Reinforcement Learning for Production-based Cognitive Models

Adrian Brasoveanu (abrsvn @gmail.com)
Department of Linguistics, 1156 High Street
Santa Cruz, CA 95064, USA

Jakub Dotlacil (j.dotlacil @ gmail.com)
Utrecht University
Utrecht, The Netherlands

Abstract

We introduce a framework in which we can start exploring in
a computationally explicit way how complex, mechanistically
specified, and production-based cognitive models of linguis-
tic skills, e.g., ACT-R based parsers, can be acquired. Cogni-
tive models for linguistic skills pose this learnability problem
much more starkly than models for other ‘high-level’ cogni-
tive processes, as they call for richly structured representations
and complex rules that require a significant amount of hand-
coding. In this paper, we focus on how Reinforcement Learn-
ing (RL) methods can be used as a way to solve the production
selection problem in ACT-R. Production rules are treated as
the actions of an RL agent, and the ACT-R model/mind as the
environment in the RL sense. We focus on a basic learning
algorithm (tabular Q-learning) and a very simple task, namely
lexical decision (LD), framed as a sequential decision prob-
lem, with the goal of learning when a specific rule should be
fired. Learning is faster and less noisy for shorter LD tasks
(fewer stimuli), but the Q-learning agent manages to learn
longer tasks fairly well. Realistically long LD tasks and more
complex models, e.g., parsers, are left for future research.

Keywords: ACT-R, Reinforcement Learning, production-
based models, linguistic skills, lexical decision

Learnability of production-based models

We introduce a framework in which we can start exploring
in a computationally explicit way how complex, mechanisti-
cally specified cognitive models of linguistic skills, e.g., the
parsers in Engelmann (2016); Hale (2011); Lewis and Va-
sishth (2005), can be acquired. Linguistic cognitive model
learnability is an understudied issue, primarily because com-
putationally explicit cognitive models are only starting to be
more widely used in psycholinguistics. Cognitive models
for linguistic skills pose this learnability problem much more
starkly than models for other ‘high-level’ cognitive processes,
since cognitive models that use theoretically-grounded lin-
guistic representations and processes call for richly structured
representations and complex rules that require a significant
amount of hand-coding.

The learnability problem for production-rule based models
can be divided into two parts:

i. rule acquisition — forming complex rules out of simpler
ones, and

ii. rule ordering — deciding which rule to fire when.

ACT-R’s (Anderson & Lebiere, 1998) partial answers to
these problems are production compilation for (i), and rule-
utility estimation for (ii). Apart from Taatgen and Anderson

(2002), which investigates the role of production compilation
in morphology acquisition, neither solution has been system-
atically applied to complex models for linguistic skills.

We focus here on the easier problem (ii). Our main contri-
bution is to show how advances in the machine learning sub-
field of Reinforcement Learning (RL, Sutton & Barto, 2018)
can be leveraged to solve it. RL and ACT-R have very close
connections (Fu & Anderson, 2006), but they have remained
largely unexplored.

Learning goal-conditioned rules: An example

The framework and the range of issues that emerge when we
try to systematically integrate ACT-R and RL are best show-
cased with a simple example. We choose a basic learning
algorithm, specifically, a tabular Q-learning agent, which is
a model-free off-policy learning algorithm (Watkins, 1989;
Watkins & Dayan, 1992). Also, we focus on a very simple
task, namely lexical decision (LD). In an LD task, partici-
pants see a string of letters on a screen. If the participants
think the string of letters is a word, they press one key (J in
our setup); if they think the string is not a word, they press a
different key (F in our setup). After pressing the key, the next
stimulus is presented.

We investigate the extent to which the Q-learning agent can
be used to learn goal-conditioned rules in an ACT-R based
cognitive model of LD tasks. The main point of proposing
and examining an ACT-R model of LD tasks is to construct
a simple example of a production-rule based model that en-
ables us to study learnability issues, and that can be scaled up
in future work to more complex and cognitively realistic syn-
tactic and semantic parsing models. In particular, the model
provides the basic scaffolding of production rules needed for
LD tasks, which is all that we need for our purposes. Flesh-
ing the model out to capture major experimental results about
LD, or comparing it to previously proposed cognitive models
of LD is not our focus here.

