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Abstract 

Each day we are faced with a decision of maximizing our 
resources by using our current knowledge to learn new things. 
Should we go to the new restaurant that just opened around the 
corner or stick to an old, reliable favourite? This is known as 
the exploration-exploitation dilemma and it is at the heart of 
reinforcement learning. The present study looks at the 
exploitation half of this problem and aims to implement it in a 
biologically plausible recurrent associative memory model. In 
the framework of Artificial Neural Networks, exploitation is 
observed when the network can iterate through many learned 
responses and stabilize on the correct one to solve a given task. 
This is a process akin to being able to switch from a cyclic to 
a point attractor. More precisely, Bidirectional Associative 
Memory (BAM) is used to accomplish such tasks where the 
context dictates which attractor the network should converge 
to. For simple independent tasks, the BAM is sufficient. 
However, for overlapping tasks, the task becomes nonlinearly 
separable. Therefore, the BAM needs an extra unsupervised 
layer to extract unique features from the inputs. These features 
combined with input are then sent to BAM where it can learn 
the different attractors adequately. This network was able to 
stabilize on the correct responses of tasks that involved time 
series of varying lengths, overlap, and levels of correlation; the 
variability one would expect from the real world. 

Keywords: exploitation/exploration; recurrent associative 
memory; one-to-many associations. 

Introduction 
In order to increase their chances of survival, many 
organisms have evolved various complex mechanisms to 
solve problems, make decisions, and learn about the 
environment around them. These mechanisms come with 
several different trade-offs, where increasing proficiency in 
one area may result in a lack of ability in another area. One 
of these problems in cognition is the exploration-exploitation 
dilemma (Hills, Todd, Lazer, Redish, & Couzin, 2015). This 
is when an organism must choose whether it wants to employ 
something it has already learned (exploitation) or explore its 
environment to learn new things (exploration). For example, 
when a young child is first learning how to open different 
doors. They may start by trying the few ways they already 
know to open a door (exploitation), such as pulling and 

pushing. If these behaviours fail, however, they will have to 
start looking for new solutions (exploring). Understanding 
exactly how animals and humans switch between these two 
processes and how each of them works is crucial to 
understanding how we adapt, learn, behave, and survive 
(Hills et al., 2015). This trade-off is one of many phenomena 
affected by Reinforcement Learning (RL).  

Previous studies have proposed several methods to solving 
this problem from an “optimal solution” perspective. For 
example, Hwang, Chiou and Wu (2003) created an Artificial 
Neural Network (ANN; an evaluation predictor) that solves 
the exploration-exploitation problem that was able to both 
explore and exploit to find an optimal solution to their task 
(balancing a pendulum). They used the mean of a normal 
distribution to represent the exploitation function, which may 
be a bit too basic to capture the exploitation process. This 
study and many others focus too much on obtaining a desired 
state rather than the underlying process of how exploitation 
(and exploration) take place or attempt to find a biologically 
plausible solution (Cohen, McClure, & Yu, 2007; Tilahun, 
2019).  

Another promising study was conducted by Lew, Rey, and 
Zanutto (2013). It outlines a biologically plausible model of 
switching between exploration and exploitation depending on 
changes in the environment and rewards from the 
dopaminergic system. Their model is a computational 
framework of how exploration and exploitation are selected 
and relates this process back to the reward system in the 
human brain, focusing on the selection only. Many studies 
have a similar focus and are more about the overall model 
rather than how each process works (Gershman & Niv, 2015; 
Hallquist & Dombrovski, 2019).  

An important consideration overseen by these studies is the 
context in which the decision takes place. Empirical studies 
have shown how the environment is an important factor in 
predicting how an animal will behave and how it will exploit 
its resources (Naruse et al., 2018). Some studies have shown 
how the decisions humans and animals make influence their 
ecosystem and vice versa, from small-scale interactions 



among individual agents to large-scale adaptive systems, like 
population dynamics (Monk et al., 2018). The context in 
which an animal is found clearly plays a role on how it 
chooses to exploit and explore.   

The present study looks at the exploitation half of the 
dilemma using environmental context as a cue. For instance, 
an animal faces the exploration-exploitation dilemma while 
foraging for food (Hills et al., 2015). Is it more efficient to 
explore the area for new sources of food or stick to a learned 
set of locations where food has been found in the past?  

