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Abstract

This paper presents an ACT-R model designed to simulate
voting behavior on full-face paper ballots. The model
implements a non-standard voting strategy: the strategy votes
first from left to right on a ballot and then from top to bottom.
We ran this model on 6600 randomly-generated ballots
governed by three different variables that affected the visual
layout of the ballot. The findings suggest that our model’s error
behavior is emergent and sensitive to ballot structure. These
results represent an important step towards our goal of creating
a software tool capable of identifying bad ballot design.
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Introduction

Voting is hard. The deliberations and conversations that go
into choosing who best represents one’s interests is an
important and time-consuming task, one that might be argued
to be the very backbone of a democracy. Understandably,
many may believe that the subsequent task of correctly
indicating one’s chosen candidate is comparatively easy and
straightforward. Surely once a voter gets the ballot and can
mark whoever they please, the hard part is over.

Often, this is correct. When ballots are designed well,
errors voters make are not systematic and generally will not
help or hurt any particular candidate. However, when ballots
are designed poorly, they may lead to systematic voting
errors. It is possible such errors do not matter if margins of
victory are large and thus such issues may go unnoticed.

However, in closely-contested elections it is not the general
case that is important. There have been numerous elections in
the past 20 years that have been documented as having been
decided by systematic voting errors caused by bad ballot
design. This ranges from the infamous “butterfly ballot” in
Palm Beach County, Florida in the year 2000 (Wand, et al.,
2001) to the most recent major U.S. election in 2018, where
a U.S. Senate seat (also in Florida) was almost certainly
decided by a poorly-designed ballot (Chisnell & Quesenbery,
2018). For a review, see Norden, et al. (2008).

While election interference by hacking is a far more flashy
and obvious risk, there has never been clear evidence that this
has swung an election, unlike with bad ballot design.
Ironically, the fear of hacking has led to a return to paper
ballots, which with their profusion of races packed onto small
sheets of paper makes ballot design even more important.

The most likely errors caused by poor ballot design are
under- and overvoting. An undervote is an error that occurs
when the voter fails to vote on a race that they intended to,

whereas an overvote is when a voter votes on a race more
than the allowable number of times (usually, more than once).
The problem of designing a ballot that will not cause people
to systematically under- or overvote is challenging. For
instance, it might entail running a usability study weeks
before the actual election. What makes the problem so
difficult is the sheer number of counties in the United States
(over 3000), each of which designs their ballots differently
and each of which have hundreds of different iterations of
ballots for each precinct they are responsible for. Manually
checking each ballot with a usability study is infeasible.

One possible solution to this problem is software that could
automatically check an arbitrary ballot for common design
errors. However, such a solution would only find errors that
had been previously made by voters on other ballots. If the
task is to predict if humans will make a mistake on a novel
ballot, it is difficult to imagine that chasing only known errors
will be sufficient. Here is where ACT-R (Anderson, 2007)
modeling comes in. Since ACT-R is generative, it can predict
behavior on any ballot and is not limited only to errors that
have been made previously.

Building such a predictive model is itself an extremely
challenging task because it would have to be able to predict
all historical voting errors as well as any new ones. For
example, while Green (2010) built an ACT-R model that
could make the same mistake voters did in a specific famous
ballot (the 2006 Sarasota County ballot), it was limited to
replicating one specific error behavior.

Thus, Wang, Lindstedt, and Byrne (2019) present the
outline for an ambitious project: a model that can simulate
the entire space of possible voting behaviors. They presented
a smaller scale version of this end goal model. The model ran
in a voting environment called VoteBox, a simulated
electronic ballot, consisting of a single race per screen and a
“next” button to navigate.

Nevertheless, within just this simple task was hidden great
complexity: the model used a total of 40 different voting
strategies  constructed  from  differing levels of
ballot/candidate knowledge and navigational strategy
selections. The voters differing strategies and knowledge led
to different rates of error, showing that a model voter’s
strategy made a difference on whether or not it was able to
accurately vote for its intended candidates. However, this
effort was preliminary in that it did not vary the design of the
ballot; it simply demonstrated that errors were emergent from
a particular combination of task strategy and memory
contents.



