctness. Specifically, the proportion of producing same
construction is expected to be higher than producing alterna-
tive construction. We also expect that the priming effect will
be different depending on whether the syntactic structure of
prime is correct or not.

According to a purely declarative model (as exemplified,
for instance, by Reitter’s 2011 model), an ungrammatical
prime should not have any differential SP effect than a gram-
matical one. In as much as the prime sentence can be cor-
rectly interpreted despite the syntactic error (and, in our ex-
periment, we made sure this is the case), the same grammat-
ical structure would be retrieved, thus causing the same ac-
tivation boost for subsequent use. Thus, our Hypothesis 1,
driven by the repetition between prime and target, states that
there is no difference between grammatical and ungrammati-
cal primes.

According to procedural, prediction-driven model (as
exemplified by Jaeger & Snider,2008 and Snider,2008’s
exemplar-based model), the ungrammatical prime, being
a low-frequency and unexpected structure, would generate
greater surprisal and therefore enhance priming effect for
same constructions production, but to weaken priming in al-
ternative construction production. Specifically, Hypothesis 2
states that priming with ungrammatical sentence makes peo-
ple more likely to produce same constructions, and less likely
to produce alternative constructions than priming with gram-
matical one. Finally, according to our procedural/RL account,
SP is due to the update of the perceived utility of a procedural
syntactic structure, which is increased for successfully parsed
(grammatical) sentences and decreased following unsuccess-
fully parsed (ungrammatical) ones. Driven by reward, Hy-
pothesis 3 predicts an opposite pattern as Hypothesis 2, stat-
ing that, priming ungrammatical sentences is expected to in-
crease the likelihood of producing alternative structures than
those used in the priming sentences.

To explicitly formulate our hypothesis, we implemented it
as an ACT-R model1. The model performs a simplified ver-
sion of canonical SP task, first comprehending a sentence (in

1The code for all the models described in this pa-
per is available on our laboratory’s GitHub page:
http://github.com/UWCCDL/SyntaxPriming



Figure 1: Three hypotheses driven by on different predic-
tions. (white indicates active-form prime., gray indicates
passive-form prime). Hypothesis 1: Declarative, driven by
activation, predicts no effect of syntactic errors. Hypothe-
sis 2: Driven by expectations, it predicts enhanced priming
for (unexpected) ungrammatical sentences. Hypothesis 3:
Driven by reward, it predicts reduced priming for ungram-
matical sentences.

either active or passive form) and then producing a sentence
to describe a picture. Both comprehension and production
depend on the use of two production rules that implement
the active and the passive sentence structures. In compre-
hension, these rules are used to mediate from the underlying
sentence to its higher-level semantic representation. In lan-
guage production, these rules are used to create a mental plan
of the sequence of words to produce a description of the pic-
ture. Feedback signals are generated by detecting whether
the comprehended sentence is grammatically correct or not.
For simplicity, the process of parsing a sentence is drastically
simplified (not unlike in Reitter et al.,2011), so that all the
sentence information is available at once in a single visual
“chunk” of information in ACT-R and feedback signals are
only generated at the end of the comprehension process.

To examine the predictions of our model, we conducted a
parameter space partitioning analysis of the model’s behav-
ior, and found that, across different initial utility values of
the two syntactic structures and different reward values, the
model produces the qualitative pattern of Figure 4.

To test between these alternative hypothesis, we conducted
a novel SP experiment, introducing the novel manipulation of
syntactic grammaticality of the priming sentences.

Materials and Methods
Participants
Ninety participants (35 female, 54 male, 1 other) were re-
cruited online through Amazon Mechanical Turk, and per-
formed the experiment in exchange for monetary compensa-
tion. Ethnicity includes 51.1% White, 36.7% Asian, 6.7%
African American, 3.3% Latino or Hispanic American, and
2.2% Others. All participants were screened through a pre-
experimental survey that gathered information about their
language experience and background; only native English

Figure 2: Two priming examples of the simple Reinforcement
Learning model. Left: modeling AI priming. Right: model-
ing PI priming. White rectangles represents chucks encoding
words. The blue rounded rectangles represents productions:
parsing - parse in the prime; retrieving syntax - retrieve cor-
responding syntactic structure of the prime; checking error -
check whether there is grammar errors in the prime. Diamond
shapes represent feedback, either positive or negative. R indi-
cates the reward term in Eq. 1, and δ reflects the reward pre-
diction error term Rt −Ut(p). When the model detects error,
it sends a negative feedback signal to all the previous produc-
tions that have fired since the last reward. The predictions of
this model are illustrated in Fig. 6
.

speakers without any history of brain damage, reading prob-
lems, nor language-related disorder were allowed to proceed
to the experiment. Twenty-one were later excluded for failing
to construct complete sentences in the language production
task. The experimental protocol and inclusion criteria were
approved by the Institutional Review Board at the University
of Washington.

