
Using a Bidirectional Associative Memory and Feature
Extraction to model Nonlinear Exploitation Problems

Kinsey Church (kchur026@uottawa.ca)

School of Psychology, 136 Jean-Jacques Lussier, Vanier Hall
Ottawa, ON, K1N 6N5, CAN

Matt Ross (mross094@uottawa.ca)

School of Psychology, 136 Jean-Jacques Lussier, Vanier Hall
Ottawa, ON, K1N 6N5, CAN

Sylvain Chartier (sylvain.chartier@uottawa.ca)

School of Psychology, 136 Jean-Jacques Lussier, Vanier Hall
Ottawa, ON, K1N 6N5, CAN

Abstract

Each day we are faced with a decision of maximizing our
resources by using our current knowledge to learn new things.
Should we go to the new restaurant that just opened around the
corner or stick to an old, reliable favourite? This is known as
the exploration-exploitation dilemma and it is at the heart of
reinforcement learning. The present study looks at the
exploitation half of this problem and aims to implement it in a
biologically plausible recurrent associative memory model. In
the framework of Artificial Neural Networks, exploitation is
observed when the network can iterate through many learned
responses and stabilize on the correct one to solve a given task.
This is a process akin to being able to switch from a cyclic to
a point attractor. More precisely, Bidirectional Associative
Memory (BAM) is used to accomplish such tasks where the
context dictates which attractor the network should converge
to. For simple independent tasks, the BAM is sufficient.
However, for overlapping tasks, the task becomes nonlinearly
separable. Therefore, the BAM needs an extra unsupervised
layer to extract unique features from the inputs. These features
combined with input are then sent to BAM where it can learn
the different attractors adequately. This network was able to
stabilize on the correct responses of tasks that involved time
series of varying lengths, overlap, and levels of correlation; the
variability one would expect from the real world.

Keywords: exploitation/exploration; recurrent associative
memory; one-to-many associations.

Introduction
In order to increase their chances of survival, many
organisms have evolved various complex mechanisms to
solve problems, make decisions, and learn about the
environment around them. These mechanisms come with
several different trade-offs, where increasing proficiency in
one area may result in a lack of ability in another area. One
of these problems in cognition is the exploration-exploitation
dilemma (Hills, Todd, Lazer, Redish, & Couzin, 2015). This
is when an organism must choose whether it wants to employ
something it has already learned (exploitation) or explore its
environment to learn new things (exploration). For example,
when a young child is first learning how to open different
doors. They may start by trying the few ways they already
know to open a door (exploitation), such as pulling and

pushing. If these behaviours fail, however, they will have to
start looking for new solutions (exploring). Understanding
exactly how animals and humans switch between these two
processes and how each of them works is crucial to
understanding how we adapt, learn, behave, and survive
(Hills et al., 2015). This trade-off is one of many phenomena
affected by Reinforcement Learning (RL).

Previous studies have proposed several methods to solving
this problem from an “optimal solution” perspective. For
example, Hwang, Chiou and Wu (2003) created an Artificial
Neural Network (ANN; an evaluation predictor) that solves
the exploration-exploitation problem that was able to both
explore and exploit to find an optimal solution to their task
(balancing a pendulum). They used the mean of a normal
distribution to represent the exploitation function, which may
be a bit too basic to capture the exploitation process. This
study and many others focus too much on obtaining a desired
state rather than the underlying process of how exploitation
(and exploration) take place or attempt to find a biologically
plausible solution (Cohen, McClure, & Yu, 2007; Tilahun,
2019).

Another promising study was conducted by Lew, Rey, and
Zanutto (2013). It outlines a biologically plausible model of
switching between exploration and exploitation depending on
changes in the environment and rewards from the
dopaminergic system. Their model is a computational
framework of how exploration and exploitation are selected
and relates this process back to the reward system in the
human brain, focusing on the selection only. Many studies
have a similar focus and are more about the overall model
rather than how each process works (Gershman & Niv, 2015;
Hallquist & Dombrovski, 2019).

An important consideration overseen by these studies is the
context in which the decision takes place. Empirical studies
have shown how the environment is an important factor in
predicting how an animal will behave and how it will exploit
its resources (Naruse et al., 2018). Some studies have shown
how the decisions humans and animals make influence their
ecosystem and vice versa, from small-scale interactions

among individual agents to large-scale adaptive systems, like
population dynamics (Monk et al., 2018). The context in
which an animal is found clearly plays a role on how it
chooses to exploit and explore.