In this paper, we describe a model that represents the
natural extension of this system to show that errors can
emerge from the interaction of strategy and ballot design.
This model also works in a more challenging visual
environment: it handles simulated full-face paper ballots. A
full-face ballot is one that has all the races on a single display
(usually a piece of paper). This extension introduces new
model building challenges. Our new models must navigate
both between and within races, and our model creation
process must be flexible enough to explore an even larger
voting strategy space.

Unsurprisingly, the increased complexity of a full-face
paper ballot leads to increased model error. Thus, we also
describe the error rates of simulated voters on differing
simulated ballots. This represents an important step towards
our end goal of constructing a generative model able to
identify bad ballots.

Method

First, we will describe the design of our full-face ballots, then
the design of the model, and our simulation of the model
across many possible ballot designs.

Ballot Design

We built simulated full-face paper ballots for the model
which consist of a virtual screen populated with several
columns of races. Each race has a title, a list of candidates
and their associated parties, and a list of buttons that the
model can click to vote for a candidate. (see Figure 1).
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Figure 1: Top left corner of a simulated ballot.

The resulting simulation is not quite the same as an actual
paper ballot. For example, the model clicks on a button
instead of filling in a circle and does not obscure the ballot
with its hand while doing so. However, the ballot is typical in
visual layout, which we believe is similar enough to cause
many of the same errors we expect human voters to make.

Because ACT-R’s nascent ability to group visual items is
somewhat limited (Lindstedt & Byrne, 2018), we had to work
around this. So, to help the model navigate, we colored the
race header red, the candidates purple, and the parties blue.
The coloring allows the model to make visual location
requests like “the closest red text in the column to the right”
(when finding the closest race) or “the closest purple text to
my current position” (when finding the candidate group of
the currently attended race). Since we suspect humans can
also reliably differentiate between race headers, candidates,
and parties by using the visual characteristics of the ballot,
we believe coloring the ballot does not give the model an
unfair advantage. However, we are exploring alternative
ways to work around this problem.

Model Design

We built the model with one overarching goal in mind: to
simulate as wide an array of voters as possible.

Our modular system split a simulated voter’s strategy into
four different pieces: (1) macronavigation, the process of
moving from one race to the next; (2) visual encoding, the
process of determining the race, party, and candidate visual
groups for each race; (3) micronavigation, the process of
finding the intended candidate to vote for within each race;
and (4) selection, the process of actually clicking on the
button corresponding to the chosen candidate. At runtime we
selected one strategy from each of these categories and
combined them together with a declarative memory file to
build an ACT-R model. Note that how the model does pieces
2—4 was taken directly from the Wang et al. (2019) model.

Designing A New Strategy

We first built the most obvious option for each strategy
category because we wanted our initial strategies to lead to a
composite voting strategy with no errors. We wanted to
ensure that our model worked before we started varying
pieces to induce errors.

Our first strategy after these obvious ones was a non-
standard macronavigation strategy. Our model’s standard
macronavigation strategy was top to bottom left to right; that
is, the model started in the top left corner and went all the
way to the bottom of the column and then went over to the
next column to the right and again went top-to-bottom,
repeating until it was finished. This is the most obvious
method of macronavigation, and as noted above resulted in
no mistaken votes. The first alternative macronavigation
strategy we built was left to right top to bottom.

The left to right top to bottom strategy starts on the upper
leftmost race on the ballot. It then proceeds to the right,
navigating to the closest race to the last race it voted on in the
next column over, and repeating until it votes on a race in the
last column. Then, it goes back to the beginning of the row,
finds the next race down in the left column, and repeats
voting from left to right. The model continues until it runs out
of new races in the left column.

On our ballots the races in each column are horizontally
aligned, as might be expected. However, when race lengths
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Figure 2: The green arrows mark the first part of the left to right top to bottom model’s voting pattern on this specific ballot.
The model skips CommisionerofAgriculture.

are allowed to vary, races in different columns are not
vertically aligned, as the generation process always placed
each race a set distance below the last race. Because our new
macronavigation strategy proceeded initially from left to
right, when races were vertically misaligned our model could
miss races. Note that when the ballot is a perfect grid where
all races are vertically aligned, the model does not make
errors. It is the interaction of this strategy with the design of
the ballot that results in errors. For an example of the model
missing a race on a typical ballot, see Figure 2.