LD tasks can be modeled in ACT-R with a small number
of rules (see Brasoveanu and Dotlacil 2019 and Chapter 7 in
Brasoveanu and Dotlac¢il 2020 for recent attempts), so they
are a good starting example. We model three LD tasks of
increasing length, hence difficulty:

i. 1 stimulus: the word elephant,

ii. 2 stimuli: the word elephant and a non-word, and

iii. 4 stimuli: the word elephant, a non-word, the word dog,
and another non-word.

The model components are split between declarative mem-
ory, which stores the lexical knowledge of an English speaker,
and procedural memory, which stores rules that enable the
model to carry out the LD task. The rules are conditional-
ized actions: they fire/execute actions when their conditions
are satisfied by the cognitive state of the ACT-R mind (the
buffers). We assume 4 rules, provided in standard ACT-R
format in (1)-(4) below (see Chapter 2 in Brasoveanu and
Dotlacil 2020, for example, for more discussion of the for-
mat). These rules were originally hand-coded to fire serially
by conditioning all the actions on specific goal states. The
goal conditions are stricken out below because we remove
them and let the Q-learning agent learn them.

(1) Rule 1: Retrieving

visual> | VALUE: =val
VALUE: ~FINISHED
E
goal> | STATE: retrieval_done |
+retrieval > | ISA: word
FORM: =val

2) Rule 2: Lexeme Retrieved

retrieval > | BUFFER: full
STATE: free
-
goal> | STATE: retrieving |
+manual> | CMD: press-key
KEY: J

3) Rule 3: No Lexeme Found

retrieval> | BUFFER: empty
STATE: error

—

goal> | STATE: retrieving |

+manual> | CMD: press-key
KEY: F

4) Rule 4: Finished

visual> | VALUE: FINISHED |

-

goal> | STATE: done |

With fully specified, hand-coded rules, the LD task un-
folds as follows. Assume the initial goal STATE of the ACT-R
model is retrieving, and the word elephant appears on the

virtual screen of the model, which is automatically stored in
the VALUE slot of the visual buffer.

At this initial stage, the preconditions of Rule 1 are sat-
isfied, so the rule fires. As a consequence, we attempt
to retrieve a word with the form elephant from declarative
memory, and the goal STATE is updated to retrieval_done.
When the word is successfully retrieved, Rule 2 fires and the
J key is pressed. At that point:

i. in the 1-stimulus task, the text FINISHED is displayed
on the screen, then Rule 4 fires and ends the task;

ii. in the 2-stimuli task, the non-word is displayed, then
Rule 1 fires again; the retrieval attempt fails since we
cannot retrieve a non-word from declarative memory, so
Rule 3 fires and the F key is pressed; at that point, the
text FINISHED is displayed on the screen, then Rule 4
fires and ends the task;

iii. in the 4-stimuli task, the first non-word is displayed,
Rule 1 fires again, then, just as in the 2-stimuli task, Rule
3 fires and the F key is pressed, after which the word dog
is displayed, Rule 1 fires for the third time followed by
Rule 2, which means that the J key is pressed and the
second non-word is displayed; now, Rule 1 fires for the
final time, followed by Rule 3, which triggers the F key
to be pressed; at this point, the 4-stimuli task is over, so
the text FINISHED is displayed on the screen, then Rule
4 fires and ends the task.

Thus, assuming fully specified, hand-coded rules, the se-
quences of rule firings for the three LD tasks are as follows:

i. 1-stimulus task: Rules 1 -2 -4
ii. 2-stimuli task: Rules1-2-1-3-4
iii. 4-stimuli task: Rules1-2-1-3-1-2-1-3-4

Instead of hand-coding the goal-state preconditions, we
only specify the actions (and preconditions associated with
buffers other than the goal buffer): that’s the reason for strik-
ing out the goal specifications in (1)-(4). We then let the Q-
learning agent learn to successfully carry out the LD tasks.
We give the agent a reward of 1 if it reaches the final goal-
state done. For any intermediate rule firing, we give it a small
negative reward of —0.15 to encourage it to finish the task as
soon as possible. However, the agent does not get the small
penalty if it chooses to wait and fire no rule: this is the opti-
mal course of action when waiting for retrieval requests from
declarative memory to complete, for example.