The present study looks at the exploitation half of the
dilemma using environmental context as a cue. For instance,
an animal faces the exploration-exploitation dilemma while
foraging for food (Hills et al., 2015). Is it more efficient to
explore the area for new sources of food or stick to a learned
set of locations where food has been found in the past?

The most well-known example of exploitation has been in
Q-Learning (Watkins & Dayan, 1992). In this
implementation, the best outcome is simply the one that has
the maximum possible reward; max(Q). This works best
when the reinforcement is non-binary. However, in the
situation of multiple possible outcomes, the agent should be
able to test different possible behaviours until the correct one
has been found. For example, if the animal chooses to exploit
their already-known resources, they cycle through them until
the problem is solved (they find food). Once it is solved, they
will stop trying different behaviours and focus on the
successful one.

In ANNs, the problem can be framed as how the network
can generate a different output (behaviour) when the input
(context) remains the same? In ANNs, if a given input is sent
to the network, it will always give the same associated output.
However, if that output is not satisfying, the network must
give a different output even though it is still the same input
that is presented. One way to solve this problem is to use a
cycle attractor. This process can be modeled by the network
generating various different outputs from the same input to
represent the different learned behaviours. For example,
input 1 generates output 1, which generates output 2, all the
way until output n. Output n, the final output, is then
associated with the output 1, creating a loop of learned
patterns. This would be like a squirrel having a series of berry
bushes where it knows food can be found and going from
bush to bush until it finds some.

This can be easily implemented in a Bidirectional
Associative Memory (BAM) as a multistep time series
(Chartier & Boukadoum, 2006). However, a problem arises
when the network must stabilize on a specific output i.
Therefore, each of the patterns (output) must also be stored
as point attractors in the network. This represents a one-to-
many situation where for the same output i the network must
generate output i+1 (next pattern; cyclic attractor) or output i
(same pattern; point attractor). See Fig. 1 for a diagram of
cyclic and point attractors.

Figure 1: Illustration of cyclic and point attractors.

Figure 2: Flowchart illustrating the switching from a cyclic
attractor to a fixed-point attractor using the environment.

The solution may reside in the inclusion of context that can

dictate which state the network should be in and therefore
give distinctive features. From the feedback given by the
environment, the network should be able to switch between a
cyclic (repeating series of outputs) and a point attractor
(single output). However, instead of using context from the
time series itself (Elman, 1990), the context has to be
extracted from the reading of the environment; a process
proposed in (Jordan, 1997) and successfully implemented in
BAM (Rolon-Mérette, Rolon-Mérette, & Chartier, 2019). By
having a unique context as the initial input of the time series,
it can also be used to distinguish multiple cyclic attractors
(different time series).

The BAM can be used to store various attractors including
point, cyclic, and chaotic attractors (Chartier, Boukadoum, &
Amiri, 2009), making it a well-suited candidate to perform
exploitation. Fig. 2 shows an example of both cyclic

attractors (a to c) and fixed-point attractors (d) in the model.
When the BAM is giving the next output, it is recalling
associations in a cycle. In this case, it recalls ‘A’ from ‘1’ and
proceeds in order (‘B’, ‘C’, etc.). However, when it needs to
stabilize, it switches to a fixed-point attractor. In this
example, the environment gives ‘C’ associated with itself as
a response, which is different from ‘C’ in the ‘1’ context,
causing the BAM to switch from a cyclic attractor to a fixed-
point attractor. In order to focus exclusively on the
exploitation phase, it is assumed that some level of
exploration has already taken place. In other words, that
series of behaviours have already been learned.

Putting Fig. 2 in the context of the foraging example, ‘1’
could represent hunger, and the other patterns represent
learned behaviours, such as searching for food in different
locations; ‘A’, ‘B’, ‘C’, etc. When food is located, the
environment lets the animal know to stop cycling through its
learned behaviours (checking different locations) and make
the decision to stay there.

The remainder of this paper is divided into two separate
sets of simulations. Simulation I introduces the problem of
modeling exploitation and switching from iteration to
stabilizing on a given response using the environmental
context (one-to-many association). Simulation II solves more
complex and diverse situations involving nonlinearly
separable associations. An overall discussion is provided at
the end.