In Figure 2, when the model reaches the third race down in
the left column (“United States Representative District 77) it
votes on that race and then proceeds right along the row,
selecting and voting on the closest race and repeating until it
reaches the last column. The model then returns to the race at
the beginning of the row and proceeds to the first race on the
next row down (“Governor”). Here is where it makes its
mistake: because the “Railroad Commissioner” race is the
closest race to “Governor,” the model votes on “Railroad
Commissioner” for its second race in the row and so skips
Commissioner of Agriculture. It never returns and votes on
this race.

We observed that the races our new strategy missed
depended on the layout of the races on the ballot and

determined it was critical to understand if this was

systematic.

Experiments

Once we had a simulated voter making structure-based
mistakes, we decided to test how these mistakes changed as
a function of the ballot layout. Initially, our ballot was static,
consisting of a manually-positioned set of races and
candidates. Our first step was modifying the ballot so it could
be dynamically generated. Every time we ran the model, our
generation process allowed us to vary the vertical spacing
between races, the vertical space between the race header and
the candidates, and the vertical space between candidates. We
chose ranges of the variables that led to ballots our model
could still realistically parse but that nevertheless were
visually distinct (see Table 1). As the ballot was generated
each race was randomly selected to have between 1 and 4
candidates.

Table 1: Ballot Layout Variables

Variable Range (Pixels)
Space between races 5-15
Space between header and candidates 20 - 22
Space between candidates 15-18




For each one of the 132 possible combinations of spacing
variables (see Table 1), we ran the model on 50 randomly
generated ballots. Thus, our model was run on 6,600 ballots
for a total count of 158,338 individual races. For each run, we
recorded the exact race positions and race order on the ballot,
as well as the order the model voted on races (including any
races the model missed).

The data allow us to characterize this strategy and identify
how and where it fails. We will also describe good and bad
ballot design by seeing which designs lead to more error in
the model. This will serve as a case study for how new
strategies built on our architecture will find errors in novel
ballots.

Results

First, we define model percent error, the percent of races that
our model skips. Our model’s global percent error is around
13.04%, meaning that, on average, given a random race on a
ballot there is a 13.04% chance that our model will not vote
on it. This rate is certainly much higher than any experimental
rate in human voters, but as this strategy is nonstandard, this
result is to be expected. Of course, most people do not make
anywhere near these many errors, but average error rates in
the wild likely stem from outliers like this strategy.

Effects of Race Location

We first examine the relationship of race location on the
ballot to model error. We observe that there is a general trend
of increasing error across columns (see Figure 3). In other
words, races in columns that are further to the right are more
likely to be skipped.

Percent Error
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Figure 3: Average percent error across races in the left,
middle, and right column across all ballot runs

In fact, since we recorded the exact y coordinate and
column for every race on every ballot, we can generate a

heatmap of error rate by race position on the ballot (see
Figure 4). Each bin collates the percent error of the model on
races within 10 vertical pixels, where the y position of a race
is its header.
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Figure 4: Heatmap of the model’s error according to races’
column number and y position.

Of interest are places in Figure 4 where errors are likely.
One immediately obvious place is the bottom right corner,
where average percent error approaches 1. The model almost
always misses races there. To make sense of this result, we
observe that the only way a race can have its start in one of
those bottom right boxes is if it is very short. It makes sense
that for short races nestled in the bottom corner, people will
frequently get to the last race in the left column and vote
across that row not low enough to reach the bottom corner
races.

However, other than this, errors are more or less uniformly
distributed across the ballot. This result hints at the strength
of our model: errors occur seemingly randomly across the
ballot because they are emerging from the specific structure
of individual random ballots. Thus, using our data of each
experiment’s race layout, we move onto examining how
specific elements of ballot structure influence model error.

