
Cognitivemodels: An R Package for Formal Cognitive Modeling
Jana B. Jarecki (jana.jarecki@unibas.ch)

Center for Economic Psychology, University of Basel
Missionsstrasse 64A, 4055 Basel, Switzerland

Florian I. Seitz (florian.seitz@unibas.ch)
Center for Economic Psychology, University of Basel

Missionsstrasse 64A, 4055 Basel, Switzerland

Abstract

We introduce cognitivemodels—a free software pack­
age for formal cognitive modeling in the statistical pro­
gramming environment R. The package offers novice
modelers a collection of models and offers experienced
modelers a back­end for model development. This pa­
per introduces the syntax of the package by example.
The models in the software package include, for in­
stance, the generalized context model for categorization
(Nosofsky, 1986), cumulative prospect theory for risky
choice (Tversky & Kahneman, 1992), and a Bayesian
probability learning model. The package allows mod­
elers to estimate model parameters and to constrain pa­
rameters by box constraints and equality constraints; it
also allows to select choice rules such as soft maximum,
epsilon greedy, or Luce’s rule. It further offers modelers
a selection of goodness of fit measures such as a bino­
mial or normal log likelihood and mean­squared error,
and a selection of 22 numeric optimization routines for
parameter estimation. We believe this software package
may facilitate the usage and testing of formal cognitive
theories and may increase the robustness of cognitive
modeling.
Keywords: cognitive modeling; model building;
model testing; tutorial; R­statistics; software; robust­
ness of code

Formal models of cognition enjoy an increasing pop­
ularity in cognitive science, for instance, to describe
categorization (e.g., Nosofsky, 1986), judgments (e.g.,
Juslin, Olsson, & Olsson, 2003), and risky choice (e.g.,
Tversky & Kahneman, 1992). Over 100 such mod­
els have been developed in the past decades (Jarecki,
Tan, & Jenny, 2020). Formalizing psychological the­
ories can facilitate theory development and scientific
progress. Recent recommendations for improving psy­
chological science have not only emphasized replicable
empirical effects, but also called for an increase in for­
mal explanations of cognitive capacities (see e.g. Guest
& Martin, 2020; Navarro, 2019; Van Rooij & Bag­
gio, 2020). However, such cognitive models can only
be fruitful if they are implemented in a robust manner
(Lee, Chriss, & Vandekerckhove, 2019). One aspect of

robustness is code reproducibility, which refers to the
ability of a third party to reobtain a result by execut­
ing the original code (Benureau & Rougier, 2018; Wil­
son et al., 2017). Such robustness can be achieved by
implementing cognitive models in a software package,
such as the one presented here. The code in this soft­
ware package is robust, because the package includes
automatic tests of the modeling functions for invalid
inputs and consistency (so­called unit tests, see the
section Advantages of Cognitivemodels below). We
believe that this package may make modeling more
broadly accessible and may support the efforts towards
increased formalization of psychological theories.

The cognitivemodels package is a library for the
statistical programming environment R (R Core Team,
2019). It offers tools to estimate free model parameters,
impose parameter constraints, make model predictions,
and calculate the goodness of fit of models to data. The
functions in the package have a consistent syntax across
models which this paper introduces by example. Table
1 lists the models that the package currently provides
to model discrete responses, that is choices. The pack­
age also offers models for continuous responses such
as judgments which are not listed in the table. Table 1
shows that all models have a similar set of arguments
(see the column “Arguments to function call”). These
arguments will be detailed below in the section Setting
up a Generalized Context Model.

Because the cognitivemodels package provides a
collection of models from multiple domains in one li­
brary (see Table 1) it differs from existing modeling
packages in R which contain specific types of models.
Examples of such specific packages are pt for cumula­
tive prospect theory, Speekenbrink’s mcplr for multi­
cue probability learning, or MPTinR for multinomial
processing trees (Singmann & Kellen, 2013). Cogni­
tivemodels provides a toolbox for model application

https://github.com/gary-au/pt/
https://rdrr.io/rforge/mcplR/
https://rdrr.io/rforge/mcplR/

