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Abstract 
Anderson et al. (2019) present an ACT-R model of how 
humans learn to play rapid-action video games. To further test 
this model, we utilized new measures of action timing and 
sequencing to predict skill acquisition in a controlled motor 
task named Auto Orbit. Our first goal was to use these 
measures to capture time-related effects of speed on motor 
skill acquisition, operationalized as a performance score. Our 
second goal was to compare human and model motor skill 
learning. Our results suggest that humans rely on different 
motor timing systems in the sub- and supra-second time 
scales. While our model successfully learned to play Auto 
Orbit, some discrepancies in terms of motor learning were 
noted as well. Future research is needed to improve the 
current model parameterization and enable ACT-R’s motor 
module to engage in rhythmic behavior at fast speeds. 

Keywords: timing; sequencing; motor control; speed; rhythm; 
variability; ACT-R; motor skill acquisition 

Introduction 
Many everyday tasks such as typing, chopping, and playing 
a musical instrument require one to acquire complex motor 
skills. Motor skill learning has been defined as the neuronal 
changes that enable an organism to execute a motor task 
better, faster, and more accurately over time (Diedrichsen & 
Kornysheva, 2015). Evidence from the motor control 
literature suggests that humans may rely on chunking 
strategies over the course of motor skill learning resulting in 
more predictable motor action sequences (Verstynen et al., 
2012; Beukema, Diedrichsen & Verstynen, 2019). 

In addition to the chunking of motor actions, one needs to 
incrementally estimate the correct timing of upcoming 
motor actions (Decety, Jeannerod & Prablanc, 1989; Palmer 
& Pfordresher, 2003). One common model of timing is the 
attentional gate model developed by Zakay and Block 
(1996) which relies on the generation of regular pulses to 
keep track of time. However, prior research on the 
neuroscience of timing provides evidence suggesting that 
this model may not be sufficient to capture the full 
complexity of motor timing (Coull, Cheng & Meck, 2011; 
Breska & Ivry, 2016). 

According to Lewis and Miall (2003), motor timing may 
differ depending on the time scale of the motor actions that 
are executed. On the one hand, motor actions in the second 
range were shown to depend on a ‘cognitively controlled’ 
timing system heavily dependent on prefrontal and parietal 
neural processing. On the other hand, motor actions in the 

sub-second range were shown to depend on an ‘automatic’ 
timing system mostly dependent on motor circuits (Lewis & 
Miall, 2003). 

In this study, we used the ACT-R production system, 
which successfully modeled skill acquisition in a previous 
complex task (Anderson et al., 2019), to assess potential 
time-related effects of speed on motor skill acquisition. To 
do so, we designed a novel video game, Auto Orbit, inspired 
by Space Fortress (Mané & Donchin, 1989). Our main goal 
was to determine to what extent ACT-R is currently able to 
capture the detail of human motor learning in such games. 
In this study, we manipulated the game speed, such that 
agents would play the same video game at a faster or slower 
speed. Our principal analysis compared ACT-R’s motor 
learning to human learning and strove to capture the 
different elements of motor skill acquisition in a time-
dependent statistical framework. 

Auto Orbit Video Game 
In Auto Orbit, a spaceship is rotating in an orbit at a fixed 
speed around a balloon (circle-shaped target) placed in the 
middle of the screen (see Figure 1). The player must 
periodically adjust the ship’s aim and regularly shoot 
missiles within a specific firing interval. Each successful 
shot triggers a quick electronic sound and results in the 
balloon being inflated by 1/10 of its full size. Once the 
balloon is fully inflated, the player needs to execute a quick 
double shot shorter than 250 ms to burst the balloon and 
complete a game cycle. Balloon bursts were each rewarded 
by a fixed number of points dependent on the game speed, 
while misses (unsuccessful missiles) resulted in a penalty of 
2 points. Each game was broken down into a series of game 
cycles that started with a “balloon respawn” game event and 
ended with a “balloon burst” game event. For each game, a 
log file was recorded with 16-ms temporal resolution. 

