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Automatic generation of user-models based on user-task
interactions is the holly grail of Cognitive Modeling and
Human-Computer Interaction fields. Such automatic model
generation would be of great use for behavioral predictions,
better understanding of cognition, and better understanding
of the task-environment. Mapping which environment fea-
tures cause which actions seems like a classification prob-
lem, perfectly suited for machine-learning techniques like
Deep Learning (DL). There are, however, some drawbacks
in current-form Deep Learning approaches that make it less
than ideal for automatic model generations based on limited
user-task interactions. In this paper we bring examples of
DL-like symbolic cognitive framework approaches that have
the potential to overcome such drawbacks.

Deep Learning
Deep Learning is a multi-layer neural network approach
that has received much recent adoration for unprecedented
success in input and situation recognition and classification
(Rusk, 2015). Unfortunately, DL suffers from a few draw-
backs that limit its applicability across domains.

First, DL does not create an observable model. That is,
what deep networks learn cannot be investigated beyond a
general input-output mapping. DL could still be useful in
the domain of user-modeling for predicting user actions, but
not for understanding the cognitive state responsible for that
state-action mapping. This problem falls under the domain
of explainable AI (XAI), and bares additional significance
for accepting/trusting any recommendations derived via DL
methods.

Second, DL is susceptible to catastrophic interference –
where new training examples can break a previously stable
classifier. This issue arises specifically in dynamic domains,
where there is no immutable training set, and the classifier
needs to be constantly updated.

Finally, DL is more suitable to making predictions from
billions of examples than from a few dozens or even hundreds
of observations. This is the greatest limitation of the deep
learning approach, making it unsuitable for small-data do-
mains. This makes DL especially difficult to apply for gener-
ating predictions from experts in narrow domains, where little
data can be obtained from subject-matter experts (e.g. cyber-
security). Additionally, this makes it difficult to employ DL
for learning from individual users, since single-user behavior
usually would not generate enough data for DL classifiers.

However, the multi-layer hierarchical approach to classi-
fication is not exclusive to the big-data AI domains. Many
symbolic cognitive frameworks are based on hierarchical
memory that is very similar to subsymbolic deep neural net-
work approaches, without the aforementioned limitations.

Symbolic Deep Learning
Symbolic Deep Learning (SDL) is promising in that this
method is capable of building classifiers from a small number
of examples, rather than the millions required for more tradi-
tional ML/DL methods (d’Avila Garcez, Dutra, & Alonso,
2018; Dutra, Garcez, & D’Avila Garcez, 2017; Zhang & Sor-
nette, 2017). In this way, SDL learning efficiency is much
closer to that of humans than that of DL. Moreover, SDL
memory is incremental (i.e., does not require a pre-specified
size of the network), and is thus robust against catastrophic
interference. Finally, symbolic memory lends itself to human
interpretation, thus addressing the issues relating to XAI. Es-
sentially, SDL addresses all of the traditional DL limitations,
and is a promising avenue for automatic model generation.

Symbolic hierarchical representations have a long history
in Psychological literature. Some of these were integrated as
models of memory without action-selection (e.g. Feigenbaum
& Simon, 1984; Gobet & Lane, 2005). Such purely declar-
ative models are more useful for predicting recognition than
state-action mapping.

Integrated cognitive architectures that include both state
recognition and action selection often include hierarchical
memory systems, as well. For example, declarative memory
chunks in ACT-R are symbolic memory elements that are, in
fact, sets of links to lower-level chunks (Anderson, 1993; An-
derson & Lebiere, 1998). The ACT-R theory is incomplete
in its description of how chunks are created (beyond those
created upon goal-completion). An integration of cognitive
architectures like ACT-R with learning/memory model like
EPAM/CHREST may ultimately be the solution to automatic
model generation.

The most promising models of hierarchical learn-
ing/memory systems for the purposes of SDL system devel-
opment and automatic model generation may be found in cat-
egorization research domain. Models in the categorization
literature were specifically developed with the purposes of
mapping multi-feature inputs onto participant decisions (e.g.
Gluck & Bower, 1988; Nosofsky, Gluck, Palmeri, McKinley,
& Glauthier, 1994).

The greatest problem facing such hierarchical symbolic
memory systems seem to be those of computational limi-



tations. For example, the configural-cue model of memory
(Gluck & Bower, 1988) creates a configural node (i.e. chunk)
for every unique set of potential inputs, thus creating a maxi-
mum of (k + 1)n − 1 memory chunks, where n is the number
of input dimensions and k is the number of possible input val-
ues along each input dimension1. Although this exponential
memory growth is concerning for large-input domains (e.g.
image recognition), it should not cause much issue in the do-
main of automatic model generation for most non-graphical
tasks.

For example, let us assume a specific user interface such
as an Intrusion-Detection System (IDS). When cyber-security
professionals employ such a system, each of their observa-
tions constitutes a network alert record, and each observa-
tion is followed by a decision whether to elevate the alert, or
not to (this task-environment is fairly representative of much
non-graphical software UI across domains). Such a record
will comprise 5-10 fields, consisting of a time-stamp and a
few other mostly nominal values such as a port-number, op-
erating system, alert-type, etc. There are only a few port-
ranges that are ever observed, only a few types of alerts, etc.
Assuming five input fields with ≈10 potential values in each
field, the configural-cue memory system would grow to ≈160
thousand nodes. Of course there will less than 10 potential
values for some fields and more than 10 potential values for
others, but it is reasonable to presume that even a low-end
PC can handle this load, much less a modern server using
GPU acceleration. Even with ten input fields (a maximum
of ≈26 billion nodes) we can expect computational power to
no-longer be the limitation that it was decades ago when this
model was first proposed.

Perhaps more important than the raw computational power
available today, there is efficiency to be gained in SDL by cre-
ating memory chunks only when they prove necessary. For
example, Veksler, Gluck, Myers, Harris, and Mielke (2014)
propose to a conservative-rational incremental memory sys-
tem that reduces memory size, especially in noisy environ-
ments. Such memory reduction is exponential, improving ef-
ficiency by several factors of magnitude, and greatly reducing
the concern over computational limitations for SDL.

Summary
Both, symbolic and subsymbolic deep learning methods date
back a half century, and both were shelved for decades due to
a lack of computational resources needed to run these algo-
rithms. The modern era of parallel processing and GPU com-
puting, along with some algorithmic efficiency has revived
Deep Learning as a field. The same technological advances,
including SDL-specific algorithmic efficiency improvements
are ripe to revive the SDL field, as well.

SDL promises to overcome many of the limitations of
subsymbolic DL, enabling applicability in small-data do-
mains, incremental memory processes that are robust to catas-
trophic interference, and observability and explainability of
the learned state-action mapping (XAI). Given this potential,
SDL seems like the right technique for automatically gener-
ating models of user behavior, especially for modeling expert
or individual behavior.
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1Given n features (e.g. large, square, white), we can cre-
ate a chunk for every combination of feature presence and ab-
sence ({large}, {square}, {white}, {large, square}, {large,white},
{square,white}, and {large, square,white}). If we represent feature
presence as a 1 and feature absence as a 0, we can represent each
chunk as a binary number, and the total number of possible chunks is
the total number of possible binary numbers, minus the blank chunk,
which is 2n−1. When each feature dimension can have two potential
values, the total number of possible chunks is 3n − 1. With k possi-
ble values on n feature dimensions, we can have at most (k + 1)n − 1
possible chunks to represent all potential feature combinations.