Table 1: Models in cognitivemodels

Arguments to function call
Model Function call formula data fix choicerule

Generalized context model (Nosofsky, 1986) gcm() y ~ x1+...+xn data list(x1="xn", xn=.5) string
Exemplar­based judgment (Juslin, Olsson & Olsson, 2003) ebm_j() y ~ x1+...+xn data list(x1="fn", xn=.5) string
Cumulative prospect theory (Tversky & Kahneman, 1992) cpt_d() y ~ x1+px+x2 | y1+py+y2 data list(alpha="beta",

beta=.8)
string

Shortfall (Andraszewicz, 2014) shortfall_d() y ~ x1+px+x2 | y1+py+y2 data list(delta="beta",
beta=.5)

string

Risk­sensitivity model (Houston & McNamara, 1988) hm1988() y ~ x1+px+x2 | y1+py+y2 data - string

Bayesian learning model (Griffiths & Yuille, 2008) bayes_beta_d() y ~ x1+x2 data list(priors = c(0.1,
2))

string

Power utility (Wakker, 2003) utility_pow_d() y ~ x1 | x2 data list(rn="rp", rp=.5) string
Soft­max choice rule (Sutton & Barto, 1998) softmax() y ~ x1 | x2 data list(tau=.1) string
Epsilon­greedy choice rule epsilon() y ~ x1 | x2 data list(eps=.2) string
Baseline baseline_mean_d() y ~ . data - ­

Baseline baseline_const_d() y ~ . data - ­
Note. Baseline models are stimulus­agnostic models that are often included in cognitive model comparisons. The models that have function call ending in _d are models for
discrete response data such as choices. The package offers versions of these models for continuous response data such as judgments (not listed), which have the same function call
except that the call ends in _c instead of _d.

and model development (the toolbox for model devel­
opment targets experienced modelers, it will not be out­
lined in this paper).

The cognitivemodels package v0.0.9 implements
computational models of cognition, it does not imple­
ment cognitive architectures such as ACT­R. It esti­
mates free model parameters with numeric optimiza­
tion or constrained numeric optimization such as max­
imum likelihood. Bayesian parameter estimation (e.g.,
Scheibehenne & Pachur, 2014) may be added in the fu­
ture.

Getting Started
Throughout this paper we use R v3.6.3 (2020­02­29),
the Rcpp package (v1.0.4.6), the latest matlib pack­
age (v0.9.4). The package cognitivemodels 0.0.9 is in­
stalled by running:

install.packages(devtools)
library(devtools)
install_github(

"janajarecki/cognitivemodels")

The package is loaded by running:

library(cognitivemodels)

The Generalized Context Model in the
Package cognitivemodels

We will introduce the syntax of cognitivemodels by
modeling categorization data with the generalized con­

text model (GCM, Nosofsky, 1986, 2011). The gener­
alized context model is a formal model of classification
which assumes that people infer the category member­
ship of a new stimulus based on how similar the stim­
ulus is to previously­experienced category members.
The stimulus is predicted to belong most probably to
the category to whose members it is most similar. For­
mally, the model computes the psychological similarity
between two stimuli 𝑖 and and 𝑗 based on the distance
between the features of the stimuli. The similarity is
given by: 𝑠𝑖𝑗 = exp (−𝜆 ⋅ [∑𝑓 𝑤𝑓(𝑥𝑓𝑖 − 𝑥𝑓𝑗)𝑟]𝑞/𝑟),
where 𝑥𝑓𝑖 and 𝑥𝑓𝑗 are the values of feature 𝑓 of stimuli
𝑖 and 𝑗, respectively. The similarity function has four
free parameters highlighted in red: 𝑤𝑓 is interpreted as
the relative attention to feature 𝑓 and constrained by
∑𝑓 𝑤𝑓 = 1 and 0 ≤ 𝑤𝑓 ≤ 1, 𝜆 governs the sen­
sitivity towards small differences between stimuli, 𝑞
governs the relation between distance and psycholog­
ical similarity, and 𝑟 is the norm of the distance met­
ric with 𝑟 ≥ 1; 𝑟 = 1 produces a city­block metric
and 𝑟 = 2 produces the Euclidean metric. The model
finally computes the evidence that stimulus 𝑖 belongs
to a category “1” as the sum of the similarities to pre­
viously encountered members of category “1” relative
to the similarity to all previously encountered stimuli:

Pr(𝐶 = 1, 𝑖) = 𝑏1 ∑𝑁1
𝑛=1 𝑠𝑖𝑛,𝐶=1

∑𝐶 𝑏𝑐 ∑𝑁𝑐
𝑛=1 𝑠𝑖𝑛,𝐶=𝑐

, where 𝑠𝑖𝑛,𝐶=1 is

the similarity between stimulus 𝑖 and the 𝑛th member of
category “1”. The last free parameter 𝑏1 is interpreted
as a bias towards category “1”, with ∑𝐶 𝑏𝑐 = 1 and
0 ≤ 𝑏𝑐 ≤ 1.