Controlling the space ship in Auto Orbit involved three 
actions: rotating clockwise by 15 degrees (“D” key), 
rotating counterclockwise by 15 degrees (“A” key), and 
launching a missile (“L” key). During the game, the 
specified firing interval was learned through balloon resets 
as the lower bound, and balloon deflations as the upper 
bound. Each shot that was faster than the lower bound 
resulted in a reset characterized by the balloon popping on 
the screen. Conversely, the player’s failure to hit the balloon 
before the upper bound resulted in a balloon deflation 
characterized by the balloon dwindling at a constant 



deflation rate of 1 % of the balloon’s full size or 0.18 pixels 
per game tick. Finally, in order to add some noise in the 
video game, random ship rotations of 60 to 120 degrees 
occurred with 1/3 probability at the beginning of every 
game cycle, and the players were then given additional time 
to re-adjust the ship’s aim. Rotation onset time was 
randomly generated according to a uniform distribution with 
1 s. as the minimum rotation onset time and 4 s. as the 
maximum rotation onset time. After each ship rotation, 
agents had 2 s. to adjust the ship’s aim and continue firing 
before the balloon started deflating. An illustration of the 
Auto Orbit interface is depicted on Figure 1.   One   can   
play    the   Auto Orbit video game using the following link: 
http://andersonlab.net/orbit/signin.html 

 
Figure 1: Visualization of the Auto Orbit video game 

interface. 

ACT-R Model of Skill Acquisition 
The ACT-R model was adapted from past modelling work 
by Anderson et al. (2019). First, operators were stored in 
declarative memory to represent the model’s strategy for 
playing the video game. Operators were set up such that the 
model would first adjust the ship’s aim (angular orientation 
relative to the balloon center) and would then monitor the 
timing of its shots (time that needed to elapse after a shot 
before the model could fire another missile). Over the 
games, the model became faster in executing these operators 
through a process called production compilation, which 
converts operators into direct action rules (Anderson et al., 
2019).  

Specifically, production compilation involves the 
integration of two productions into a novel one, thus 
bypassing the retrieval of operators from declarative 
memory. Each newly learned production is initially assigned 
a utility of zero and starts competing with its original parent 
production. Every time the new production is selected, its 
utility gets progressively updated until it reaches its true 
value. Utility values are incrementally adjusted based on the 
difference learning equation, which is shown on equation 1 
(see Anderson (2007) and Anderson et al. (2019) for further 
details): 

 

𝑈"(𝑛) = 	𝑈"(𝑛 − 1) + 	𝛼[𝑅"(𝑛) − 𝑈"(𝑛 − 1)] (1) 
 

where 𝑈"(𝑛) corresponds to the nth update of the ith 

production utility, 𝑅"(𝑛) corresponds to the reward at the nth 
update, 𝑈"(𝑛 − 1) corresponds to the ith production utility at 
the n-1th update, and 𝛼 is the learning rate. Note that 𝛼 was 
set to 0.2 in our model. 
 Second, monitoring time was a crucial aspect of skill 
acquisition. The model kept track of time in its temporal 
module through a pacemaker-accumulator internal clock 
timing system that generated regular pulses (Taatgen, van 
Rijn & Anderson, 2007). Pulses were monitored in the form 
of time ticks whose value could be accessed via a temporal 
buffer (Taatgen et al., 2007). In the ACT-R model, time 
ticks were reset at the start of the game, and every time the 
model fired a missile. 
 Finally, the controller module monitored and refined the 
estimation of a number of key game parameters including 
the ship’s aim and the shot timing threshold (Anderson et 
al., 2019). The controller module progressively adjusted 
these parameters via a control tuning mechanism starting 
with greater tolerance and narrowing the tolerance over 
time, so that values could be progressively tuned (Anderson 
et al. 2019; Seow, Betts & Anderson, 2019). One key 
parameter that impacted the speed of control tuning was the 
temperature (see equation 2). 
 