The agent learns by trial and error to successfully carry
out the LD tasks: it learns how to properly order the rules
and complete the LD tasks as efficiently as possible. This
is no small feat given that the actual number of steps, i.e.,
decision points, when the agents needs to select an action, is
larger than the high-level sequences of rule firings discussed
above. For example, for a 1-stimulus task, there are actually
12 steps where the agent needs to decide whether to wait or
to fire a specific rule (when the agent does not complete the

,,,,,,,,,,,,,

Environment

Figure 1: The agent-environment interaction in an MDP

task perfectly, it might take much more than 12 steps). The
2-stimuli task requires 18 such steps (if the task is completed
perfectly), and the 4-stimuli task requires 34 steps (again, if
the task is completed perfectly). The reason for this is that
our LD simulations involve the visual and motor modules (to
read strings of characters and press keys) in addition to the
declarative memory module. Visual and motor actions, just as
retrievals from declarative memory, take time, and the agent
needs to make decisions while waiting for them to complete.

The higher the number of steps, i.e., the higher number of
decision points for the agent, the harder the task is to learn.
As the next sections show, learning is faster and less noisy for
shorter tasks (fewer stimuli), but the Q-learning agent man-
ages to learn even the most complex 4-stimuli task fairly well.

Production-rule ordering as an RL problem
Markov decision processes

Markov Decision Processes (MDPs) are the deterministic or
stochastic models of decision-making sequences that form the
basis of RL approaches to learning. In an MDP, an agent
interacts with its environment and needs to make decisions
at discrete time steps t = 1,2,...,n. Defining what counts
as the agent and what counts as its environment is part of
the modeling process: the agent could be a whole cognitive
agent (animal, human or robot) acting in the world or in an
experimental environment, or it could be a component of a
cognitive agent interacting with an ‘environment’ consisting
of other cognitive components.

At every time step ¢, all the information from the past that
is relevant for the current action selection is captured in the
current state of the process s;. This is the Markov property:
the future is independent of the past given the current state.
The environment passes to the agent the state s; and, at the
same time, a reward signal r;. The agent observes the current
state s; and reward r;, and takes an action a,, which is passed
from the agent to the environment. Then, the cycle continues,
as shown in Figure 1. At time step ¢ + 1, the environment
responds to the agent’s action with a new state ;4| and a new
reward signal 7,1 1. Based on these, the agent selects a new
action a4 etc.

The definitions of ‘state’ and ‘action’ depend on the prob-
lem, and are also part of the modeling process. The agent’s
policy is a complete specification of what action to take at any
time step. Given the Markovian nature of the MPD, the policy
7 is effectively a mapping from the state space S to the action
space A, T : S — A. A deterministic policy is a mapping from

any given state s, to an action a, = m(s;), while a stochastic
policy is a mapping from any given state s; to a probability
distribution over actions a; ~ 7(s;).

The agent’s goal is to maximize some form of cumulative
reward — e.g., total reward, average reward, future-discounted
sum of rewards — over an episode, which is a complete, usu-
ally multi-step interaction between the agent and its environ-
ment. In our case, an episode would be a full simulation of
an LD task (be it a 1-stimulus or a 2/4-stimuli task).

The agent learns (solves/optimizes the MDP) by updating
its policy T to maximize the per-episode cumulative reward.

The standard cumulative reward for an episodic task is the
discounted return G, which is the sum of the current reward
and the discounted future rewards until the final step n of
the episode. In finite/episodic tasks, future rewards are dis-
counted because we assume the agent has a preference for
more immediate rewards rather than rewards in the far fu-
ture. The discount factor ¥ is a real number between 0 and 1
that determines the present value of future rewards. The dis-
counted return at a time step t < n, where # is the final step in
the episode, is defined as:

(®)] Discounted return at time 7 (yis the discount factor):
Gy =rip1 +Yrs2+Vras -+

The agent selects actions with the goal of maximizing the ex-
pected discounted return.