Setting up a Generalized Context Model

We fit the model to data from a supervised categoriza­
tion experiment in which participants learned to cate­
gorize lines into two categories by receiving feedback
about the true category (Nosofsky, 1989). The lines
were characterized by two features namely their size
and their tilting angle. Because the paper reports ag­
gregated data, we reconstructed the raw data which
is available by data(nosofsky1989long). We one
condition from this data called “size”. The syntax be­
low loads the data and sets up the model, it is explained
below the code.

Use the 'size' condition in the data
data(nosofsky1989long)
DT <- nosofsky1989long
DT <- DT[DT$condition=="size",]
D <- DT[!is.na(DT$true_cat),]

Fit the model to the data D
model <- gcm(

formula = response ~ angle + size,
class = ~ true_cat,
data = D,
choicerule = "none")

The function gcm() fits the generalized context
model and needs four arguments (see also the help
file: ?gcm). The arguments formula and class in­
dicate the columns in the data to be modeled (in our
data: “response”, “angle”, “size”, and “true_cat”). The
left side of the argument formula specifies the col­
umn that contains participants’ trial­by­trial categoriza­
tions, in our example this column is called “response”.
The right side of formula specifies the column names
of the stimulus features—here “angle” and “size”—
separated by a plus sign.1 The argument class spec­
ifies the column name in the data that holds the cat­
egory feedback, in our example this column is called
“true_cat”. The gcm() model automatically names

1While in categorization tasks the input in a given trial
is generally one single stimulus, different tasks exist where
multiple stimuli are presented simultaneously (e.g., when de­
ciding between two monetary gambles called gamble x, con­
sisting of outcomes x1 with probability px and outcome x2
else, and gamble y, consisting of outcomes y1 with proba­
bility py and outcome y2 else). In this case, the stimuli are
separated from each other by a pipe | (e.g., the formula for
predicting a participant’s gamble choice r between the afore­
mentioned gambles x and y is ~, x1 + px + x2 | y1 + py + y2,
see also Table 1).

each attention weight parameters (𝑤𝑓) after the col­
umn name of the corresponding stimulus feature. In
our model the attention weight parameters are therefore
called “angle” and “size”, referring to the attention al­
located to the angle and size feature, respectively. If
the feature columns in the data were called “x1” and
“x2” the corresponding formula would be response
~ x1 + x2 and the attention weight parameters would
be called “x1” and “x2”. The argument data specifies
the data which must be a data frame with the variables
that are modeled in the columns and with one choice
trial in each row. The argument choicerule speci­
fies which choice rule or action selection rule, if any,
the model uses to map continuous model predictions
to discrete responses. The currently available choice
rules are “argmax”, “epsilon”, “luce”, and “softmax”
(see cm_choicerules() for the allowed values). We
set choicerule = "none" to not use a choice rule.
The fitted generalized context model can be viewed by
calling the object in R that holds the model, in our ex­
ample this is model.

Estimation of Model Parameters

If a model has free parameters, the cognitivemodels
package estimates any free parameters of the model
by default. The parameter estimation uses a numeric
optimization method that searches the parameter space
to optimize the goodness of fit between the predic­
tions of the model and the observations in the data
given possible parameter constraints. Our example
code above estimates all the parameters of the gener­
alized context model using maximum likelihood with
a binomial probability density function. The result­
ing estimates for the free parameters can be viewed by
coef(model).