𝑇(𝑡) = 𝐴/(1 + 𝐵. 𝑡)         (2) 
 

where A is the initial temperature which was set to 1.0, B is 
a scaling factor which was set to its default value of 1/180, 
and t is the time in seconds that elapsed since the start of the 
game. In our model, control tuning critically involved two 
control values:  First, the model needs to turn the ship so it 
will be aimed at the fortress when it later fires. Since the 
ship is moving, it searches for an offset in its aim from -18 
degrees (lower bound) to 0 degrees (upper bound).  Second, 
the ship needs to pace its fires to avoid both resets and 
deflations.  The controller considers a range from 8 time 
ticks or 126 ms (lower bound) to 28 time ticks or 1476 ms 
(upper bound). 
 The range for shot timing in this model was much larger 
than in Anderson et al. (2019) because there was no 
information about what the appropriate time was whereas in 
the original Space Fortress, subjects were told that the 
lower bound is 250 ms. In Auto Orbit, the model narrowed 
the firing range to search as it gained information. 
Specifically, the “detect-reset” and “detect-deflate” 
productions were responsible for adjusting the firing time 
threshold range of parameters. While the time threshold’s 
upper bound progressively decreased during deflations, the 
time threshold’s lower bound progressively increased 
during resets. 

Methods 
Experimental Design 
In this experiment, all human subjects and ACT-R models 
played a total of 15 games that were 3 minutes in duration 
(45 minutes in total). Each subject was randomly assigned 
to one of three possible conditions corresponding to the fast, 



medium and slow game speed (see Table 1). In the fast game 
speed condition, the ship’s orbital speed was 1.0 pixel per 
game tick (16 ms), and the missile speed was 10 pixels per 
game tick. Agents assigned to that condition needed to fire 
within the [250 ms – 600 ms] interval. Each fired missile 
that resulted into a miss was penalized by a loss of 2 points, 
and each balloon burst was rewarded by a gain of 100 
points.  

In the medium game speed condition, all aspects of the 
game happened at half the speed of the fast condition 
including the timing of shots. This was halved again for the 
slow game speed condition. Individuals earned points as a 
way to get monetarily compensated for their gameplay. The 
total number of points per game was our main measure of 
skill level which was assessed independently in each game 
speed. We designed a point system that met the two 
following criteria: First, participants should earn the greatest 
amount of points per balloon burst in the slowest conditions 
so that all players get fairly compensated for the same game 
length (3 minutes); Second, the point system should be 
adjusted such that participants in easy conditions (e.g., slow 
speed) may not earn significantly more than participants in 
hard conditions (e.g., fast speed). Each balloon burst thus 
led to a reward that increased by 100 points each time the 
game parameters were halved (see Table 1). Note that we 
did not compare performance scores across speeds. 
 

Table 1: Description of the three game speed conditions 

 
Agents 
 
Human Participants We are reporting data from 60 human 
participants randomly assigned to each of the 3 game speed 
conditions. Participants were aged 21 to 40 years-old (M = 
30.5, SD = 4.7). Forty were male and 20 were female. All 
participants were recruited on the Amazon Mechanical Turk 
(mTurk) online platform. Subjects earned a base pay of $4 
for completing the experiment, in addition to a bonus which 
was proportional to their performance (in points) as 
specified on Table 1. On average, participants earned a 
bonus of $5. 
 
ACT-R Models Ninety ACT-R model simulations were 
conducted in each of the 3 game speed conditions (270 
model runs in total). All models were initialized with the 
same parameters. 
 
Procedure 
The mTurk experiment consisted of four main steps. First, 
participants filled out a short background questionnaire 
including questions about the participants’ demographics. 
Second, they read a short description of the Auto Orbit 

video game including game play instructions. Third, 
participants were randomly assigned to one out of the three 
experimental conditions (see Table 1) and completed 15 
games that lasted 3 minutes each. Finally, they filled out 
some additional questionnaires where they provided 
feedback and wrote about strategies that they used during 
the experiment. 
 
Experimental Measures 
In this study, we were interested in a number of 
experimental measures pertaining to motor skill acquisition. 
Our main dependent variable was performance, which was 
operationalized as points earned per game (see Table 1). 
The design comprised a total of 4 independent variables: the 
keypress sequence entropy, the inter-shot-interval (ISI) 
coefficient of variation logarithm, and the shot periodicity 
and regularity. All measures were computed across game 
cycles (“balloon respawn” to “balloon burst”) without 
random rotations for every agent and every game. 
 