The most well-known example of exploitation has been in 
Q-Learning (Watkins & Dayan, 1992). In this 
implementation, the best outcome is simply the one that has 
the maximum possible reward; max(Q). This works best 
when the reinforcement is non-binary. However, in the 
situation of multiple possible outcomes, the agent should be 
able to test different possible behaviours until the correct one 
has been found. For example, if the animal chooses to exploit 
their already-known resources, they cycle through them until 
the problem is solved (they find food). Once it is solved, they 
will stop trying different behaviours and focus on the 
successful one.  

In ANNs, the problem can be framed as how the network 
can generate a different output (behaviour) when the input 
(context) remains the same? In ANNs, if a given input is sent 
to the network, it will always give the same associated output. 
However, if that output is not satisfying, the network must 
give a different output even though it is still the same input 
that is presented. One way to solve this problem is to use a 
cycle attractor. This process can be modeled by the network 
generating various different outputs from the same input to 
represent the different learned behaviours. For example, 
input 1 generates output 1, which generates output 2, all the 
way until output n. Output n, the final output, is then 
associated with the output 1, creating a loop of learned 
patterns. This would be like a squirrel having a series of berry 
bushes where it knows food can be found and going from 
bush to bush until it finds some. 

This can be easily implemented in a Bidirectional 
Associative Memory (BAM) as a multistep time series 
(Chartier & Boukadoum, 2006). However, a problem arises 
when the network must stabilize on a specific output i. 
Therefore, each of the patterns (output) must also be stored 
as point attractors in the network. This represents a one-to-
many situation where for the same output i the network must 
generate output i+1 (next pattern; cyclic attractor) or output i 
(same pattern; point attractor). See Fig. 1 for a diagram of 
cyclic and point attractors.  
 

 
 

Figure 1: Illustration of cyclic and point attractors. 

 
 

Figure 2: Flowchart illustrating the switching from a cyclic 
attractor to a fixed-point attractor using the environment. 
 
The solution may reside in the inclusion of context that can 

dictate which state the network should be in and therefore 
give distinctive features. From the feedback given by the 
environment, the network should be able to switch between a 
cyclic (repeating series of outputs) and a point attractor 
(single output). However, instead of using context from the 
time series itself (Elman, 1990), the context has to be 
extracted from the reading of the environment; a process 
proposed in (Jordan, 1997) and successfully implemented in 
BAM (Rolon-Mérette, Rolon-Mérette, & Chartier, 2019). By 
having a unique context as the initial input of the time series, 
it can also be used to distinguish multiple cyclic attractors 
(different time series).  

The BAM can be used to store various attractors including 
point, cyclic, and chaotic attractors (Chartier, Boukadoum, & 
Amiri, 2009), making it a well-suited candidate to perform 
exploitation. Fig. 2 shows an example of both cyclic 



attractors (a to c) and fixed-point attractors (d) in the model. 
When the BAM is giving the next output, it is recalling 
associations in a cycle. In this case, it recalls ‘A’ from ‘1’ and 
proceeds in order (‘B’, ‘C’, etc.). However, when it needs to 
stabilize, it switches to a fixed-point attractor. In this 
example, the environment gives ‘C’ associated with itself as 
a response, which is different from ‘C’ in the ‘1’ context, 
causing the BAM to switch from a cyclic attractor to a fixed-
point attractor. In order to focus exclusively on the 
exploitation phase, it is assumed that some level of 
exploration has already taken place. In other words, that 
series of behaviours have already been learned.   

Putting Fig. 2 in the context of the foraging example, ‘1’ 
could represent hunger, and the other patterns represent 
learned behaviours, such as searching for food in different 
locations; ‘A’, ‘B’, ‘C’, etc. When food is located, the 
environment lets the animal know to stop cycling through its 
learned behaviours (checking different locations) and make 
the decision to stay there. 

The remainder of this paper is divided into two separate 
sets of simulations. Simulation I introduces the problem of 
modeling exploitation and switching from iteration to 
stabilizing on a given response using the environmental 
context (one-to-many association). Simulation II solves more 
complex and diverse situations involving nonlinearly 
separable associations. An overall discussion is provided at 
the end.  

 

Simulation I- Independent Time Series 

Methods 
To model exploitation, time series of patterns were used to 
represent different possible output behaviours. Each series 
was preceded by a unique contextual input. The network task 
consisted of associating multiple time series of different 
lengths and various levels of overlap. Moreover, the level of 
correlation between patterns varies vastly to encapsulate the 
variability found in the real world. 
 