Simulation I- Independent Time Series

Methods
To model exploitation, time series of patterns were used to
represent different possible output behaviours. Each series
was preceded by a unique contextual input. The network task
consisted of associating multiple time series of different
lengths and various levels of overlap. Moreover, the level of
correlation between patterns varies vastly to encapsulate the
variability found in the real world.

Stimuli Patterns of behaviours were represented by a series
of letters and the context by a number. Each pattern was
placed on a 7x7 grid where a black pixel had a value of +1
and a white pixel a value of -1. Following the procedure in
Rolon-Mérette et al. (2019) for each pattern of the time
series, the associated context pattern was appended. These
contexts allow the network to differentiate between different
time series and the desired type of attractor (cyclic vs. point).
The various time series are illustrated in Fig. 3, with grey
boxes to highlight the repeated and overlapping patterns.
Series 1 is a single time series of patterns associated with the
context of number ‘1’ and each of the patterns are also
associated with themselves. It represents a basic, independent
time series with no overlap and is the least complex series.
Series 2 increases the difficulty by having two independent
time series of various lengths. Series 3 includes three

Figure 3: Stimuli for Simulations I and II.

independent time series of various lengths as well. Series 4
and 5 represent situations closer to reality, where the
difficulty is further increased. In both examples, a given
pattern is associated not only to two settings (the cyclic and
the point attractor) but to four (series 4) or three (series 5)
settings. Series 4 shows a setting where patterns can belong
to various solutions (overlapping), while series 5 shows a
series that is a subtype of the other. In both cases, the problem
is no longer linearly solvable.

Architecture The architecture for the modified BAM
(Chartier et al., 2006) is made of two Hopfield-like neural
networks interconnected in a head-to-tail fashion to create a
bidirectional flow of information (see Fig. 4). The initial
vector-states are represented by x[0] and y[0], the weight
matrices by W and V, the dimensionality by m and n, and t
represents the time (current iteration number).

Figure 4: Architecture of the BAM.

Output Function The transmission is composed of the
activation function that is then fed through the output
function. The activation is obtained the usual way:

a[t]= Wx[t] (1a)

b[t]= Vx[t] (1b)

Once this linear activation is obtained it goes through the
nonlinear output function defined as (2a) and (2b):

∀i,…, n, yi[t+1]=f ൫ai[t]൯

 = ቐ

1, if ai[t]>1
-1, if ai[t]<-1

(δ+1)ai[t]-δai[t]
3 , else

 (2a)

∀i,…, m, yi[t+1]=f ൫bi[t]൯

 = ቐ

1, if bi[t]>1
-1, if bi[t]<-1

(δ+1)bi[t]-δbi[t]
3 , else

 (2b)

where n and m are the number of units in each layer of the
network, i is the index unit, δ is the transmission parameter,
and a and b are the activations. The output is a cubic function
with saturating limits at ±1.

Learning Function The connection weights are modified
following a Hebbian/anti-Hebbian rule (Bégin & Proulx,
1996; Storkey & Valabregue, 1999) and can be represented
as:
 W[k+1]=W[k]+η(y[0] − y[t])(x[0]+x[t])

T (3a)

 V[k+1]=V[k]+η(y[0] − y[t])(x[0]+x[t])

T

 (3b)

where W and V represent the two sets of weight connections,
x[0] and y[0] the initial inputs, η the learning parameter, and k
the current learning trial. The η is calculated using the
following inequality function to guarantee that the learning
will converge (Chartier et al., 2006):

η <
1

2(1-2δ)Max[m,n]
,δ≠

1

2

(4)

Parameters To ensure all associations are stable, delta (δ)
was set to 0.2, number of iterations (t) to 1 and learning rate
(η) was set to 0.008 (equation 4). The minimum Mean
Squared Error (MSE) was 10-8 and the maximum amount of
learning trials was set to 1000 (in case of non-convergence).
The weights W and V were initialized at 0.

Learning Procedure
1. Selection of a series (Fig.3).

2. Selection of an associated pair as the initial input for x[0]
and y[0].
3. Computation of the outputs x[1] and y[1] using equations 1
and 2.
4. Weights update (W and V) according to equation 3.
5. This was repeated with each of the subsequent patterns
until the MSE for all associations reached 10-8 or the number
of trials reached 1000.