Entropy The entropy was our measure of keypress 
sequence regularity in Auto Orbit. We focused on the 
relative frequency of various keypress triples.  With three 
keys (‘F’: fire, ‘L’: left, ‘R’: right) there are 33 = 27 triples. 
We computed the proportions of each keypress triple per 
game by using a non-overlapping counting method (Python 
count() function) with Laplace smoothing for each keypress 
triple in all game cycles. We used the Shannon entropy 
measure, which quantifies unpredictability of information 
content in a probability distribution (Shannon & Weaver, 
1949). Shannon entropy’s formula is given in equation 3: 
 

𝐻(𝑋) = −	∑ 𝑝"	. 	𝑙𝑜𝑔<	𝑝"<=
">? 		 	 	 	 (3)	

 

where X refers to a game number and pi refers to the 
probability of the ith triple.  This entropy measure could 
vary from 0 (only 1 triple throughout) to 4.75 (all triples 
equally likely).  We expected the entropy measure to 
decrease as subjects developed a systematic approach to the 
game. 
 
Log CV Inter-Shot-Interval (ISI) In order to measure shot 
timing variability, we extracted the time interval between 
consecutive shots in milliseconds, named inter-shot-interval 
(ISI) within game cycles. For each game of every agent, we 
then made use of the coefficient of variation (CV), which is 
defined as the standard deviation divided by the mean of the 
ISIs, consistent with previous research (Loehr & Palmer, 
2009). An average CV of the ISIs was computed across 
game cycles within each agent’s game. Because our 
measure of CV and our performance variable were not 
linearly related, we carried out data transformation on CV 
and calculated its logarithm instead. We expected this 
measure to decrease as subjects became more skilled. 
 
Periodicity and Regularity The shot regularity measure 
was computed based on the shots autocorrelation function 
within games. This method has been used in the music 

Table 1: Description of the three game speed conditions

Game Speed Speed Multiplier Resets Deflations Points

Fast 1.0 250 ms 600 ms 100/burst

Medium 0.5 500 ms 1,200 ms 200/burst

Slow 0.25 1,000 ms 2,400 ms 300/burst

Table 2: Human Linear Mixed-E↵ects models across game speeds

Game Speed - Human

Fast Medium Slow

Estimate 95 % CI Estimate 95 % CI Estimate 95 % CI

Entropy �490
⇤⇤⇤

(�638, �312) �641
⇤⇤⇤

(�844, �421) �295
⇤⇤⇤

(�452, �136)

Log CV ISI �164
⇤⇤⇤

(�242, �84) �84
⇤

(�161, �12) �146
⇤⇤⇤

(�206, �83)

Regularity 1171
⇤⇤⇤

(732, 1650) 1062
⇤⇤

(469, 1677) 378 (�141, 943)

Periodicity �1.31
⇤⇤⇤

(�2.25,�0.38) �0.52
⇤⇤⇤

(�0.87,�0.15) 0.10 (�0.03,0.23)

Adjusted R2
0.88 0.88 0.79

⇤⇤⇤p < .001;
⇤⇤p < .01;

⇤p < .05

Table 3: ACT-R simulations Linear Mixed-E↵ects models across game speeds

Game Speed - ACT-R models

Fast Medium Slow

Estimate 95 % CI Estimate 95 % CI Estimate 95 % CI

Entropy �451
⇤⇤⇤

(�531, �372) �15 (�118, 97) 53 (�22, 127)

Log CV ISI 1034
⇤⇤⇤

(896, 1177) �372
⇤⇤⇤

(�531, �205) 604
⇤⇤⇤

(477, 734)

Regularity 974
⇤⇤⇤

(745, 1201) 1043
⇤⇤⇤

(754, 1348) 558
⇤⇤⇤

(326, 822)

Periodicity �0.05 (�0.40,0.27) �0.62
⇤⇤⇤

(�0.82,�0.43) 0.32
⇤⇤⇤

(0.21, 0.44)

Adjusted R2
0.73 0.66 0.65

⇤⇤⇤p < .001;
⇤⇤p < .01;