We define the (state-)action value function Qx(s,a) to be
the expected (discounted) return when starting in state s, per-
forming action a, and then following the policy 7 until the end
of the episode. With QO in hand, we can solve the optimiza-
tion problem framed by an MDP: if we know this function,
we can always select an optimal action in any state (optimal
actions are actions with maximal expected return).

Q-learning, discussed in the next subsection, estimates O
by directly sampling experience from the environment. This
is in contrast to Dynamic Programming methods, for exam-
ple, which compute optimal policies under the (unrealistic)
assumption that we have a perfect model of the environment.

Q-learning

The agent’s goal is to maximize its return. One way of doing
this is to bypass the policy and directly estimate the value
of all state-action pairs, i.e., estimate the Q function, and
improve this estimate based on the interactions between the
agent and its environment. With a good estimate of the Q
function in hand, we can devise an optimal policy by select-
ing a maximum-value action in each state.

Tabular Q-learning is an algorithm that enables us to esti-
mate the Q function, and use this estimate as the basis for an
optimal policy. The Q function S x A — R is represented as
a look-up table that stores the estimated values of all possible
state-action pairs. Before learning begins, the Q table is ini-
tialized to an arbitrary fixed value (0). The agent then updates
the Q table incrementally at each time step ¢: the value of the
pair (s;,a;), which consists of the state of the environment s;

relative to which the agent took the action a,, is updated based
on the reward signal r; 1 and the new state s, that the agent
receives from the environment after taking action a;.

Q-learning is a form of temporal difference (TD) learning,
as the update in (6) shows. The Q" value estimate for the
state-action pair (s;,a,) is based on the Q% value, updated
by some proportion o of the TD error. The parameter o is the
learning rate, 0 < a0 < 1. This update o - TD error is provided
on the second line of (6).

(6) QO-learning update:
Q" (s1,ar) QOM(Snat) +

TD (temporal difference) error

ld ld
o- (”t+1 + Y'%laXQo (st+1;at+1) - Q° (st,a,))
(+1

next-state value estimate

TD target (updated value)

The TD error is the difference between the TD target — which
is an updated estimate of the value of the (s;,a,) pair — and
the Q?/ value estimate. The TD target consists of:

* the reward r,1| the agent receives after action a;, which is
part of the new data the agent gets back from the environ-
ment after action a;, plus

* the estimate of the value of the next state s,. 1, where the
next state s,y is the other part of the new data the agent
gets back from the environment after action a;.

The Q-learning estimate for the value of the next state s,
is discounted by the discount factor v, since this state is in the
future relative to the state-action pair (s;,a,) we’re currently
updating. The Q-learning value estimate for s, is aggres-
sively confident/optimistic:' the agent looks at all the possi-
ble actions a,| that can be taken in state s, and confidently
assumes that the action a, ;| with the highest 0°/-value pro-
vides an accurate estimate of the s, value.

Q-learning for production-rule ordering

Returning to our ACT-R model of LD tasks, the agent (in the
RL sense) is a Q-value table that assigns values to all possible
state-action pairs, and that guides the rule selection process at
every cognitive step. The environment is the cognitive state of
the ACT-R model/mind, and could conceivably consist of:

i. all the modules — procedural memory, declarative mem-
ory and visual and motor modules, together with

ii. their associated buffers — goal, retrieval, visual-what,
visual-where and the manual buffer.