Exploitation Procedure
1. Selection of a “desired response” for the network to
stabilize on for a given time series (“initial context”). This is
the response stored in the environment for comparison.
2. First pattern in the time series is used as the input for BAM
(x[0]).
3. Environment compares output (y[t]) with the “desired
response” for each iteration. If it does not match, the network
uses this pattern as the new input (x[t]=y[t]) and generates the
next one (y[t+1]). If it matches (BAM has found the correct
pattern), the environment sends only this pattern back to the
BAM. This can be seen as the environment changing when
the solution to a task is found (for example, when you are
trying to open a door and it opens vs. remaining closed),
providing enough feedback to stabilize on this correct
response.
4. The BAM recalls the pattern associated with itself and
stabilizes on it instead of continuing to iterate through the
series.

Results
The BAM was able to learn and recall the first three series. It
was also able to stabilize its output on any desired pattern
with perfect accuracy. For example, in Fig. 5 we see one trial
in series 1, where ‘F’ was the correct response in time series
‘1’. The initial input was ‘1’ and it was given to the BAM,
which recalled ‘A’. This output was compared to the desired
response in the environment, and since it was not a match, the
output became the new input and was sent back to the BAM.
This continued until the correct response ‘F’ was given,
where the environment changed because the task had been
solved and sent ‘F’ both as input and context, to the BAM.

Figure 5: Results of example trials from Simulation I.

The network was then able to give the same output, therefore
causing it to stabilize on the correct response.

However, when the BAM was faced with more complex
tasks (overlaps or subtype), it could no longer learn the
associations properly and stabilize on the desired response.
For example, when encountering a nonlinear task as seen in
series 4 and 5, the results are noisy, and the BAM often fails
to learn all the time series properly. It also cannot stabilize on
the correct response. This is due to the nature of the task that
necessitates a nonlinear classification, a capacity lacking in a
single layer BAM (Chartier & Boukadoum, 2006). Therefore,
the next simulation solves this problem by adding an
unsupervised layer to the BAM (Rolon-Mérette, Rolon-
Mérette, & Chartier, 2018).

Simulation II- Overlapping Time Series

Methods
As indicated by the results from Simulation 1, a BAM alone
using contexts is not sufficient to solve problems of higher
complexity, meaning it cannot solve real-world problems.
Previous works have shown that a Feature Extraction
Bidirectional Associative Memory (FEBAM) can be used in
combination with the BAM in order to solve nonlinearly
separable tasks (Tremblay, Myers-Stewart, Morissette, &
Chartier, 2013). Therefore, the architecture of the network
has to be modified accordingly. The new flowchart is shown
in Fig. 6.

Stimuli All series from Fig. 3 were used with the addition of
one additional complex series (Fig. 7). This new series
includes a mix of all possible combinations of multiple,
overlapping and subtype time series; representing the kind of
variability found in nature. It encompasses all possible
combinations and arrangements of stimuli. Fig. 8 illustrates
these combinations, using a Venn diagram for clarity.

Figure 6: Flowchart for Simulation II, showing unique
representation from FEBAM being appended to stimuli.

Figure 7: Added stimuli for Simulation II.

Figure 8: Venn diagram illustrating which time series are
independent, subtype, or overlap in series 6.

Architecture The FEBAM is the unsupervised version of the
BAM. The only difference between the two models is the
absence of a set of external connections; the y[0] inputs (see
Fig. 4). This means there is only one explicit connection, x[0],
making the learning unsupervised.

Output Function and Learning Function The transmission
is obtained the same way as the BAM. Regarding the
learning, because the y[0] connections are no longer available,
they are obtained by iterating once through the network as
illustrated in Fig. 9. The weights of the FEBAM are then
updated exactly as the BAM (equations 3a, 3b).

Parameters For both BAM and FEBAM, the transmission
parameter (δ) was set to 0.2 to ensure the fixed points would
be stable. The learning parameter (η) was set to 0.004. The
maximum amount of learning trials was set to 1000, and the
minimum required MSE was 10-8. The weights of the
FEBAM were randomly initialized between -2 and 2
(Tremblay et al., 2013).

Learning Procedure
1. Selection of a series (Fig. 2 and 6).
2. Selection of an associated pair as the initial input for the
FEBAM.
3. The output of the FEBAM is then appended to the initial
input and sent to the BAM (Fig. 6).
4. The BAM outputs the next associated patterns.
5. Weights update for both the FEBAM and BAM.
6. This was repeated with each of the subsequent patterns
until the MSE for all associations reached 10-8 or the number
of trials reached 1000.

