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Abstract 
Prior research in decisions from experience (DFE) has investigated people’s 
consequential decisions after information search both experimentally and 
computationally. However, prior DFE research has yet to explore how 
computational cognitive models and their mechanisms could explain the 
effects of problem framing in experience. The primary objective of this paper 
is to address this literature gap and develop Instance-based Learning Theory 
(IBLT) models on the effects of problem framing. Human data was collected 
on a modified form of the Asian disease problem posed about the COVID-
19 pandemic across two between-subject conditions: gain (N = 40) and loss 
(N = 40). The COVID-19 problem was presented as “lives saved” in the gain 
condition and “lives lost” in the loss condition. Results revealed the absence 
of the classical framing effect, exhibiting no preference reversal between 
gain and loss conditions in experience. Next, an IBL model was developed 
and calibrated to the data obtained in the gain and loss problems. The 
calibrated model was generalized to the non-calibrated conditions (gain to 
loss and loss to gain). An IBL model with ACT-R default parameters was 
also generalized. Results revealed that the IBL model with calibrated 
parameters explained human choices more accurately compared to the IBL 
model with ACT-R default parameters. Also, participants showed greater 
reliance on recency and frequency of outcomes and less variability in their 
choices across both gain and loss conditions. We highlight the main 
implications of our findings for the cognitive modeling community.  

Keywords: individual choice; experience; sampling; 
computational models; framing; gain; loss; COVID-19 disease 
problem.  

Introduction 
Whenever the world has seen new contagious diseases, 
medical practitioners have relied on their prior experience 
with treatments on other diseases to tackle the crises (HT, 
2020). Depending upon the similarity and differences 
between prior experiences of diseases and a specific current 
disease, a combat plan may be selected for implementation. 
The act of making choices based upon prior experience, 
however, is not limited to making disease combat decisions; 
rather, it may be a very common exercise involving people in 
different facets of their daily life (choosing what to eat, whom 
to marry, or what career to pursue). Gaining experience via 
information search (or sampling) before a consequential 
choice forms an integral part of decisions from experience 
(DFE) research, where the focus is on explaining human 
decisions based upon one’s experience with sampled 
information (Hertwig & Erev, 2009).  
 

DFE research has proposed a “sampling paradigm” (Hertwig 
& Erev, 2009), where people are presented with two or more 
options to choose between. These options are represented as 
blank buttons on a computer screen. People can sample as 
many buttons as they wish and in any order they desire 
(information search). Once people are satisfied with their 
sampling of the button options, they decide from which 
option to make a single consequential choice for real. 
   

The sampling paradigm has been used to develop 
computational cognitive models of human choice behavior 
both at the individual level (Sharma & Dutt, 2017) and at the 
aggregate level (Busemeyer & Wang, 2000; Gonzalez & 
Dutt, 2012; Lejarraga, Dutt, & Gonzalez, 2012). In fact, using 
the sampling paradigm, cognitive models have also been 
developed in both abstract and applied domains (Sharma & 
Dutt, 2018). For example, the Instance-Based Learning (IBL) 
model is a popular DFE algorithm for explaining aggregate 
and individual human choices (Erev et al., 2010; Gonzalez & 
Dutt, 2011; Sharma & Dutt, 2017). The IBL model borrows 
mechanisms like activations, retrieval from memory, and 
blending from the ACT-R framework (Anderson & Lebiere, 
1998) and it operates by storing and retrieving experiences 
(called instances) from memory (Gonzalez & Dutt, 2011). 
Each instance’s activation is used to calculate the blended 
values for each option, thereby helping the model to make a 
consequential choices.  

 
Although computational cognitive models have been 

developed in the DFE’s sampling paradigm at the aggregate 
and individual participant levels in abstract and applied 
problem domains (Sharma & Dutt, 2017), yet little is known 
on how these models would account for human decisions 
driven by the problem’s framing in experience in applied 
domains (Gonzalez, Dana, Koshino, & Just, 2005; Tversky & 
Kahneman, 1981). For example, in the famous Asian disease 
problem (ADP), participants are asked to imagine that a 
country is preparing for the outbreak of an unusual Asian 
disease, which is expected to kill 600 people (Tversky & 
Kahneman, 1981). One group of people are presented this 
problem as a gain in terms of “lives saved;” whereas, a 
second group of people are presented the same problem as a 



loss in terms of “lives lost.” Although the gain and loss 
frames are equivalent, results reveal a framing effect: A large 
majority among those presented the gain frame choose the 
safe option; however, a large majority among those presented 
the loss frame choose the risky option. Gonzalez and 
Mehlhorn (2015) showed that the framing effect was present 
among people when they were presented with the ADP in a 
descriptive format; however, the framing effect disappeared 
in the experiential format (i.e., DFE’s sampling paradigm). 
Gonzalez and Mehlhorn (2015) went a step further and 
developed an IBL model with ACT-R parameters to explain 
the disappearance of the framing effect in experience. 
However, Gonzalez and Mehlhorn (2015) did not calibrate 
their model’s parameters as well as these authors did not test 
the framing effect in problems with a context (e.g., problem 
about the specific COVID-19 disease compared to the 
general Asian disease).  
 