This, however, would lead to a very large state space S,
which in turn would lead to a large Q-value table. Function-
approximation approaches — e.g., using neural networks —
would mitigate this problem, but we will continue using a
tabular approach here and take a state s to only consist of:

'In contrast to the Expected Sarsa estimate, for example (van
Seijen, van Hasselt, Whiteson, & Wiering, 2009).

i. the current goal buffer,
ii. the current retrieval buffer,

iii. the value in the visual-what buffer, if any (otherwise,
we explicitly mark the visual-what buffer as having no
value), and finally,

iv. the state of the manual buffer (busy or free).
Four example states are provided below:

- {goal: {state: retrieving}, manual: free,
retrieval: {}, visual_value: NO_VALUE}

- {goal: {state: retrieval_done}, manual: free,
retrieval: {}, visual_value: elephant}

- {goal: {state: retrieval_done}, manual: free,
retrieval: {form: elephant},
visual_value: elephant}

- {goal: {state: done}, manual: busy,
retrieval: {}, visual_value: NO_VALUE}

The action space consists of the 4 rules in (1)-
(4) above, namely retrieving, lexeme retrieved,
no lexeme foundand finished, together with a special ac-
tion None that the agent selects when it wants to not fire any
rule because it prefers to wait for a new cognitive state.

The full details of the reward structure are as follows:

 the agent receives a positive reward of 1 at the end of
an episode (when the LD task is completed), specifically,
when the goal STATE is done;

* the agent receives a negative reward of —0.15 for every rule
it selects (other than None);

* there is no penalty for waiting and selecting no rule, i.e.,
for selecting the special action None;

* at every step, the agent receives a negative reward equal to
the amount of time that has elapsed between the immedi-
ately preceding step and the current step (multiplied by —1
to make it negative).

This reward structure is designed to encourage the agent to
finish the task as soon as possible, and in the process select
the smallest number of rules. The negative temporal reward in
particular discourages the agent from just repeatedly selecting
the special action None. This would end up timing out the LD
task in a small number of steps, and it would fast-forward the
agent to the maximum waiting time the ACT-R environment
allows for, which we set to 2 seconds per word for LD tasks.

Thus, we work with two time ‘counters’ here. On one
hand, we have the continuous cognitive-process time that the
ACT-R model/mind keeps track of, and which models the
reaction time of human participants in experimental tasks.
On the other hand, we have the discrete RL time that is the
counter for agent-environment interactions: the discrete time
steps t = 1,2,...,n in our MDP. From the perspective of the
discrete RL/MDP time, the continuous ACT-R time is a fea-
ture of the environment, reflected in the reward signal that the
(Q-learning) agent gets when it interacts with, i.e., samples
experience from, the environment.

Simulations and results

We assume the usual ACT-R defaults, e.g., rule firing time
is set to 50 ms. The learning rate o is set to 1073, and ¥ to
0.95. We use an e-greedy policy for all simulations, with €
multiplicatively annealed from a starting value of 1 to a mini-
mum value of 0.01. Specifically, at every RL step (after every
action/rule selection), if € > 0.01, its value is updated as fol-
lows: € < ¢&-(1—1077).

One-stimulus task

We simulate 15,000 episodes, i.e., 15,000 LD tasks consisting
of 1 stimulus only (the word ‘elephant’), from which the Q-
learning agent learns. The plot in Figure 2 shows that, after
about 5,000 episodes, the task is completed in ~ 12 steps,
which is the length of the task when the agent completes it
perfectly. For some episodes, the number of steps is smaller
than 12. In these cases, the agent times out the task, e.g., by
selecting the None action several times, and receives steeply
negative temporal rewards leading to very low returns.

A close examination of the agent’s final Q-value ta-
ble, which stores the agent’s rule-firing preferences for any
given goal state, indicates that the agent has learned goal-
conditioned rules perfectly. We only look at states for which
at least one action/rule has a non-0 value (recall that all Q-
values are initialized to 0). For each such state, we identify
the action/rule with the highest value. There are 8 states with
at least one non-0 value action. Let’s examine them.

There are 3 states in which the agent fires no rule, that is,
the maximum-value action is None:

- {goal: {state: retrieving}, manual: free,
retrieval: {}, visual_value: NO_VALUE}
- {goal: {state: retrieving}, manual: busy,

retrieval: {}, visual_value: NO_VALUE}
- {goal: {state: retrieval_done}, manual: free,
retrieval: {}, visual_value: elephant}

We see that when the goal state is retrieving, the re-
trieval buffer is empty, and the visual buffer stores no value,
the agent does nothing (whether the manual buffer is busy
or free): it simply waits for some text to be automatically de-
tected and stored in the visual buffer. Similarly, when the goal
state is retrieval_done, the visual buffer stores the value
elephant, but the retrieval buffer is empty, the agent once
again does nothing: it waits for the retrieval process that was
just started to complete.