Materials
This picture description task is modified based on Hardy,
Messenger, and Maylor’s experiment (2017). A total of 36
trials with prime target pairs were created. Each picture is
depicting a ditransitive action involving an agent and a pa-
tient. The verb of the action is printed under each picture.
The prime sentence is either active-tense form grammatically
correct (AC), passive-tense form grammatically correct (PC),
active-tense form grammatically incorrect (AI) or passive-
tense form grammatically incorrect (PI).

Ungrammatical prime sentences in the Passive Incorrect
syntax condition (PI) were generated using seemingly cor-
rect but non-existing past participles modeled after existing
verbs, such as “chasen” instead of “chased”, “slapt” instead
of “slapped”, and “shooted” instead of “shot”. In half of the
trials within each condition, (N = 18 total), the prime picture
and prime sentence are perfectly matched, while in the other
half, the prime sentence is modified as semantically incorrect
by which the identity of either agent or patient is wrong. This
latter manipulation was designed to both make sure that par-
ticipants were performing the task correctly and to separately



measure the effect of syntactic errors from semantic errors.

Design

This study is a 2 × 2 × 2 within-subject design, with three the
factors being prime syntax (active vs. passive), grammatical
correctness (correct vs. incorrect), and semantic correctness
(correct vs. incorrect). In our notation, 4 syntax conditions:
AC, AI, PC, PI x 2 semantic conditions: SC (semantically
correct) and SI (semantically incorrect). Because, previous
studies have demonstrated a stronger syntactic priming ef-
fect as prime and target are overlapping (Pickering & Brani-
gan,1998), in this study prime and target always share the
same action verb. The combination of three independent vari-
able pairs are pseudo-randomized so in each syntax condition
(AC, AI, PC, PI), each verb only occurs once, and each verb
is modified as both semantic-correct and semantic-incorrect
form.

Procedure

Most SP experiments make use of realistic, in-person dia-
logue between two participants, one of which is a confed-
erate. The confederate verbally utters the primes and the par-
ticipants responses are recorded for transcription. To simulate
this seemingly realistic dialog situation online, the study de-
scribed here used deception to convince participants that they
were paired with another online “partner” and they were to
take turns providing a description for a sentence and verify-
ing the accuracy of their partner’s description. In fact, there
was no paired partner and all sentences typed by the partner
were decided beforehand. At the end of the study, participants
were fully debriefed about the use of deception.

In the online task, participants see a prime picture and are
asked to verify whether the sentence constructed by the part-
ner was correctly describing the picture or not. Followed by
the verification task, there is a picture description task (see
Figure 3). In the picture description phase, a picture and an
appropriate verb are given, and participants need to type a
sentence to describe the picture using the given verb. Partici-
pants are told that the game is proceeding in which the partner
and the participant alternate between verifying if sentence-
picture pair is matching, and constructing a sentence to de-
scribe the picture to the other. The game sets a randomly
generated waiting time to simulate the amount of time needed
by the fictional partner to type their own description.

The participant needs to complete a pre-screen survey that
only eligible ones can continue. After giving consent, par-
ticipants begin with a three-trial practice phase to familiar-
ize themselves with the procedure. Between verification task
and picture description task, the game sets a randomly gen-
erated waiting time to simulate verifying period of the “part-
ner”. At the end of the study, participants are given the de-
brief about the deception involved and are asked to complete
a post-experiment survey.

Figure 3: Example trial from the Online ASP Task. Left:
During the Verification phase, subjects are asked to verify the
congruence between the sentence and the picture. Right: Dur-
ing the Production phase, participants are asked to describe
the target picture by typing a complete sentence that contains
the given verb.

Results

The responses typed by participants were automatically an-
alyzed with the Natural Language Toolkit (NLTK) package
in Python and double-checked manually. Thirteen responses
that could not be coded as neither active nor passive sentence
were removed for data analysis.