⇤p < .05
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information retrieval literature to perform meter extraction 
(Brown, 1993). For each game cycle, we first re-
preprocessed agents’ log files such that we would get a 
single discrete time series of fire events, where individual 
entries corresponded to successive game ticks of 16 ms. At 
every tick, a 1 indicated a fire keypress hold event and a 0 
indicated a fire keypress release event. We could then 
compute the correlation coefficient (Box & Jenkins, 1976) 
of keypress actions at a particular lag (see equation 4) using 
the ‘acf’ function from the statsmodels time series analysis 
(‘tsa’) library in Python (McKinney, Perktold & Seabold, 
2011): 
 

𝑟A =
∑ (BC	D	B̅)(BCFGDB̅)HIIJG
CKH 		

∑ (BC	D	B̅)LHII
CKH

            (4) 
 

where l refers to the current time lag. A total of 100 time 
lags of 16 ms were investigated in each autocorrelation 
function. We averaged the autocorrelation function across 
game cycles of each agent’s game. As a result, for each 
agent, we obtained 15 autocorrelation functions 
corresponding to each of the 15 games. Figure 2 displays an 
example of a game autocorrelation function in a subject.  
Positive peaks in this function reflect lags at which the fire 
keys tended to be pressed. 

Finally, we used each game autocorrelation function to 
extract our two measures of interest: periodicity and 
regularity. To do so, we identified the first non-zero lag 
positive peak of the autocorrelation function. Periodicity 
was the lag for this peak at which fires tended to be pressed.  
Regularity was the height of this function and reflected how 
consistently keypresses occurred at this lag. In our example, 
the first non-zero autocorrelation positive peak has been 
identified with a red bar (see Figure 2). We expected that 
better play would be associated with decreased periodicity 
as subjects got their shots closer to the threshold, and 
increased regularity as they got more consistent in their 
timing. 

 
Data Analysis 
Our data set consisted of the above measures, each recorded 
once per game and per agent (i.e., in humans and models).  
 
Linear Mixed-Effects Model In order to assess each 
measure’s individual effect on skill acquisition, we fit a 
linear mixed-effects model (LMEM) across game speeds. 
Our main dependent variable was performance, 
operationalized as points earned per game. Our predictors 
were the four measures described earlier, each modeled as a 
fixed factor.  In addition to our fixed factors, we added two 
random factors to account for some of the variability in our 
performance measure that was not explained by our four 
linear predictors. The first random factor accounted for 
differences across participants’ skill levels and was modeled 
as a random intercept. The second random factor accounted 
for residual variance in performance related to individual 
game numbers that could not be captured by our four fixed 
factors. 

 
Figure 2: Autocorrelation function in game 11 of one of the 
subjects in the fast speed condition. The red bar indicates 

the periodicity (lag) and regularity (correlation coefficient) 
of this subject’s shot timings in that game. 

 
In R, we used the ‘lme4’ (Bates et al., 2014) package to 

fit our linear mixed-effects model. The model was written as 
lmer(Performance ~ Entropy +  logCV + Periodicity + 
Regularity + (1|Subject) + (1|GameNb)). For each model, 
the 95 % confidence interval was computed for each 
estimate using bootstrapping with resampling (‘bootMer’ 
function in R). A total of 1000 simulations were run for 
each bootstrapped 95 % confidence interval. 

Results 
Behavioral Results 
We hereby present the results from human games and ACT-
R model simulations across the three game speed conditions 
(fast, medium, and slow). For each measure of interest, we 
report the mean within games across agents along with the 
standard error. Because the ACT-R models were all 
initialized with the same parameter values, there is lower 
variability among models than humans for each measure. 

We first report the performance results across games in 
humans and models (see Figure 3). Humans and models 
achieved similar numbers of points, both showing rapid 
initial improvement approaching an asymptote by 15 games. 
However, some differences are worth noting: In the fast 
speed condition, humans performed somewhat better than 
the models. In the medium and slow speed conditions, 
models had a somewhat steeper slope than humans. 
 

 

Figure 3: Performance scores over the games. Human 
performance is indicated in red (N = 20 per speed); model 

performance is indicated in blue (N = 90 per speed). Shaded 
areas indicate the standard error of the mean (S.E.M). 



In terms of keypress sequencing, both models and humans 
showed similar levels of entropy with an increase for slower 
games. (Figure 4a), but humans’ entropy progressively 
decreased in early games towards their asymptote whereas 
models’ entropy was constant across all games. We think 
this reflects the fact that models have a constant strategy, 
whereas subjects’ strategies are evolving during the early 
games and they only settle down to a constant strategy in 
later games. 