There are 3 states where the max-value action is finished:

- {goal: {state: retrieving}, manual: busy,
retrieval: {}, visual_value: FINISHED}
- {goal: {state: retrieval_done}, manual: free,

retrieval: {form: elephant},
visual_value: FINISHED}

- {goal: {state: retrieving}, manual: free,
retrieval: {}, visual_value: FINISHED}

o owa

=
(=] (%]
i i

un

Total number of steps in episode
()
[=]

0 2500 5000 7500 10000 12500 15000
Episodes

Figure 2: Steps per simulation to complete the 1-stimulus task

We see that whenever the value stored in the visual buffer is
FINISHED, the agent correctly chooses the finished action
irrespective of: (i) the goal state, (ii) the state of the manual
buffer, or (iii) the contents of the retrieval buffer.

This leaves us with the 2 state-action pairs below:

- {goal: {state: retrieving}, manual: free,
retrieval: {}, visual_value: elephant}
==> retrieving

- {goal: {state: retrieval_done}, manual: free,
retrieval: {form: elephant},
visual_value: elephant}
==> lexeme retrieved

We see that when the goal state is retrieving and
the visual value is elephant, the agent correctly chooses
the retrieving rule. Finally, when the goal state is
retrieval_done and the retrieval buffer contains the word
elephant (i.e., the retrieval process has been successful), the
agent correctly chooses the lexeme retrieved rule.

Thus, there is no need to hand-code goal states in the condi-
tions of a rule to deterministically guide the cognitive process
— at least for this simple 1-stimulus LD task. The Q-learning
agent learns by trial-and-error interaction with the environ-
ment when to fire which rule, and when to choose to wait and
not fire any rule. The agent learns all this from a minimal, but
fairly carefully designed, reward structure.

Two-stimuli task

We simulate 15,000 episodes, i.e., 15,000 LD tasks consist-
ing of 2 stimuli only (the word ‘elephant’ and the non-word
‘not_a_word’), from which the Q-learning agent learns. The
plot in Figure 3 shows that, after about 9,000 episodes, the
task is completed in ~ 18 steps, which is the length of this
task when the agent completes it perfectly.

A close examination of the agent’s final Q-value table indi-
cates that the agent has learned goal-conditioned rules almost
perfectly. Once again, we only look at states for which at least
one action has a non-0 value — a total of 13 states. For each
state, we identify the maximum-value action.

Total number of steps in episode

0 2500 5000 7500 10000 12500 15000

Episodes

Figure 3: Steps per simulation to complete the 2-stimuli task

There are 4 states where the agent does nothing (selects
the None action): while waiting for the word ‘elephant’ to be
retrieved, while waiting for a visual value to be automatically
detected and stored in the visual buffer (whether the manual
buffer is busy or free), and while waiting for the retrieval of
the text ‘not_a_word’ to fail.

There are 4 states where the agent correctly fires the
finished rule: the visual value is FINISHED in all of them.

There are 5 state-action pairs in which the action is one of
the other 3 rules. Out of these, 4 state-action pairs are exactly
what we would expect:

* when the goal state is retrieving, the retrieval buffer is
empty and the manual buffer is free, whether the visual
value is elephant or not_a_word, the agent correctly fires
the retrieving rule;

* when the goal state is retrieval_done and the re-
trieval process has completed successfully based on the
visual value elephant, the agent correctly fires the
lexeme retrieved rule;

* finally, when the goal state is retrieval_done and the
retrieval process has completed unsuccessfully based on
the visual value not_a_word, the agent correctly fires the
no lexeme found rule.

However, unlike in the 1-stimulus task, there is 1 state-
action pair that is not optimal, and is simply a reflection of
the trial-and-error learning process that takes longer is and
more error prone than for the simpler, 1-stimulus task. This
state-action pair is the following:

* the goal state is retrieval_done, the retrieval buffer
contains the word elephant, but the visual value is
not_a_word; in such a state, the agent fires the retrieving
rule, which is the maximum-value action.