Different models in the cognitivemodels package
(Table 1) have different parameter spaces, that is the
names and ranges of the free parameters are model­
specific. The parameters of any model are documented
in the corresponding help file in the section Model Pa­
rameters (e.g., ?gcm for the generalized context model).
The lower and upper limits of the parameters in the
different models are set internally and are based on
parameter ranges and estimates in the literature; and
in our example they are based on Nosofsky (1989).
Modelers can change the parameter bounds as out­
lined below in the section Advanced Options. The
parameter space of a model in cognitivemodels can

be printed using the method parspace(). For ex­
ample, parspace("gcm") prints the parameter space
of the generalized context model. Given a model has
been stored as model, parspace(model) prints the
parameter space of this very model. Furthermore, the
method constraints(model) shows the parameter
constraints of the stored model.

parspace(model)
constraints(model)

The parameter space of the generalized context
model is as follows: each attention weight parameter
ranges from 0.001 to 1, 𝜆 ranges from 0.001 to 10, 𝑟,
and 𝑞 each range from 1 to 2 and the bias parameter 𝑏0
and 𝑏1 each range from 0 to 1. The constraints show
that both the attention weights and the bias parameters
need to sum up to 1.

Parameter constraints. The following examples
show how to fix model parameters, rather than estimat­
ing them, and how to implement parameter constraints.
To fix or constrain parameters an argument called fix
is needed when setting up a model. The value of the ar­
gument fix must be a named list containing the names
of the parameters to fix and their respective values. The
parameters that are not listed in fix will be estimated.
For instance, to set the parameters 𝑟 and 𝑞 equal to 1
and estimate the remaining parameters we add the ar­
gument fix = list(r = 1, q = 1) to the call to
gcm() as shown below. If the model is stored as model,
coef(model) prints the free parameter estimates and
summary(model) prints all parameter estimates.

model <- gcm(
formula = response ~ angle + size,
class = ~true_cat,
data = D,
fix = list(r = 1, q = 1),
choicerule = "none")

As a further illustration of this logic consider a gen­
eralized context model that divides attention equally
between the features “angle” and “size”. This requires
setting the attention weight parameters to 0.50, and
is implemented by adding fix = list(angle =
0.50, size = 0.50) to the call to gcm(). To force
the model to attend 99% to the feature “angle”, the
syntax is fix = list(angle = 0.99, size =

0.01). Note, that in the generalized context model,
the names of the attention weight parameters match the
right side of the argument formula. If the argument
fix fixes all model parameters no parameters are
estimated, such as in fix = list(r = 2, q = 2,
angle = 0.5, size = 0.5, lambda = 1.60,
b0 = 0.5, b1 = 0.5).

Cognitivemodels also allows the specification of
equality constraints. To constrain, for instance, the
value of the parameter 𝑟 to be equal to the value of the
parameter 𝑞 we use fix = list(r = "q"). Then the
parameter 𝑞 is estimated and 𝑟 is set equal to 𝑞. This
equality constraint is implemented in the code below:

model <- gcm(
formula = response ~ angle + size,
class = ~true_cat,
data = D,
fix = list(r = "q"),
choicerule = "none")

Equality constraints and fixed parameters can also
be combined. For instance, the argument fix =
list(angle = 0.5, r = "q") sets the attention
weight for the feature “angle” to 0.50 and constrains
𝑟 = 𝑞.

Models without parameter estimation. The pack­
age offers two possibilities to use cognitive models that
contain free parameters without the estimation of the
free parameters. The first method consists in fixing all
model parameters to a numeric value using the fix ar­
gument, as outlined above. This is useful for simulat­
ing model behavior in an experimental design from a
model with parameter values of interest. In this case
the argument formula needs only a left­hand side. The
second method to estimate no parameters consists in
an argument options = list(fit = FALSE). This
is useful for testing toy models. In this case, a model is
constructed with model­specific default parameter val­
ues. The default parameter values are listed in a col­
umn called “start” of the parameter space of a model
(e.g., see parspace("gcm")). Because for the general
context model, there are no universal default parameter
values, the parameter values in this case correspond to
themean of the parameter ranges. The code below fixes
all parameter values of the generalized context model to
the estimated parameter values from Nosofsky (1989)
(Table 5, row 1), and estimates no parameters.

model <- gcm(formula = response ~
angle + size, class = ~true_cat,
data = D, fix = list(angle = 0.1,

size = 0.9, lambda = 1.6,
r = 2, q = 2, b0 = 0.5,
b1 = 0.5), choicerule = "none")

Generating Predictions

Given a cognitive model stored as model, the method
predict(model) returns predictions from the model
given its parameters. It makes predictions for the
data used to set up the model. In our example
predict(model) makes predictions for the data D
that we used to fit the model. An optional argument
newdata can be supplied to predict() to make pre­
dictions for new stimuli using the parameters of the
model without newly estimating parameters. The new
data needs to have the same format and column names
as the data that was used to set up the model. Using the
model from the last code block with parameters fixed to
the parameter estimates in Nosofsky (1989), the below
code predicts the categorization for all 16 stimuli in the
“size” condition using the newdata argument.

newD <- DT[!duplicated(DT$stim_id),]
newD <- newD[order(newD$stim_id),]
predict(model, newdata = newD)

The predictions match the predictions in Nosofsky
(1989) (Figure 5, “size” condition).