The primary objective of this research is to overcome the 
above-mentioned literature gaps. First, we evaluate the 
framing effect in experience among gain and loss problem 
frames in a COVID-19 disease problem (CDP). Next, we 
evaluate how an IBL model calibrated to the gain and loss 
frames explains the human choices in CDP. We also evaluate 
the generalization of IBL model parameters from the 
calibrated problem to the non-calibrated problem (gain 
problem’s parameters to the loss problem and loss problem’s 
parameters to the gain problem). For the purposes of our 
evaluations, the IBL model was exposed the sampling of 
participants and it predicted the consequential choices post 
sampling.  

In what follows, first, we detail an experiment where we 
investigated the framing effect in experience in CDP. Next, 
we detail an IBL model and discuss the methodology of 
calibrating the model to capture the consequential choices in 
CDP. Next, we present the results of model’s evaluation both 
during calibration and during generalization. Finally, we 
close the paper by discussing the implications of our results. 

The COVID-19 Disease Problem (CDP) 
Experiment 

Eighty participants were recruited via Amazon MTurk in 
India to participate in a disease program study. Participation 
was voluntary, about 67% percent of participants were males, 
and the rest were females. Ages ranged from 18 years to 73 
years (Mean = 32.55 years and standard deviation = 10.04 
years). Participants were from different education levels: 
19.4% undergraduates and 80.6% graduates. Discipline-wise, 
the demographics were the following: 31.25% possessed 
degrees in engineering, 10.62% possessed degrees in basic 
sciences, and 28.6% possessed degrees in humanities and 
social sciences. Participants were compensated a flat 
participation fee of INR 21 (~ USD 0.28). No participant took 
more than 10 minutes across both conditions to finish the 
study. 

Participants were randomly assigned to one of two 
between-subject conditions involving the CDP in experience: 
gain (N = 40) and loss (N = 40). In the gain condition, the 
CDP was framed as “lives saved;” whereas, in the loss 
condition, the CDP was framed as a “lives lost” (see Figure 
1).   

 
Imagine that your country is preparing for an outbreak of the new 
coronavirus disease, which is expected to kill certain number of people in 
your country. In this task, you need to choose between different health 
programs designed to combat the coronavirus. Health programs are 
represented by buttons. By clicking on a program button below, you can 
gather information about the outcome of the program associated with the 
button (sampling phase). The outcome shown on a button option during the 
sampling phase will not affect the final result. Once you are satisfied with 
your sampling of the button programs, you may click the “Make Allocations 
for Real” button to enter the allocation phase. In the allocation phase, you 
need to decide one of the health programs (A or B) for real (one final time).  
 

Program A 
 

Program B 
 

 
Make Allocations for Real 

 
Figure 1. The CDP presented to participants in the study in gain condition.  

 
As shown in Figure 1, in the gain condition, participants 

were presented with programs A and B, which they needed 
to sample as many times they desired and in any order they 
desired before making a final choice for real. In the loss 
condition, participants were presented with programs C and 
D, which they needed to sample as many times they desired 
and in any order they desired before making a final choice for 
real. The allocation of programs to buttons was randomized 
across participants in both conditions and sampling in both 
conditions was nonconsequential. At any time during the 
sampling phase, participants could click the “Make 
Allocations for Real” button (see Figure 1). Clicking the 
“Make Allocations for Real” button terminated the sampling 
phase and moved participants to the allocation phase. In the 
allocation phase, participants were asked to make a 
consequential choice for one of the programs. In the gain 
condition, program A was framed as “200 people will be 
saved” (1 probability) and program B was framed as “600 
people will be saved” (1/3rd probability) or “No one will be 
saved” (2/3rd probability).  In the loss condition, program C 
was framed as “400 people will die” (1 probability) and 
program D was framed as “Nobody will die” (1/3rd 
probability) or “600 will die” (2/3rd probability). In both 
conditions, the probability information was not shown, and it 
was only used to generate the outcomes in quotes above. As 
can be seen, programs A and C were identical and programs 
B and D were identical. In agreement with Gonzalez and 
Mehlhorn (2015)’s results for ADP, we expected no 
difference in the proportion of A and C choices in the CDP 
(i.e., we expected an absence of the framing effect). To test 
our expectation, we performed a one-way ANOVA with 
condition as a between-subjects factor, an alpha level of 0.05, 
and a power of 0.80. 