Four-stimuli task

We simulate 25,000 episodes, i.e., 25,000 LD tasks consisting
of 4 stimuli (the word ‘elephant’, the non-word ‘not_a_word’,

100

20 4

Total number of steps in episode

o 5000 10000 15000 20000 25000
Episodes

Figure 4: Steps per simulation to complete the 4-stimuli task

the word ‘dog’ and the non-word ‘not_a_word_again’), from
which the Q-learning agent learns. We need more episodes
for this task because it is longer, hence more complex, than
the 1-stimulus or the 2-stimuli tasks. The plot in Figure 4
shows that it takes about 22,000 episodes for the task to be
reliably completed in less than 40 steps. The task takes 34
steps when the agent completes it perfectly.

A close examination of the agent’s final Q-value table indi-
cates that the agent has learned goal-conditioned rules fairly
well, but there still is a pretty large amount of noise associ-
ated with multiple goal states. Specifically, there are 24 states
total with at least one action with a non-0 value. When we
examine the maximum-value action for each of these states,
18 state-action pairs make sense and are as expected.

However, the remaining 6 state-action pairs do not make
much sense, similar to the final state-action pair we discussed
in the 2-stimuli task subsection. This noise is a reflection of
the trial-and-error learning process that becomes increasingly
difficult for tasks requiring large numbers of steps. With 4-
stimuli, we see that even after 25,000 episodes, the agent still
wastes time every now and then trying incorrect rules, or just
waiting (selecting the action None) for no good reason.

Conclusion and future directions

We argued that the learnability problem of production-based
cognitive models can be systematically formulated and com-
putationally addressed as a reinforcement learning problem.
But this is merely a first inroad into what promises to be a
very rich nexus of learnability questions.

For example, an immediate follow-up would be to explore
how RL algorithms perform on a variety of production-based
cognitive models, whether linguistic, e.g., syntactic or seman-
tic parsing, or non-linguistic. We have conducted pilot exper-
iments with simple parsing models and tasks, and they are
much more difficult than the LD tasks explored in this paper.

One reason is that the cardinalities of the state and ac-
tion/rule spaces are much larger than for LD tasks, which
makes tabular learning less effective and prompts us to
explore function-approximation approaches, e.g., neural-

network based approaches (Deep Reinforcement Learning,
see Mnih and al 2015 among many others).

The second reason is that parsing tasks are much longer
— many more RL/MDP time steps, i.e., action-selection de-
cision points — and standard RL methods are increasingly
ineffective in this kind of sparse-reward, long time horizon
tasks because the temporal credit assignment problem be-
comes very difficult. The difficulty is further increased when
function-approximation approaches are used — because of
vanishing-gradient issues among others. It would be worth
exploring function-approximation approaches in realistically
long LD tasks first (hundreds of LD stimuli, hence many steps
per episode), and only subsequently explore parsing tasks.

This leads us to a second cluster of learnability issues that
could be explored. There are other value-based tabular learn-
ing algorithms (Sarsa, Expected Sarsa), as well as non-tabular
approaches to reinforcement learning (both value and policy
based), e.g., linear or non-linear (neural network) function-
approximation approaches. We already indicated that ex-
ploring these algorithms will most probably be necessary for
more complex tasks like parsing, but it is worth exploring
their performance and comparing them to Q-learning on LD
decision tasks first (both on the tasks we used here, and on re-
alistically long tasks with hundreds of stimuli), so that we es-
tablish a broad set of baselines before moving on to other lin-
guistic and non-linguistic production-based cognitive models.

Similarly, we might want to investigate curriculum learn-
ing (see Elman 1993 for an early reference, and Rusu and al
2016 among many others for a more recent discussion) for
increasingly complex tasks. For example, we could design a
curriculum that starts with LD tasks with fewer stimuli and
scales up to realistically long LD tasks. Similarly, we could
start with parsing short sentences and scale up to sentences
with a variety of embedded clauses, or even multi-sentential
discourses, after which we could scale up to realistically long
self-paced reading or eye-tracking tasks with tens or hundreds
of such multi-clausal sentences or discourses.