Stimuli Patterns of behaviours were represented by a series 
of letters and the context by a number. Each pattern was 
placed on a 7x7 grid where a black pixel had a value of +1 
and a white pixel a value of -1. Following the procedure in 
Rolon-Mérette et al. (2019) for each pattern of the time  
series, the associated context pattern was appended. These 
contexts allow the network to differentiate between different 
time series and the desired type of attractor (cyclic vs. point). 
The various time series are illustrated in Fig. 3, with grey 
boxes to highlight the repeated and overlapping patterns. 
Series 1 is a single time series of patterns associated with the 
context of number ‘1’ and each of the patterns are also 
associated with themselves. It represents a basic, independent 
time series with no overlap and is the least complex series. 
Series 2 increases the difficulty by having two independent 
time series of various lengths. Series 3 includes three  

 
 

Figure 3: Stimuli for Simulations I and II. 
 
independent time series of various lengths as well.  Series 4 
and 5 represent situations closer to reality, where the  
difficulty is further increased. In both examples, a given 
pattern is associated not only to two settings (the cyclic and 
the point attractor) but to four (series 4) or three (series 5) 
settings. Series 4 shows a setting where patterns can belong 
to various solutions (overlapping), while series 5 shows a 
series that is a subtype of the other. In both cases, the problem 
is no longer linearly solvable.    
 
Architecture The architecture for the modified BAM 
(Chartier et al., 2006) is made of two Hopfield-like neural 
networks interconnected in a head-to-tail fashion to create a  
bidirectional flow of information (see Fig. 4). The initial 
vector-states are represented by x[0] and y[0], the weight 
matrices by W and V, the dimensionality by m and n, and t 
represents the time (current iteration number). 
 

 
 

Figure 4: Architecture of the BAM. 



Output Function The transmission is composed of the 
activation function that is then fed through the output 
function. The activation is obtained the usual way: 
 

a[t]= Wx[t]                  (1a) 
 

b[t]= Vx[t]                   (1b) 
 
Once this linear activation is obtained it goes through the 
nonlinear output function defined as (2a) and (2b): 
 
∀i,…, n, yi[t+1]=f ൫ai[t]൯ 

                                = ቐ

1,                                if ai[t]>1
-1,                                if ai[t]<-1

(δ+1)ai[t]-δai[t]
3 ,        else        

 

 
 
   (2a) 

 
∀i,…, m, yi[t+1]=f ൫bi[t]൯ 

                                 = ቐ

1,                                if bi[t]>1
-1,                                if bi[t]<-1

(δ+1)bi[t]-δbi[t]
3 ,        else        

 

 
 
   (2b) 

 
where n and m are the number of units in each layer of the 
network, i is the index unit, δ is the transmission parameter, 
and a and b are the activations. The output is a cubic function 
with saturating limits at ±1. 
 
Learning Function The connection weights are modified 
following a Hebbian/anti-Hebbian rule (Bégin & Proulx, 
1996; Storkey & Valabregue, 1999) and can be represented 
as: 
                    W[k+1]=W[k]+η(y[0] − y[t])(x[0]+x[t])

T          (3a) 

 
              V[k+1]=V[k]+η(y[0] − y[t])(x[0]+x[t])

T 

 
         (3b) 

 
where W and V represent the two sets of weight connections, 
x[0] and y[0] the initial inputs, η the learning parameter, and k 
the current learning trial. The η is calculated using the 
following inequality function to guarantee that the learning 
will converge (Chartier et al., 2006): 
 

η <
1

2(1-2δ)Max[m,n]
,δ≠

1

2
 

(4) 

 
Parameters To ensure all associations are stable, delta (δ) 
was set to 0.2, number of iterations (t) to 1 and learning rate 
(η) was set to 0.008 (equation 4). The minimum Mean 
Squared Error (MSE) was 10-8 and the maximum amount of 
learning trials was set to 1000 (in case of non-convergence). 
The weights W and V were initialized at 0. 
 
Learning Procedure 
1. Selection of a series (Fig.3). 

2. Selection of an associated pair as the initial input for x[0] 
and y[0].   
3. Computation of the outputs x[1] and y[1] using equations 1 
and 2.  
4. Weights update (W and V) according to equation 3.  
5. This was repeated with each of the subsequent patterns 
until the MSE for all associations reached 10-8 or the number 
of trials reached 1000. 
 