The total of 2507 responses yield 75.79% active descrip-
tions, 24.21% passive-voice. The analysis is conducted with
the proportion of producing active out of active and passive
responses. As expected, there is a significant effect of syn-
tactic priming (Active vs. Passive), F(1, 69) = 59.52, p <
0.001 , and a significant main effect of syntactic correctness
(Syntax-Correct vs. Syntax-Incorrect), F(1, 69) = 13.28, p =
0.001. As expected, we find that there is no significant effect
of semantic correctness on syntactic production. F(1, 69) =
1.37, p = 0.25.

Post-hoc analyses for significance indicate that the mean
proportion of active descriptions is significantly lower in PC
condition (M = .64, SD = .32) than that in PI (M = .69, SD
= .34), F(1, 69) = 5.05, p = 0.03. The mean proportion of
active descriptions is also significantly lower in the AC prime
condition (M = .84, SD = .24) than in the AI conditions (M =
.8, SD = .21), F(1, 69) = 6.09, p = 0.01.

As for the accuracy in verification task, overall accuracy
rate is 79.92%. We find a significant effect of syntactic cor-
rectness on the accuracy rate F(1, 68) = 57.66, p < 0.001 .
People tend to verify picture more accurately when the sen-
tence is grammatically correct (M = .8796, SD = .16) than the
sentence is grammatically incorrect (M = .72, SD = .21). We
also find that there is a significant effect of syntactic voice on
the accuracy rate F(1, 69) = 16, p = 0.001. The accuracy of
verification is significantly higher for active sentences (M =
.83, SD = .19) than for passive sentences (M = .77, SD = .21).
Interestingly, there is significant interaction effect on accu-
racy rate between syntactic correctness and syntactic voice,
F(1, 69) = 12.33, p = 0.001.



Figure 4: The proportion of active structures across con-
ditions Asterisks “*” denote significant differences between
conditions.

Summary
Taken together, the results of our experiment provide a pic-
ture that is not entirely consistent with any of the previously
discussed models, while the SP was present and robust (albeit
less dramatic that in previous studies). Contrary to Reitter’s
model, there was a robust effect of syntactic grammatical-
ity. These effects, however, did not comply precisely with
either of the two competing accounts, that is, the procedu-
ral/expectancy and the procedural/RL hypotheses. In the pas-
sive sentences, an ungrammatical prime increased the likeli-
hood of producing another active sentence, consistent. How-
ever, the data also show that semantic errors do not produce
any effect, and, therefore, that the effect of errors can be lo-
calized to the processes of syntactic parsing.

A Sequential Procedural Model
One possible explanation for the lack of correspondence be-
tween the experimental results and our model is that the our
procedural model was too naı̈ve and did not appropriately
take into account the different ways in which active and pas-
sive sentences are parsed. To explore this issue, we created a
second computational model (See Figure 5).

This second model closely follows the structure of the pro-
cedural model described above. However, the new model
simulates, at least partially, the sequential and incremental
nature of sentence parsing. In particular, while the first model
immediately detects the structure of the sentence (active vs.
passive) and generates all feedback signals at the very end
of the comprehension process, the second model delays the
choice of the correct syntactic form until the first verb is en-
countered, and generates feedback signals both the end (when
all sentences are successfully understood) and as soon as the
first incorrect word is found (for ungrammatical ones).

This creates a novel asymmetry between the ungrammati-
cal, active (AI) and ungrammatical, passive (PI) sentences. In
the case of passive sentences, the first verb form encountered

Figure 5: Two examples of the Sequential Procedural model.
Left: Parsing of an ungrammatical, active sentence (AI).
Right: parsing of an ungrammatical, passive (PI) sentence.
This revised model explains both the activation boost found
in AI priming and the activation drop in PI priming (see Fig.
6, Right)

by the model is the word “is” (as in “the robber is chased
(...)”); when the word “is” is encountered, the model can con-
fidently select the production rule that encodes the passive
structure. The grammatical mistake is then detected immedi-
ately thereafter (as in “the robber is chasen (...)”), thus gen-
erating an negative feedback that decreases the utility of the
passive form. In this condition, therefore, the effect of gram-
maticality is identical to what was predicted by the previous
model.

In the case of ungrammatical active sentences, however,
the first verb form is also the first word for which a nega-
tive feedback signal can be generated (as in “the robber chase
(...)”). In this case, the negative feedback is generated at the
same time as the active sentence structure is selected, and,
thus, does not affect the utility of the corresponding produc-
tion. When the model successfully completes the sentence
comprehension goal, a positive feedback signal is generated
that propagates back to active form, thus increases its utility
even if the sentence was ungrammatical.