Curriculum or transfer learning should also enable us to
address the fact that it is not cognitively realistic to require
such a high number of episodes/trial-and-error interactions
for learning. The human cognitive architecture enables us
to learn from much fewer interactions, and/or from explicit
instructions. For tabular Q-learning, for example, this would
mean that the agent starts with a pretrained Q-table.

Finally, a separate line of future work would go beyond
our current focus on the easier problem of rule ordering, and
investigate the extent to which Hierarchical RL methods (Sut-
ton, Precup, and Singh 1998 among others) could be brought
to bear on the harder problem of rule acquisition.

Acknowledgments

We are very grateful to two anonymous ICCM 2020 reviewers
for their detailed feedback on an earlier version of this paper,
and to the audience of the UCSC Linguistics Department S-
circle (May 2020) for their questions and comments about

this research project. We gratefully acknowledge the support
of the NVIDIA Corporation with the donation of two Titan V
GPUs used for this research, as well as the UCSC Office of
Research and The Humanities Institute for a matching grant
to purchase additional hardware.

References

Anderson, J. R., & Lebiere, C. (1998). The atomic com-
ponents of thought. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Brasoveanu, A., & Dotladil, J. (2019). Quantitative compari-
son for generative theories. In Proceedings of the 2018
berkeley linguistic society 44.

Brasoveanu, A., & Dotlacil, J. (2020). Computational
Cognitive Modeling and Linguistic Theory. Springer
(Open Access). doi: https://doi.org/10.1007/978-3-030
-31846-8

Elman, J. L. (1993). Learning and development in neural
networks: The importance of starting small. Cognition,
48, 71-99. doi: 10.1016/0010-0277(93)90058-4

Engelmann, F. (2016). Toward an integrated model of sen-
tence processing in reading. Unpublished doctoral dis-
sertation, University of Potsdam, Potsdam.

Fu, W.-T., & Anderson, J. R. (2006). From recurrent choice
to skill learning: A reinforcement-learning model.
Journal of Experimental Psychology: General, 135(2),
184-206. doi: 10.1037/0096-3445.135.2.184

Hale, J. (2011). What a rational parser would do. Cognitive
Science, 35, 399-443.

Lewis, R., & Vasishth, S. (2005). An activation-based
model of sentence processing as skilled memory re-
trieval. Cognitive Science, 29, 1-45.

Mnih, V., & al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540), 529-533.

Rusu, A. A., & al. (2016). Progressive neural networks.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:
An introduction. MIT press.

Sutton, R. S., Precup, D., & Singh, S. P. (1998). Intra-option
learning about temporally abstract actions. In ICML
1998 (pp. 556-564). Morgan Kaufmann.

Taatgen, N. A., & Anderson, J. R. (2002). Why do children
learn to say “broke”? a model of learning the past tense
without feedback. Cognition, 86(2), 123-155.

van Seijen, H., van Hasselt, H., Whiteson, S., & Wiering,
M. (2009). A theoretical and empirical analysis of
Expected Sarsa. In leee symposium on adaptive dp and
rl (p. 177-184).

Watkins, C. J. C. H. (1989). Learning from delayed re-
wards. Unpublished doctoral dissertation, King’s Col-
lege, Cambridge, UK. Retrieved from http://www.cs
.rhul.ac.uk/~chrisw/new_thesis.pdf

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning.
Machine Learning, 8(3), 279-292. Retrieved from
https://doi.org/10.1007/BF00992698 doi: 10
.1007/BF00992698

http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://doi.org/10.1007/BF00992698

	Learnability of production-based models
	Learning goal-conditioned rules: An example
	Production-rule ordering as an RL problem
	Markov decision processes
	Q-learning
	Q-learning for production-rule ordering

	Simulations and results
	One-stimulus task
	Two-stimuli task
	Four-stimuli task

	Conclusion and future directions
	Acknowledgments