Goodness of Fit and Model Comparisons

The cognitivemodels package offers the following
goodness of model fit measures for each model: log
likelihood, the Bayesian information criterion (BIC,
Schwarz, 1978), Akaike’s information criterion (AIC,
Kass & Raftery, 1995; Wagenmakers & Farrell, 2004)
including the finite­sample correctedAICc (seeWagen­
makers & Farrell, 2004), and the mean­squared error
(MSE). The following code returns the respective good­
ness of fit measures.

logLik(model)
BIC(model)
AIC(model)
MSE(model)

To compare models, the anova() method can be
used to render ANOVA­style tables. If one model is
supplied as argument to anova(), the function returns
an error summary. If multiple models are supplied to
anova(), the function returns a model comparison ta­
ble. The model comparison table includes the relative
evidence strength measured by Akaike weights (Wa­
genmakers & Farrell, 2004) as well as a 𝜒2­test of the
log likelihoods of the two models given these belong
to the same class (e.g., two generalized context mod­
els will be compared by 𝜒2, but not a Bayesian model
and a generalized context model). The example code
below compares a generalized context model 1 that has
the parameter constraints 𝑟 = 1, 𝑞 = 1 to a model 2
that has the parameter constraints 𝑟 = 2, 𝑞 = 2.

model1 <- gcm(
formula = response ~ angle + size,
class = ~true_cat,
data = D,
fix = list(r = 1, q = 1),
choicerule = "none")

model2 <- gcm(
formula = response ~ angle + size,
class = ~true_cat,
data = D,
fix = list(r = 2, q = 2),
choicerule = "none")

anova(model1, model2)

Advanced Options

The next section details advanced options for modelers.
For each modeling function in the package (Table 1)
there is an optional argument options to change the
modeling procedure. The value of options is a list in
which each element sets one option, the help file found
under ?cm_options shows all available options, some
of which we will detail next.

Modelers can change the lower and upper bounds
of the free parameters in a model by using the op­
tions lb and ub. For instance, in the gcm() model
we can change the bounds of the parameter 𝜆 to range
from a lower bound of 0 to an upper bound of 20
by setting options = list(lb = c(lambda = 0),
ub = c(lambda = 20)). If only lb is set, only the
lower parameter bound is changed, and if only ub is
set, only the upper parameter bound is changed.

Modelers can change the goodness of fit measure that
the model optimizes during parameter estimation. The
syntax is list(fit_measure = ...) where ...
can be "loglikelihood" or "mse" (mean­squared er­
ror). The log likelihood assumes a binomial probabil­
ity density function when modeling discrete responses
and a normal density function when modeling continu­
ous responses. In the latter case the model assumes the
responses to follow a normal distribution around each
prediction (as mean) with a constant standard deviation
that is estimated as an additional free parameter called
"sigma".

Modelers can change the algorithm that solves the
parameter optimization problem. The option is set by
list(solver = ...). Currently, 22 different opti­
mization solvers are available, which can be viewed
by running cm_solvers(). The available solvers con­
sist of all solvers in the R optimization infrastructure
ROI, which include solvers such as global optimiza­
tion by differential evolution (solver = "Deoptim),
nonlinear optimization routines ("nloptr"), or op­
timx ("optimx"), and others (see their webpage for
available solvers). Also available are a general non­
linear optimization using the augmented Lagrangemul­
tiplier method (solver = "solnp") and a simple grid
search (solver = "grid"). Lastly, setting solver
= c("grid", "solnp") will first perform a coarse
grid search and use the best solutions from this grid as
starting values for repeated optimization with the solver
("solnp" in this example, but each available solver can
be applied for this second step).

Advantages of Cognitivemodels

The cognitivemodels package is one way to facilitate
the usage of formalized theories and to achieve robust
cognitive modeling, which has been called for in recent
meta­scientific proposals (e.g. Guest & Martin, 2020;
Benureau & Rougier, 2018; Lee et al., 2019; Navarro,
2019; Van Rooij & Baggio, 2020; Wilson et al., 2017).
Besides robustness of code, further advantages of the
package are programming efficiency and flexibility.