The results with respect to ISI variability (Figure 4b), are 
similar to entropy. While models show some decrease over 
games, subjects show a more drastic decrease with a large 
early drop in the 2 first games. We think this reflects 
subjects’ evolving strategy and progressive adaptation to the 
game’s shot timing constraints.  As such, early changes will 
produce large changes in motor timing. 

 
Figure 4: a) Entropy over the games in humans and models. 

b) Logarithm of the inter-shot intervals (ISI in ms) 
coefficient of variation (CV). Shaded areas indicate the 

standard error of the mean (S.E.M). 
 
Analysis of shot timing autocorrelations provided 

periodicity and regularity measures (Figure 5). With regards 
to the shot periodicity, humans and models were quite 
similar.  Both had shot timings within the assigned game 
speeds’ firing intervals (see Figure 5a), and both models and 
subjects showed an increase in periodicity in the slow speed 
condition. (see Figure 5b).  That increase reflected an early 
tendency to fire too soon, which both models and humans 
had to learn to change. 

Both models and humans showed an increase in regularity 
over games, but human regularity increased as the game 
speed got faster whereas model regularity did not increase 
with speed.  The regularity in the model reflects its timing 
mechanism, which is a variant of the attentional gate model.  
That model produces a variability that scales with duration, 
so that regularity will not change much. In contrast, subjects 
may be changing their timing processes as they move to 
timing actions well under a second. 

 
Figure 5: a) Periodicity over the games in humans and 

models. b) Regularity over the games. Shaded areas indicate 
the standard error of the mean (S.E.M). 

 
Linear Mixed-Effects Model 
We hereby report the LMEM results pertaining to humans 
and ACT-R models separately. Table 2 displays the human 
LMEM results. Three models were fitted to each game 
speed data set. Entropy and the logarithm of the ISI 
coefficient of variation were both predictive of performance 
across all speeds. A decrease in entropy was reliably 
predictive of performance, and both lower and upper bounds 
of the confidence interval were negative. Similarly, a 
decrease in ISI variability was also reliably predictive of 
performance across all speeds. With respect to the shots 
autocorrelation measures, a positive effect of regularity 
(more regular) on performance and negative effect of 
periodicity (faster firing rate) on performance were found in 
the fast and medium game speeds, but not in the slow game 
speed. All significant effects are in line with our 
expectations about these factors.  The fact that regularity 
and periodicity are not predictive in the slow game speed 
reflects the fact that it is not time pressured. 

 
Table 2: Human LMEM results across game speeds 

 

 
Table 3 displays the ACT-R models’ LMEMs. We found 

a consistent positive effect of shot regularity on 
performance across all three game speeds. In contrast to 

Table 1: Description of the three game speed conditions

Game Speed Speed Multiplier Resets Deflations Points

Fast 1.0 250 ms 600 ms 100/burst

Medium 0.5 500 ms 1,200 ms 200/burst

Slow 0.25 1,000 ms 2,400 ms 300/burst

Table 2: Human Linear Mixed-E↵ects models across game speeds

Game Speed - Human

Fast Medium Slow

Estimate 95 % CI Estimate 95 % CI Estimate 95 % CI

Entropy �490
⇤⇤⇤

(�638, �312) �641
⇤⇤⇤

(�844, �421) �295
⇤⇤⇤

(�452, �136)
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⇤⇤⇤

(�242, �84) �84
⇤

(�161, �12) �146
⇤⇤⇤

(�206, �83)

Regularity 1171
⇤⇤⇤
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⇤⇤

(469, 1677) 378 (�141, 943)

Periodicity �1.31
⇤⇤⇤

(�2.25,�0.38) �0.52
⇤⇤⇤

(�0.87,�0.15) 0.10 (�0.03,0.23)

Adjusted R2
0.88 0.88 0.79

⇤⇤⇤p < .001;
⇤⇤p < .01;