W
w

x[0] y[0]

V

W

x[1]

y[1]

Figure 9: Output iterative process used for the FEBAM
learning.

Exploitation Procedure
1. Selection of a “desired response” for the network to
stabilize on for a given time series (“initial context”).
This is the response stored in the environment for
comparison.
2. First pattern in the time series is an input for FEBAM.
3. The output of the FEBAM is then appended to the initial
pattern and sent to the BAM.
4. Environment compares output of the BAM (y[t]) with
“desired response” for each iteration t. If it does not match,
the network uses this pattern as the new input (x[t]=y[t]) and
generates the next one (y[t+1]). If it matches (BAM has
correctly solved the task), the environment sends only this
pattern back to the FEBAM (then to the BAM).
5. The BAM recalls the pattern associated with itself and
stabilizes instead of continuing to iterate through the series.

Results
As shown in Fig. 10, the FEBAM-BAM model was able to
learn and perfectly recall both time series 4 and 5 with no
problems, which the BAM alone was not able to do. It could
also stabilize on any given response without issue. In the
example shown for series 4 (Fig. 10), the desired response for
that trial was ‘E’ in the ‘2’ time series. The first input for that
time series, ‘2’, was given as the initial input and sent through

Figure 10: Results of example trials from Simulation II.

the FEBAM, where the unique signature for that pattern was
generated and appended to it. This new stimulus was then
entered as input for the BAM, which gave ‘C’ as an output.
That output was compared to the desired response in the
environment and was sent back to the FEBAM until the
desired response, ‘E’ was given. This desired response ‘E’
was then sent, associated with itself, as the new input for
FEBAM, causing the BAM to stabilize on the correct answer.
Most importantly, the model was able to successfully
stabilize on any given response in series 6, which contained
all possible combinations of interaction and correlation
between stimuli: subtype, independent time series, and
overlap. This model was successfully able to iterate through
all series and stabilize on a given response.

Discussion and Conclusion
To further our understanding of Reinforcement Learning and
the exploration-exploitation trade-off, the exploitation phase
was implemented using a BAM. Here it was assumed that a
given set of patterns were already encoded for various
contexts. The network’s job was then to iterate through a
given series and stabilize on the desired response using
feedback from the environment. Various levels of complexity
were tested ranging from a single time series all the way to
the same variability found in a natural setting. When the
complexity was too difficult for a single BAM (nonlinearly
separable cases), a FEBAM was included in order to generate
unique representations for each pattern. This combination of
networks was sufficient to solve any type of situation.

Furthermore, by adding layers of FEBAM-BAM, the point
attractors could become the context of a new time series and
allow chains of time series; something akin to chunking
(Gobet et al., 2001).

One limitation of this study is that it represents exploitation
under very specific circumstances. For example, if one is
trying to solve a problem with a series of learned responses,
they will learn which of the responses are helpful and which
are not. Therefore, the order of the patterns should reflect the
probability of success, a phenomenon well-captured by
standard Q-Learning. Changing the order of some items
without retraining the whole dataset is a challenging avenue
in a distributed associative memory and should be addressed
in future studies. This could be implemented using an
additional BAM to store “correct” responses in function of
the desired new order with a novel correlated context
generated by the network itself or by switching to more
interesting attractors such as aperiodic ones (Tsuda, 2001).

The current network could also be added to a model of
exploration to study the exploration-exploitation trade-off.
Finally, temporal aspects should be taken into consideration,
allowing for the timing of when actions should be
accomplished, easing the transition from numerical
simulation to real-time neurorobotic implementation.

In conclusion, by using a BAM, we were able to model the
exploitation phase of the exploration-exploitation dilemma,

where the subject iterates through different learned responses
and can stabilize on the correct response based on feedback
from the environment. By adding a FEBAM to generate a
unique representation for each learned stimulus, we were able
to model this with all of the complexity of a real-world
setting, including different lengths of stimuli, different levels
of correlation, and nonlinear problems. Being able to model
exploitation is a crucial part of understanding our own
cognition and how we learn from the dynamic world around
us.