Exploitation Procedure 
1. Selection of a “desired response” for the network to 
stabilize on for a given time series (“initial context”). This is 
the response stored in the environment for comparison.  
2. First pattern in the time series is used as the input for BAM 
(x[0]).  
3. Environment compares output (y[t]) with the “desired 
response” for each iteration. If it does not match, the network 
uses this pattern as the new input (x[t]=y[t]) and generates the 
next one (y[t+1]). If it matches (BAM has found the correct 
pattern), the environment sends only this pattern back to the 
BAM. This can be seen as the environment changing when 
the solution to a task is found (for example, when you are 
trying to open a door and it opens vs. remaining closed), 
providing enough feedback to stabilize on this correct 
response.   
4. The BAM recalls the pattern associated with itself and 
stabilizes on it instead of continuing to iterate through the 
series. 
 
Results 
The BAM was able to learn and recall the first three series. It 
was also able to stabilize its output on any desired pattern 
with perfect accuracy. For example, in Fig. 5 we see one trial 
in series 1, where ‘F’ was the correct response in time series 
‘1’. The initial input was ‘1’ and it was given to the BAM, 
which recalled ‘A’. This output was compared to the desired 
response in the environment, and since it was not a match, the 
output became the new input and was sent back to the BAM. 
This continued until the correct response ‘F’ was given, 
where the environment changed because the task had been 
solved and sent ‘F’ both as input and context, to the BAM.  
 

 
 

Figure 5: Results of example trials from Simulation I. 



The network was then able to give the same output, therefore 
causing it to stabilize on the correct response.  

However, when the BAM was faced with more complex 
tasks (overlaps or subtype), it could no longer learn the 
associations properly and stabilize on the desired response. 
For example, when encountering a nonlinear task as seen in 
series 4 and 5, the results are noisy, and the BAM often fails 
to learn all the time series properly. It also cannot stabilize on 
the correct response. This is due to the nature of the task that  
necessitates a nonlinear classification, a capacity lacking in a 
single layer BAM (Chartier & Boukadoum, 2006). Therefore,  
the next simulation solves this problem by adding an 
unsupervised layer to the BAM (Rolon-Mérette, Rolon-
Mérette, & Chartier, 2018). 
 

Simulation II- Overlapping Time Series 

Methods 
As indicated by the results from Simulation 1, a BAM alone 
using contexts is not sufficient to solve problems of higher 
complexity, meaning it cannot solve real-world problems. 
Previous works have shown that a Feature Extraction 
Bidirectional Associative Memory (FEBAM) can be used in 
combination with the BAM in order to solve nonlinearly 
separable tasks (Tremblay, Myers-Stewart, Morissette, & 
Chartier, 2013). Therefore, the architecture of the network 
has to be modified accordingly. The new flowchart is shown 
in Fig. 6. 

 
Stimuli All series from Fig. 3 were used with the addition of 
one additional complex series (Fig. 7). This new series 
includes a mix of all possible combinations of multiple, 
overlapping and subtype time series; representing the kind of 
variability found in nature. It encompasses all possible 
combinations and arrangements of stimuli. Fig. 8 illustrates 
these combinations, using a Venn diagram for clarity. 
 
 

 
 

Figure 6: Flowchart for Simulation II, showing unique 
representation from FEBAM being appended to stimuli. 

 
 

Figure 7: Added stimuli for Simulation II. 
 

 
 

Figure 8: Venn diagram illustrating which time series are 
independent, subtype, or overlap in series 6. 

 
Architecture The FEBAM is the unsupervised version of the 
BAM. The only difference between the two models is the 
absence of a set of external connections; the y[0] inputs (see 
Fig. 4). This means there is only one explicit connection, x[0], 
making the learning unsupervised. 

 
Output Function and Learning Function The transmission 
is obtained the same way as the BAM. Regarding the 
learning, because the y[0] connections are no longer available, 
they are obtained by iterating once through the network as 
illustrated in Fig. 9. The weights of the FEBAM are then 
updated exactly as the BAM (equations 3a, 3b). 
 
Parameters For both BAM and FEBAM, the transmission 
parameter (δ) was set to 0.2 to ensure the fixed points would 
be stable. The learning parameter (η) was set to 0.004. The  
maximum amount of learning trials was set to 1000, and the 
minimum required MSE was 10-8. The weights of the 
FEBAM were randomly initialized between -2 and 2 
(Tremblay et al., 2013). 
 
Learning Procedure 
1. Selection of a series (Fig. 2 and 6).  
2. Selection of an associated pair as the initial input for the 
FEBAM.  
3. The output of the FEBAM is then appended to the initial 
input and sent to the BAM (Fig. 6).  
4. The BAM outputs the next associated patterns.  
5. Weights update for both the FEBAM and BAM.  
6. This was repeated with each of the subsequent patterns 
until the MSE for all associations reached 10-8 or the number 
of trials reached 1000. 