⇤p < .05

Table 3: ACT-R simulations Linear Mixed-E↵ects models across game speeds

Game Speed - ACT-R models

Fast Medium Slow

Estimate 95 % CI Estimate 95 % CI Estimate 95 % CI

Entropy �451
⇤⇤⇤

(�531, �372) �15 (�118, 97) 53 (�22, 127)

Log CV ISI 1034
⇤⇤⇤

(896, 1177) �372
⇤⇤⇤

(�531, �205) 604
⇤⇤⇤

(477, 734)

Regularity 974
⇤⇤⇤

(745, 1201) 1043
⇤⇤⇤

(754, 1348) 558
⇤⇤⇤

(326, 822)

Periodicity �0.05 (�0.40,0.27) �0.62
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Table 2, there are a number of significant effects in the 
opposite direction of expectation. Increased periodicity is 
associated with more points in the slow condition.  We think 
this is associated with the initial too-fast firing in the slow 
condition (Figure 5) and is partly responsible for the lack of 
an effect for humans in Table 2.   The other discrepancy is 
that greater ISI variability was predictive of higher 
performance in the fast and slow game speeds.  This is 
puzzling, because in terms of simple correlation, there is no 
correlation between points and this measure in the fast game 
(r = .005) and a weak negative correlation in the slow games 
(r = -.196).  The direct correlation for medium speed, where 
Table 3 shows the expected negative effect, is .581. 
 
Table 3: ACT-R models LMEM results across game speeds 

Discussion and Conclusion 
ACT-R models and humans showed similar improvement 
scores in the Auto Orbit video game. Motor skill acquisition 
was characterized by a fast performance increase in early 
games, and a slower learning rate in later games where 
performance progressively plateaued towards an asymptote. 
In terms of motor behavior, humans and models both 
learned to be more regular and less variable in terms of 
keypress sequential patterns and shot timing. One challenge 
in the Auto Orbit video game was for players to learn how 
to shoot within a firing interval bounded by resets and 
deflations. Shot timing autocorrelation analyses revealed 
that humans and models learned to fire missiles within their 
assigned game speed firing interval (periodicity) with 
increasing rhythmicity (regularity). 

Nevertheless, our analyses also revealed a number of 
motor learning differences between humans and models 
which are worth discussing. First, we found that humans’ 
keypress patterns and shot timing were more variable than 
models, particularly in early games, but quickly converged 
towards models’ variability levels as performance increased. 
These variability patterns in humans fit with previous 
neuroscience (Wu et al., 2014) and motor skill learning 
research (Caramiaux et al., 2018) suggesting that motor and 
timing variability may predict performance over the course 
of motor skill acquisition.  

Second, while shot regularity increased in a similar 
fashion at the slow speed across humans and models, we 
found that human subjects’ shot regularity levels were 
higher at faster speeds, whereas models’ regularity levels 
remained constant across speeds. This result may be due to a 

higher reliance on motor circuits (Lewis & Miall, 2003) and 
subcortical modulation (Ivry & Spencer, 2004; Koch et al., 
2007) under fast speed constraints. Specifically, past 
research suggests that motor timing tasks involving fast 
discrete actions such as repetitive keypresses may heavily 
recruit the cerebellum through dynamic sensorimotor 
learning and motor error correction (Koch et al., 2007; 
Breska & Ivry, 2016).  

While model performance and motor learning were 
relatively close to humans, improvements can be made to 
optimize the ACT-R model and better simulate human 
motor skill acquisition. One option would be to change the 
parameterization of ACT-R to make the model more 
variable, both within- and between-models. In terms of 
within-models variability, one could vary the noise levels 
and learning rates related to different components of the 
model. One example is the temporal module noise 
parameter whose increase may lead to further shot timing 
variability in ACT-R. Another example is the utility 
learning and production compilation learning rate (𝛼 in 
equation 1), which controls the speed at which newly 
formed productions replace their original parent 
productions. Specifically, high values of 𝛼 typically lead to 
a faster rate of production compilation and skill acquisition 
whereas low values of 𝛼 typically lead to a lower rate of 
production compilation and skill acquisition. One last 
example is the initial temperature (A in equation 2), whose 
value assignment may lead to different degrees of 
randomness in control tuning. Generally, lower initial 
temperatures enable the model to incorporate more of its 
learning experience into its game play, but they also 
increase the risk of converging towards non-optimal values 
if the initial temperature is too low. 