Effects of Ballot Structure

We first examine the error rate as we vary the amount of
vertical space between the end of each race and the beginning
of the next. Recall that vertical space is just one of the spacing
variables we manipulated (see Table 1). Thus, each specific
vertical spacing value includes many observations from
ballots built from combinations of the other spacing
variables. While we did examine these other spacing
variables, we found they had no significant effect on the
model’s error rate.

As the space between races decreased, voting error
increased (see Figure 5). This result validates the intuition
that the more cluttered a ballot is, the more likely a simulated
voter is to miss a race.
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Figure 5: Each black dot is the average percent error across
all ballots with a specific race spacing. The blue line is the
linear regression for the trend, the red line is the average
error of the model, and the shading represents 95%
confidence intervals for the line.

We also examined how the length of a race was related to
the chance it would be skipped and found similar results: as
the length of a race decreased, the model’s chance of skipping
it (its error rate for races of that length) increased (see Figure
6). Of note, single-candidate races are most likely to be
missed, but of course skipping such a race will not change the
outcome of an election, since unopposed candidates are
guaranteed to win.
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Figure 6: Average error rate of the model on races of one

candidate, two candidates, three candidates, and four
candidates.

Finally, we looked at how the model’s error rate varied as
a function of the vertical distance from a given race to the
nearest race to it in the last column. In Figure 7, we show a
stacked bar plot of races missed and races voting on
according to this variable. This graph shows two things: one,
that the chance a simulated voter misses a race increases as
the closest distance to the last race increases, and two, that
the number of races that are far from any prior race decreases

as the distance increases. The reason that the distribution is
non uniform, with peaks in the 0 bin, 15-20 bin, 30-35 bin,
and 45-50 bin, is a result of the way ballots were generated.
The candidate spacing varied from 15 to 18 pixels (see Figure
2), and it was frequently the case that the closest race in the
last column was an integer multiple of candidate space away.
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Figure 7: Stacked bar plot of the number of races voted on
and not voted on across all model runs, plotted according to
the vertical distance between the race and the closest race in

the last column (bins of 5 pixels).

This graph more than any other illustrates the model’s
tendency to miss races that are not lined up in a row; building
and running the simulation allows us to identify what these
races are for any given ballot.

Conclusion

Races were more likely to be missed if they were smaller, out
of alignment with the races in other columns, or more
cramped overall. These are all characteristics of bad ballots
that our model detected organically. The detection behavior
emerged out of the design of the strategy; it was not
hardcoded. The fact that the model’s error behavior was
unplanned and emergent is in line with the long-term plan of
building models that can produce novel errors on novel
ballots.

Notably, using a non-standard macronavigation strategy
amplified our ability to detect bad ballots. For instance, a
strategy moving in the same direction as the races were
originally placed might not mind if the races were very close
together, but any other strategy would. Ballot designers need
to cater to less common strategies, so an ability to detect
when ballots will cause systematic errors in voters using these
strategies is crucial.

Indeed, we should note that the average error for this
strategy is far higher than the average error for all voters,
even assuming as we did that once a voter found a race they
would successfully vote on it (choosing a perfect
micronavigation strategy, in the parlance of our model). Most
real voters probably use a more successful macronavigation



strategy. They also may take additional steps we do not yet
account for, like scanning the ballot again to see if they
missed any races. However, if even a subset of voters uses
this strategy, or one like it, then we must account for them in
our model, as a subset of voters can still have a deciding
impact on a close race.

Thus, one of our next steps will be to map the space of
macronavigation strategies by running eye tracking
experiments. This research will seek both to find new types
of voting strategies and to estimate their prevalence in the
voting population. Then, once we build models that represent
all of these voting strategies, we will be able to build a ballot
analysis tool that runs ballots through each model and
weights the resulting error rates by how often people actually
use the strategy. Our goal is to be able to use this tool to come
up with a global error rate prediction for an arbitrary ballot,
preventing badly designed ballots from ever reaching voters.