Robustness. The models implemented in the cog­
nitivemodels package are robust, because the pack­
age contains automated error checks and allows for
manual error checks. By automated error checks we
mean that there are unit tests implemented for the
cognitive models in the package. Unit tests are au­

tomatic tests of parts of a program. Our unit tests
test whether the model predictions are correct across
a range of model parameters and input data. They
also test if the default parameter estimation method
replicates previously­obtained parameter values given
published data. This is a safeguard against introduc­
ing programming errors during code development. By
human error checks we mean that because the cog­
nitivemodels package is open source, users of the
package can report bugs through https://github.com/
JanaJarecki/cognitivemodels/issues.

Programming Efficiency. The cognitivemodels
package offers modelers a tool to fit cognitive models
with minimal programming effort, because it uses
a standardized syntax across the different cognitive
models that are implemented in the package. The
package requires minimal additional code to constrain
parameters, make predictions, and compare models.
The syntax of our package is similar to the syntax of
the standard ANOVA or regression commands in R
(e.g., the predict(), anova(), logLik(), or coef()
methods). We believe, syntax standardization leads to
efficiency gains when implementing models. Further,
if standard models need not be implemented anew this
saves implementation time.

Flexibility. The syntax for cognitivemodels in cogni­
tivemodels allowsmodelers to adjust themodeling pro­
cedure to their own needs, to set parameter constraints,
and to compare models. The package offers a general­
purpose model development back­end in the R6 class
which experienced modelers can use to implement fur­
ther cognitive models in the package. This feature is
not documented here, because of space limitations.

Summary

We have introduced cognitivemodels, the first R pack­
age to provide a robust, unified interface for formal
modeling in cognitive science. Formalizing theories is
seen as a crucial step to overcome the replication cri­
sis in psychology. The cognitivemodels package may
facilitate this step through its standardized and flex­
ible syntax adapted to the needs of both novice and
experienced modelers. We have exemplified the syn­
tax of cognitivemodels with the generalized context
model by applying basic and advanced modeling func­
tionalities including model fitting with different types
of parameter constraints and model testing with various

http://roi.r-forge.r-project.org/
https://github.com/JanaJarecki/cognitivemodels/issues
https://github.com/JanaJarecki/cognitivemodels/issues

goodness of fit measures.

References
“‘

Andraszewicz, S. (2014). Quntitative [i.e. Quantitative]
analysis of risky decision making in economic environ­
ments (PhD thesis).

Benureau, F. C. Y., & Rougier, N. P. (2018). Re­run, Re­
peat, Reproduce, Reuse, Replicate: Transforming Code
into Scientific Contributions. Frontiers in Neuroinfor­
matics, 11(January), 1–8. http://doi.org/10.3389/fninf.
2017.00069

Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008).
Bayesian models of cognition. In R. Sun (Ed.), The cam­
bridge handbook of computational psychology (pp. 59–
100). Cambridge, UK: Cambridge University Press.

Guest, O., &Martin, A. E. (2020). How Computational Mod­
eling Can Force Theory Building in Psychological Sci­
ence.

Houston, A. I., & McNamara, J. M. (1988). A framework
for the functional analysis of behaviour. Behavioural
and Brain Science, 11, 117–163. http://doi.org/10.1017/
S0140525X00053061

Jarecki, J. B., Tan, J. H., & Jenny, M. A. (2020). A
Framework for Building Cognitive Process Models. Psy­
chonomic Bulletin & Review. http://doi.org/10.3758/
s13423­020­01747­2

Juslin, P., Olsson, H., & Olsson, A.­C. (2003). Exemplar ef­
fects in categorization and multiple­cue judgment. Jour­
nal of Experimental Psychology: General, 132(1), 133–
156. http://doi.org/10.1037/0096­3445.132.1.133

Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal
of the American Statistical Association, 90(430), 773–
795. http://doi.org/10.1080/01621459.1995.10476572

Lee, M. D., Chriss, A. H., & Vandekerckhove, J. (2019).
Robust Modeling in Cognitive Science. Computational
Brain & Behavior, 2, 141–153. http://doi.org/10.1007/
s42113­019­00029­y