As to between-models variability, past research by 
Anderson et al. (2019) explored potential performance 
fluctuations related to the adjustment of a few selected 
parameters. Specifically, the authors explored the effects of 
𝛼 (see equation 1) in the [0.025, 0.3] range, and the initial 
temperature (A in equation 2) in the [0.1, 2.0] range. It 
would be of interest to further explore the stochastic 
initialization of these parameters in our current ACT-R 
model to determine whether one could replicate humans’ 
inter-subject variability patterns. 

A second option would be to modify the initialization of 
operators to enable the model to adjust its behavior to a fast 
vs. slow game speed depending on shot timing threshold 
information in the controller module. Alternatively, one 
could vary the order in which operators are retrieved at 
different phases of the game such that the model would 
initially prioritize shooting over aiming, but would 
progressively switch to a more optimal strategy that 
prioritizes aiming over shooting. 

Last but not least, our current results strongly suggest that 
ACT-R’s current motor module needs the ability to adjust 
its motor behavior according to the speed at which it 
executes motor actions. One striking result was that human 
shot timing became increasingly rhythmic as the game 

Table 1: Description of the three game speed conditions

Game Speed Speed Multiplier Resets Deflations Points

Fast 1.0 250 ms 600 ms 100/burst

Medium 0.5 500 ms 1,200 ms 200/burst

Slow 0.25 1,000 ms 2,400 ms 300/burst

Table 2: Human Linear Mixed-E↵ects models across game speeds

Game Speed - Human

Fast Medium Slow

Estimate 95 % CI Estimate 95 % CI Estimate 95 % CI

Entropy �490
⇤⇤⇤

(�638, �312) �641
⇤⇤⇤

(�844, �421) �295
⇤⇤⇤

(�452, �136)

Log CV ISI �164
⇤⇤⇤

(�242, �84) �84
⇤

(�161, �12) �146
⇤⇤⇤

(�206, �83)

Regularity 1171
⇤⇤⇤

(732, 1650) 1062
⇤⇤

(469, 1677) 378 (�141, 943)

Periodicity �1.31
⇤⇤⇤

(�2.25,�0.38) �0.52
⇤⇤⇤

(�0.87,�0.15) 0.10 (�0.03,0.23)

Adjusted R2
0.88 0.88 0.79

⇤⇤⇤p < .001;
⇤⇤p < .01;

⇤p < .05

Table 3: ACT-R simulations Linear Mixed-E↵ects models across game speeds

Game Speed - ACT-R models

Fast Medium Slow

Estimate 95 % CI Estimate 95 % CI Estimate 95 % CI

Entropy �451
⇤⇤⇤

(�531, �372) �15 (�118, 97) 53 (�22, 127)

Log CV ISI 1034
⇤⇤⇤

(896, 1177) �372
⇤⇤⇤

(�531, �205) 604
⇤⇤⇤

(477, 734)

Regularity 974
⇤⇤⇤

(745, 1201) 1043
⇤⇤⇤

(754, 1348) 558
⇤⇤⇤

(326, 822)

Periodicity �0.05 (�0.40,0.27) �0.62
⇤⇤⇤

(�0.82,�0.43) 0.32
⇤⇤⇤

(0.21, 0.44)

Adjusted R2
0.73 0.66 0.65

⇤⇤⇤p < .001;
⇤⇤p < .01;

⇤p < .05
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speed got faster. One way of modeling this time-related 
effect of speed on motor behavior would be to augment the 
current motor module with its own timing component, such 
that the model would fire missiles with increasing 
rhythmicity at faster speeds. This novel addition would fit 
with ACT-R being a template of human behavior. 

In sum, we have shown that human motor skill learning 
was characterized by time-independent and time-dependent 
effects of speed. On the one hand, variability in keypress 
sequencing and motor timing were shown to predict skill 
acquisition regardless of the game speed. On the other hand, 
motor timing regularity and periodicity were shown to only 
be predictive of performance in the sub-second range. As a 
way to model these effects in ACT-R, we suggest a number 
of improvements which include incorporating a timing 
component into ACT-R’s motor module. 
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