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Introduction
Questions of strategy selection have been studied in various
contexts such as problem solving, text editing, and even
dynamic, fast-paced tasks. One way to model the strategy
selection process is as a learning and decision problem:
with experience, the agent learns the expected utilities of
strategies, and executes a strategy based on what it has
learned (Lovett & Anderson, 1996).

It is important to note that the strategies studied in most of
the past research have relatively stable utilities. Even when
the task structure is manipulated to change the utilities of
strategies, these changes are relatively infrequent (Schunn &
Reder, 2001). This contrasts with many real-world skills,
such as sports and video gaming, where different strategies
are optimal at different points during the learner’s trajectory.
As a learner practices a skill, improvements in the learner’s
degree of perceptual-motor calibration to the physics of
tools and devices interacts with the difficulty of executing
a strategy to affect the strategy’s utility. Furthermore, it is
often unknown what the maximum utility of any strategy will
be, as this is partly determined by the learner’s own general
perceptual-motor abilities and prior experiences.

How humans learn and select strategies in the face of
such variation and uncertainty behooves further investigation.
Towards that goal, we present a task and strategy paradigm
that captures many of the features of a typical complex skill.
We also examine possible interactions between strategy use,
perceptual-motor calibration, and task knowledge using past
experimental data and model simulations within the Adaptive
Control of Thought-Rational (ACT-R) cognitive architecture.

Space Track
Space Track is a video game developed by Anderson et al.
(2019). The player’s goal is to earn points in 3-minute trials
by navigating a spaceship along a racetrack comprising of
rectangular segments (Fig. 1). Completing a rectangle awards
25 points, while crashing into the track walls loses 100 points.
Players control the ship using three keys: “A” and “D” to
rotate counter-clockwise and clockwise, and “W” to thrust.

Space Track is similar to many sports and video games
in three ways. It simultaneously engages visual, motor, and
cognitive processing, requires the rapid and precise execution
of actions, and has a relatively high performance ceiling. In
the study by Anderson et al. (2019), the average human scores
around 900 points by the end of 40 trials. This is far under
2350, the highest number of points achieved by one subject.

Figure 1: An example Space Track screen

Turning and Calibration
Successful navigation relies on learning the physics of the
game. Unlike real-life driving, the racetrack in Space Track
is frictionless. To get a car to travel along some desired
trajectory, a driver would orient the front wheels to align with
that trajectory and then accelerate. If a naı̈ve turner attempts
the same in a frictionless space, they will instead send the
ship careening away from the desired trajectory due to the
residual velocity from the previous trajectory. Turning in
frictionless space requires turning less than the desired angle
and thrusting until the ship is flying in the desired direction.
For any desired speed along the new trajectory there is a
unique angle of under-turn that achieves it. Skilled players
seem to have learned this angle and how long to thrust.

Through practice, players also gain experience calibrating
their perceptual-motor system to account for the continuous
and dynamic nature of the game. Human perceptual-motor
processing requires time, with an average minimum of 190ms
between detecting a visual scene and executing a keypress
(Woods et al., 2015). Even a delay of 100 ms between
detecting the ship’s orientation and lifting the finger from the
turn key results in an additional 18 degrees of rotation. Thus,
the player needs to account for that lag time by learning the
appropriate visual cues for beginning an action. Similarly, a
player needs to learn how close to the desired new angle they
should be before lifting their thrust finger.



Stopping as a strategy
One potential strategy we identified from prior experiments
(Seow et al., 2019) involves rotating the ship in the direction
opposite to its current trajectory and thrusting until the ship
comes to a halt. Stopping at track corners compensates
for naı̈ve turning, since the resultant trajectories from naı̈ve
and optimal turners are identical when the ship is stationary.
Stopping also gives inexperienced and less calibrated players
more time to react to changes in track curvature.

On the flip side, stopping limits average ship speed, which
in turn limits the maximum possible distance a player can
cover within each 3-minute trial. Thus, it is not immediately
obvious whether stopping has a positive or negative utility.

Using data from Seow et al. (2019), we found that
increased stopping did not predict a change in the average
points earned per trial (Fig 2). Rather, increased stopping
correlated with a narrower range of points, raising the floor
while lowering the ceiling. This suggests that when scoring
is below the mean, increased stopping use might improve
performance, but when it is above that mean, increased
stopping use might instead lead to worse performance.

Figure 2: Points per trial in humans. The blue line tracks the
average points earned across proportions of stopping.

Stopping, Turn Optimality, and Experience
To test these potential tradeoffs of stopping, we simulated
learning on Space Track using ACT-R models. We modeled
variations in turn optimality as 11 weighted combinations
of the contributions from the naı̈ve and optimal turning
algorithms. Differences in stopping use was captured by two
types of models, one that stopped at every corner, and one
that relied on its turn algorithm to navigate corners. Stopping
use was crossed with turn optimality to yield 22 models.

Stopping helps inexperienced agents and naı̈ve turners
but limits experienced agents and optimal turners (Fig. 3).
A regression model (r2 = 0.74) further showed that score
was predicted by the interaction between stopping, turn
optimality, and trial number (β = 2.19, SE = 0.65, p < 0.05).

Figure 3: Model points across trials. The stopping model
(in red) performs better than the non-stopper except when the
agent is an optimal turner and has had sufficient experience.

Conclusion and Further Research
We have identified a task and strategy paradigm that is
potentially suitable for understanding the processes that
underlie the learning and selection of strategies in complex
skills. With Space Track and the strategy of stopping, one
promising future direction is to apply and test current models
of decision making (e.g. Reinforcement Learning) on human
gameplay to investigate how basic decision processes account
for strategy shifts in complex skill acquisition.
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