This dynamic is further complicated by the fact that, to
be selected in the face of a grammatically incorrect verb, a
mechanisms of procedural partial matching had to be en-
abled. With this mechanism, productions are allowed to be
selected even if their requirements are not perfectly satisfied.
The price to pay for this imperfect selection is a temporary
reduction in the associated utility. That is, instead of using a
production’s “true” utility Ut(p), Eq. 1 uses the the reduced
term U∗

t (p):

U∗
t (p) =Ut(p)−MP(p) (2)

where MP(p) is the mismatch penalty, a fixed cost asso-
ciated to applying a production rule to a condition in which
not all the requirements are verified. This reduction reflects
an intuitive greater uncertainty in the predicted future rewards
for cases (such as ungrammatical sentences) in which produc-
tions are applied outside of their ideal conditions.



In turn, this reduced expectation affects the RL-based ad-
justments of utility. This is because these adjustments, ac-
cording to the ACT-R theory and Eq. 1), reflect the mag-
nitude of the reward prediction error δt , which is the differ-
ence between effective feedback signal and expected utility:
δt = α× (Rt −Ut(p)). It is easy to see that, for ungrammat-
ical sentences, U∗

t <Ut (because of the penalty match in Eq.
2) and, therefore, δ∗t > δt : the as the utility U gets smaller, the
adjustment δt gets larger, resulting in even greater benefit for
the active form when it is selected while successfully parsing
an ungrammmatical sentence.

To test our theory, we simulated the behavior of this model
under different parameters. We found that the model consis-
tently yields results consistent with our data. Fig. 6 depicts
prototypical results (using R = 1.0, α = 0.2, and MP = 0.2).
Specifically, while the effect of grammaticality on the SP of
passive sentences remains unchanged, the effect of grammat-
icality for active sentences either disappears (yielding equal
probabilities of using the active form after a grammatical and
an ungrammatical sentence) or results in higher rates of active
sentences following ungrammatical primes.

Figure 6: Simulation results from the two Reinforcement
Learning models of syntactic priming. Left: Predictions of
the simple, naı̈ve models. Right: prediction of the Sequential
model. The sequential model correctly predicts the general
pattern of the experimental findings in Fig. 4.

Discussion
As demonstrated in many syntactic priming studies, people
tend to re-use the same syntactic structures they are primed
with. Consistent with this body of literature, our experiment
shows a overall syntactic priming effect for active and passive
structures, regardless of syntactic correctness and semantic
correctness. This implies that the tendency of reproducing
primed syntactic structures persists even if the linguistic in-
formation is noisy and erroneous.

In addition, our experimental results showed that syntactic
priming is modulated by the grammaticality of the priming
sentence. This result poses difficulty for purely declarative
accounts (Reitter et al.,2011), which ascribe priming effects
to the frequency and recency of syntactic structure retrieval.
Furthermore, we found that this effect was specific to gram-
matical errors, and not to semantic errors (i.e., incorrectly
labelled figures), thus restricting the effect to syntactic pro-
cesses and excluding a general effect of surprise or attention

to errors.
In general, these results support the idea that the prim-

ing effect of syntactic structures is dependent on procedural,
rather than declarative memory, thus suggesting that syntactic
structures are represented procedurally (Ullman,2004).

However, contrary to our expectations, our results show
that participants actually always produce more active sen-
tences following an ungrammatical sentence, regardless of
the syntactic voice of the prime. This interesting pattern is
at odds with both the declarative memory accounts (Hypoth-
esis 1), the Activation Spreading account (Hypothesis 2), and
a naı̈ve procedural memory account (Hypothesis 3).

We found that this effect could be accounted for if our orig-
inal naı̈ve procedural model is expanded to included sequen-
tial parsing. Under these conditions, the order in which syn-
tactic forms are selected and grammatical feedback signals
are delivered becomes important. In particular, in ungram-
matical active sentences, the negative feedback signal is de-
livered before the active form is selected, and the adjustment
to the expected rewards of active structures is greater, thus
reproducing the effects we found in our data.

Although successful, our second model is limited by the
fact of having being designed post-hoc. To test its validity, the
same experiment should be replicated using different syntac-
tic structures, so that new predictions can be made and tested.
Even within these limitations, however, the models describe
herein have two important implications. First, they highlight
the role of basic reinforcement learning mechanisms in learn-
ing, whose contribution might shed light on the basic com-
putations underlying syntactic parsing as well as the contri-
butions of subcortical structures to language (Hernandez et
al.,2019). Second, our results highlight the importance of de-
tailed computational models to explain psycholinguistic ef-
fects.
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