Navarro, D. J. (2019). Between the Devil and the Deep Blue
Sea: Tensions Between Scientific Judgement and Statis­
tical Model Selection. Computational Brain & Behavior,
2, 28–34. http://doi.org/10.1007/s42113­018­0019­z

Nosofsky, R. M. (1986). Attention, similarity, and the
identification­categorization relationship. Journal of Ex­
perimental Psychology: General, 115(1), 39–57. http:
//doi.org/10.1037/0096­3445.115.1.39

Nosofsky, R. M. (1989). Further tests of an exemplar­
similarity approach to relating identification and catego­
rization. Perception & Psychophysics, 45(4), 279–290.
http://doi.org/10.3758/BF03204942

Nosofsky, R.M. (2011). TheGeneralized ContextModel: An
Exemplar Model of Classification. In E. M. Pothos & A.
J. Wills (Eds.), Formal approaches in categorization (pp.
18–39). Cambridge, UK: Cambridge University Press.

R Core Team. (2019). R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation
for Statistical Computing. Retrieved from http://www.r­
project.org/

Scheibehenne, B., & Pachur, T. (2014). Using Bayesian hier­
archical parameter estimation to assess the generalizabil­
ity of cognitive models of choice. Psychonomic Bulletin
& Review, 391–407. http://doi.org/10.3758/s13423­014­
0684­4

Schwarz, G. (1978). Estimating the dimension of a model.
The Annals of Statistics, 6(2), 461–464. http://doi.org/
10.1214/aos/1176344136

Singmann, H., & Kellen, D. (2013). MPTinR: Analysis of
multinomial processing tree models in R. Behavior Re­
search Methods, 45(2), 560–75. http://doi.org/10.3758/
s13428­012­0259­0

Tversky, A., & Kahneman, D. (1992). Advances in prospect
theory: Cumulative representation of uncertainty. Jour­
nal of Risk and Uncertainty, 5(4), 297–323. http://doi.
org/10.1007/BF00122574

Van Rooij, I., & Baggio, G. (2020). Theory before the test:
How to build high­verisimilitude explanatory theories in
psychological science. Retrieved from https://psyarxiv.
com/7qbpr/

Wagenmakers, E.­j., & Farrell, S. (2004). AIC model
selection using Akaike weights. Psychonomic Bul­
letin & Review, 11(1), 192–196. http://doi.org/10.3758/
BF03206482

Wakker, P. P. (2008). Explaining the characteristics of the
power (CRRA) utility family. Health Economics, 17(12),
1329–1344. http://doi.org/10.1002/hec.1331

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L.,
& Teal, T. K. (2017). Good enough practices in scientific
computing. PLOS Computational Biology, 13(6), 1–20.
http://doi.org/10.1371/journal.pcbi.1005510

http://doi.org/10.3389/fninf.2017.00069
http://doi.org/10.3389/fninf.2017.00069
http://doi.org/10.1017/S0140525X00053061
http://doi.org/10.1017/S0140525X00053061
http://doi.org/10.3758/s13423-020-01747-2
http://doi.org/10.3758/s13423-020-01747-2
http://doi.org/10.1037/0096-3445.132.1.133
http://doi.org/10.1080/01621459.1995.10476572
http://doi.org/10.1007/s42113-019-00029-y
http://doi.org/10.1007/s42113-019-00029-y
http://doi.org/10.1007/s42113-018-0019-z
http://doi.org/10.1037/0096-3445.115.1.39
http://doi.org/10.1037/0096-3445.115.1.39
http://doi.org/10.3758/BF03204942
http://www.r-project.org/
http://www.r-project.org/
http://doi.org/10.3758/s13423-014-0684-4
http://doi.org/10.3758/s13423-014-0684-4
http://doi.org/10.1214/aos/1176344136
http://doi.org/10.1214/aos/1176344136
http://doi.org/10.3758/s13428-012-0259-0
http://doi.org/10.3758/s13428-012-0259-0
http://doi.org/10.1007/BF00122574
http://doi.org/10.1007/BF00122574
https://psyarxiv.com/7qbpr/
https://psyarxiv.com/7qbpr/
http://doi.org/10.3758/BF03206482
http://doi.org/10.3758/BF03206482
http://doi.org/10.1002/hec.1331
http://doi.org/10.1371/journal.pcbi.1005510