W
w 

x[0] y[0] 

V 

W 

x[1] 

y[1] 

 
 

Figure 9: Output iterative process used for the FEBAM 
learning. 

 
Exploitation Procedure 
1. Selection of a “desired response” for the network to 
stabilize on for a given time series (“initial context”). 
This is the response stored in the environment for 
comparison.  
2. First pattern in the time series is an input for FEBAM.  
3. The output of the FEBAM is then appended to the initial 
pattern and sent to the BAM.  
4. Environment compares output of the BAM (y[t]) with 
“desired response” for each iteration t. If it does not match, 
the network uses this pattern as the new input (x[t]=y[t]) and 
generates the next one (y[t+1]). If it matches (BAM has 
correctly solved the task), the environment sends only this 
pattern back to the FEBAM (then to the BAM).   
5. The BAM recalls the pattern associated with itself and 
stabilizes instead of continuing to iterate through the series. 
 
Results 
As shown in Fig. 10, the FEBAM-BAM model was able to 
learn and perfectly recall both time series 4 and 5 with no 
problems, which the BAM alone was not able to do. It could 
also stabilize on any given response without issue. In the 
example shown for series 4 (Fig. 10), the desired response for 
that trial was ‘E’ in the ‘2’ time series. The first input for that  
time series, ‘2’, was given as the initial input and sent through  
 

 
 

Figure 10: Results of example trials from Simulation II. 

the FEBAM, where the unique signature for that pattern was 
generated and appended to it. This new stimulus was then  
entered as input for the BAM, which gave ‘C’ as an output. 
That output was compared to the desired response in the 
environment and was sent back to the FEBAM until the 
desired response, ‘E’ was given. This desired response ‘E’ 
was then sent, associated with itself, as the new input for 
FEBAM, causing the BAM to stabilize on the correct answer. 
Most importantly, the model was able to successfully 
stabilize on any given response in series 6, which contained 
all possible combinations of interaction and correlation 
between stimuli: subtype, independent time series, and  
overlap. This model was successfully able to iterate through 
all series and stabilize on a given response.  
 

Discussion and Conclusion 
To further our understanding of Reinforcement Learning and 
the exploration-exploitation trade-off, the exploitation phase 
was implemented using a BAM. Here it was assumed that a 
given set of patterns were already encoded for various 
contexts. The network’s job was then to iterate through a  
given series and stabilize on the desired response using 
feedback from the environment. Various levels of complexity 
were tested ranging from a single time series all the way to 
the same variability found in a natural setting. When the 
complexity was too difficult for a single BAM (nonlinearly 
separable cases), a FEBAM was included in order to generate 
unique representations for each pattern. This combination of 
networks was sufficient to solve any type of situation.  

Furthermore, by adding layers of FEBAM-BAM, the point 
attractors could become the context of a new time series and 
allow chains of time series; something akin to chunking 
(Gobet et al., 2001). 

One limitation of this study is that it represents exploitation 
under very specific circumstances. For example, if one is 
trying to solve a problem with a series of learned responses, 
they will learn which of the responses are helpful and which 
are not. Therefore, the order of the patterns should reflect the 
probability of success, a phenomenon well-captured by 
standard Q-Learning. Changing the order of some items 
without retraining the whole dataset is a challenging avenue 
in a distributed associative memory and should be addressed 
in future studies. This could be implemented using an 
additional BAM to store “correct” responses in function of 
the desired new order with a novel correlated context 
generated by the network itself or by switching to more 
interesting attractors such as aperiodic ones (Tsuda, 2001). 

The current network could also be added to a model of 
exploration to study the exploration-exploitation trade-off. 
Finally, temporal aspects should be taken into consideration, 
allowing for the timing of when actions should be 
accomplished, easing the transition from numerical 
simulation to real-time neurorobotic implementation.  

In conclusion, by using a BAM, we were able to model the 
exploitation phase of the exploration-exploitation dilemma, 



where the subject iterates through different learned responses 
and can stabilize on the correct response based on feedback 
from the environment. By adding a FEBAM to generate a 
unique representation for each learned stimulus, we were able 
to model this with all of the complexity of a real-world 
setting, including different lengths of stimuli, different levels 
of correlation, and nonlinear problems. Being able to model 
exploitation is a crucial part of understanding our own 
cognition and how we learn from the dynamic world around 
us. 
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