To implement these new strategies, we will need to expand
the capabilities of ACT-R itself. We plan to start by extending
the visual grouping module to group objects in a hierarchy
and by adding new options for visual navigation. With these
new capabilities, we will be able to build new sub-strategies
for the model, including new ways for the model to encode
the candidate, party, and race groups and new ways for the
model to find and click the circle corresponding to a
candidate. Each strategy will have a characteristic error
pattern like we described in this paper, and together the set of
strategies will span the possible space of errors.

Thus, while some of the findings in this paper may seem
obvious, they must partly be viewed in the light of the wider
project. Our model was able to vote on a wide array of ballots
that looked visually different and successfully make
consistent errors. More than just characterizing the type of
ballots and races that are more disposed to be skipped by a
specific voter, these findings confirm the feasibility of
attempting to eventually predict errors in novel ballots.

Furthermore, the model makes an interesting additional
prediction: since our model is more likely to miss races in the
center and right columns, and more likely to miss smaller
races, the models predicts that average voter error should be
higher on down ballot races in the real world (as some voters
may use a similar left to right strategy). This skew is likely to
be more severe in years with a presidential race, since there
are often many candidates running for president, meaning
that the first race in the left column would be very long, thus
making it more likely that other columns races will not be
aligned.

We can even use our results to generate applied advice for
a hypothetical election official who must build a ballot with
races of varying length. Such an official should strive to line
up race headers as much as possible, sacrificing races per
page by leaving blank space so that races can be aligned (this
would help increase accuracy not only with the specific
strategy we tested, but any strategy that goes left to right).
Moreover, the official should try not to squeeze races into the
bottom right corner, and in general try to keep the ballot
uncluttered by putting as much space between races as

possible. The official might even consider making the space
within races more cramped to make the delineations between
races clearer, although this will introduce the possibility for a
voter filling in the wrong bubble or missing the candidate
they want to vote for. Future models we build will predict
these errors as we continue towards our goal of constructing
a model that can simulate all possible voter behavior.

Acknowledgments

This research was supported by grants #11S-1920513 and
#CNS-1550936 from the National Science Foundation. The
views and conclusions contained herein are those of the
authors and should not be interpreted as representing the
official policies or endorsements, either expressed or implied,
of NSF, the U.S. Government, or any other organization.

References

Anderson, J.R. (2007). How can the human mind occur in
the physical universe? New York: Oxford University
Press.

Chisnell, D., & Quesenbery, W. (2018). How a badly-
designed ballot might have swayed the election in
Florida. Washington Post, November 12, 2018.
Retrieved from
https://www.washingtonpost.com/outlook/2018/11/12/h
ow-badly-designed-ballot-might-have-swayed-election-
florida/

Lindstedt, J. K., & Byrne, M. D. (2018). Simple
agglomerative visual grouping for ACT-R. In I. Juvina,
J. Houpt, & C. Myers (Eds.), Proceedings of the 16th
International Conference on Cognitive Modeling (pp.
68-73). Madison, WI: University of Wisconsin.

Norden, L., Kimball, D., Quesenbery, W., & Chen, M.
(2008). Better Ballots. New York, NY: Brennan Center
for Justice, NYU School of Law.

Wand, J. N., Shotts, K. W., Sekhon, J. S., Mebane, W. R.,
Herron, M. C., & Brady, H. E. (2001). The butterfly did
it: The aberrant vote for Buchanan in Palm Beach
County, Florida. American Political Science Review,
95(4), 793-810.

Wang, X., Lindstedt, J. K., & Byrne, M. D. (2019). The
model that knew too much: The interaction between
strategy and memory as a source of voting error. In
Stewart, T.C. (Ed.) Proceedings of the 17th
International Conference on Cognitive Modeling (pp.
283-288).Waterloo, Canada: University of Waterloo.



https://www.washingtonpost.com/outlook/2018/11/12/how-badly-designed-ballot-might-have-swayed-election-florida/
https://www.washingtonpost.com/outlook/2018/11/12/how-badly-designed-ballot-might-have-swayed-election-florida/
https://www.washingtonpost.com/outlook/2018/11/12/how-badly-designed-ballot-might-have-swayed-election-florida/