References
Bégin, J., & Proulx, R. (1996). Categorization in

unsupervised neural networks: The Eidos model. IEEE
Transactions on Neural Networks, 7(1), 147–154.
https://doi.org/10.1109/72.478399

Chartier, S., & Boukadoum, M. (2006). A Sequential
Dynamic Heteroassociative Memory for Multistep Pattern
Recognition and One-to-Many Association. IEEE
Transactions on Neural Networks, 17(1), 59–68.
https://doi.org/10.1109/TNN.2005.860855

Chartier, S., Boukadoum, M., & Amiri, M. (2009). BAM
learning of nonlinearly separable tasks by using an
asymmetrical output function and reinforcement learning.
IEEE Transactions on Neural Networks, 20(8), 1281–
1292. https://doi.org/10.1109/TNN.2009.2023120

Cohen, J. D., McClure, S. M., & Yu, A. J. (2007). Should I
stay or should I go? How the human brain manages the
trade-off between exploitation and exploration.
Philosophical Transactions of the Royal Society B:
Biological Sciences, 362(1481), 933–942.

Elman, J. L. (1990). Finding Structure in Time. Cognitive
Science, 14(2), 179–211.

Gershman, S. J., & Niv, Y. (2015). Novelty and Inductive
Generalization in Human Reinforcement Learning. Topics
in Cognitive Science, 7(3), 391–415.

Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones,
G., Oliver, I., & Pine, J. M. (2001, June 1). Chunking
mechanisms in human learning. Trends in Cognitive
Sciences, 5, 236–243. https://doi.org/10.1016/S1364-
6613(00)01662-4

Hallquist, M. N., & Dombrovski, A. Y. (2019). Selective
maintenance of value information helps resolve the
exploration/exploitation dilemma. Cognition, 183, 226–
243. https://doi.org/10.1016/j.cognition.2018.11.004

Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D., & Couzin,

I. D. (2015). Exploration versus exploitation in space,
mind, and society. Trends in Cognitive Sciences, 19(1), 46–
54. https://doi.org/10.1016/J.TICS.2014.10.004

Jordan, M. I. (1997). Serial order: A parallel distributed
processing approach. In Advances in Psychology, 121,
471–495. https://doi.org/10.1016/S0166-4115(97)80111-2

Lew, S., Rey, H. G., & Zanutto, B. S. (2013). Neuronal
mechanisms underlying exploration-exploitation strategies
in operant learning. The 2013 International Joint
Conference on Neural Networks (IJCNN), 1–6.

Monk, C. T., Barbier, M., Romanczuk, P., Watson, J. R.,
Alós, J., Nakayama, S., … Arlinghaus, R. (2018). How
ecology shapes exploitation: a framework to predict the
behavioural response of human and animal foragers along
exploration-exploitation trade-offs. Ecology Letters, 21(6),
779–793. https://doi.org/10.1111/ele.12949

Naruse, M., Yamamoto, E., Nakao, T., Akimoto, T., Saigo,
H., Okamura, K., … Hori, H. (2018). Local reservoir model
for choice-based learning. PLoS ONE, 13(10).

Rolon-Merette, D., Rolon-Merette, T., & Chartier, S. (2018).
Distinguishing Highly Correlated Patterns using a Context
Based Aproach in Bidirectional Associative Memory.
Proceedings of the International Joint Conference on
Neural Networks, July 2018, 1-8.

Rolon-Mérette, D., Rolon-Mérette, T., & Chartier, S. (2019).
Learning and Recalling Arbitrary Lists of Overlapping
Exemplars in a Recurrent Artificial Neural Network. In
Proceedings of the International Conference on Cognitive
Modelling, 186-191.

Storkey, A. J., & Valabregue, R. (1999). The basins of
attraction of a new Hopfield learning rule. Neural
Networks, 12(6), 869–876. https://doi.org/10.1016/S0893-
6080(99)00038-6

Tilahun, S. L. (2019). Balancing the Degree of Exploration
and Exploitation of Swarm Intelligence Using Parallel
Computing. International Journal on Artificial Intelligence
Tools, 28(3). https://doi.org/10.1142/S0218213019500143

Tremblay, C., Myers-Stewart, K., Morissette, L., & Chartier,
S. (2013). Bidirectional Associative Memory and Learning
of Nonlinearly Separable Tasks. In Proceedings of the
International Conference on Cognitive Modeling, 420–
425.

Tsuda, I. (2001). Toward an interpretation of dynamic neural
activity in terms of chaotic dynamical systems. Behavioral
and Brain Sciences, 24(5), 793–810.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-Learning.
Machine Learning, 8(3-4). 279-292.