Results revealed that there was no significant difference 
between the gain and loss conditions in the proportion of A 



or C choices (gain: 0.83 ~ loss: 0.70; F(2,78) = 1.720, p = .19, 
η2 = 0.02). Thus, as per our expectations and contrary to the 
classical descriptive results, there was an absence of the 
framing effect in the experience-based CDP.     

 
The Model 

   In this section, we detail the working of the IBL model that 
was developed to account for human choices in the CDP.  

Instance-Based Learning (IBL) Model 
The IBL model (Dutt & Gonzalez, 2012; Gonzalez & Dutt, 
2011; 2012; Lejarraga, Dutt, & Gonzalez, 2012) is built upon 
the ACT-R cognitive framework (Anderson & Lebiere, 
1998). In this model, instances are created in memory for 
each occurrence of an outcome on choice options. An 
instance is made up of the following structure: situation-
decision-utility, where the situation is the current situation 
(two option buttons on a computer screen), the decision is the 
decision made in the current situation (choice for one of the 
option buttons), and the utility is the goodness of the made 
decision (the outcome obtained upon choosing an option). 
When a choice is to be made, instances belonging to each 
option are retrieved from memory. These instances are then 
blended on each option. The blended value of an option is a 
function of activation of instances as well as their probability 
of retrieval from memory. The blended value of option j at 
any trial t is defined as:     

 

where xi, j, t is the value of the utility part of an instance i on 
option j at trial t. The pi, j, t is the probability of retrieval of 
instance i on option j from memory at trial t. Because xi, j, t is 
the utility of an instance i on option j at trial t, the number of 
terms (n) in the summation in equation 1 changes when new 
outcomes are observed during sampling on the option j. For 
example, if j is an option with two possible outcomes, then n 
= 1 when one of the outcomes has been observed on the 
option (i.e., one instance is created in memory) and n=2 when 
both outcomes have been observed on the option (i.e., two 
instances are created in memory).  
At any trial t, the probability of retrieval of an instance i on 
option j at trial t is a function of the activation of that instance 
relative to the activation of all instances (1, 2, … n) created 
within the option j, given by  
 

 

where τ, is random noise defined as  and σ is a free 
cognitive noise parameter. The activation of an instance i 
corresponding to an observed outcome on an option j in a 
given trial t is a function of the frequency of the outcome’s 
past occurrences and the recency of the outcome’s past 
occurrences (as done in ACT-R). At each trial t, activation 

of an instance i on option j is                                          

  

                                                      
where d is a free decay parameter;   is a random draw 
from a uniform distribution bounded between 0 and 1, for 
instance i on option j in trial t; and tp is each of the previous 
trials in which the outcome corresponding to instance i was 
observed in the task. The IBL model has two free parameters 
that need to be calibrated: d and σ. The d parameter controls 
the reliance on recent or distant sampled information. Thus, 
when d is large (> 1.0), then the model gives more weight to 
recently observed outcomes in computing instance 
activations compared to when d is small (< 1.0). The σ 
parameter helps to account for the participant-to-participant 
variability in an instance’s activation. We feed the sampling 
done by individual human participants to generate instances 
and compute blended values in the IBL model. During 
sampling, each time a choice is made, and the outcome is 
observed, the instance associated with it is activated (created 
or reinforced). At the final choice, blended values are 
computed and the model chooses the option with the highest 
blended value.  
 
In one version of the IBL model, we used the default values 
of the ACT-R parameters, i.e., d = 0.50 and σ = 0.25 (IBL 
model with ACT-R parameters). These parameters show 
lesser reliance on recency and frequency of information and 
a reasonable participant-to-participant variability in 
consequential choices. However, in a second version of the 
IBL model, we found single values for the two parameters (d 
and σ) by calibrating them to individual participant 
consequential choices in gain and loss conditions, 
respectively. We refer to this model as the IBL model with 
calibrated parameters and, for the parameters’ calibration, we 
determined a model participant’s choice and compared this 
choice to a human participant’s choice. In order to create 
exploration of options during sampling, the model’s memory 
was pre-populated with 2 instances (i.e., one on each option) 
with a 1000 utility. This value of utility was higher than all 
possible outcomes in the different options. These 
prepopulated instances may represent the initial expectations 
that participants may bring to the task (Gonzalez & Dutt, 
2011). If the model participant’s choice equaled human 
participant’s choice, then the dependent variable (error) was 
coded as zero; otherwise, the error was coded as one. We 
minimized the average of errors across all participants in the 
calibration process separately across the gain and loss 
conditions. 

Method 
Dependent Variables 

     
The model was run for as many model participants as there 

were human participants in the two conditions independently. 
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To compare human and model choices, we evaluated an 
“error ratio” (i.e., the ratio of incorrectly classified final 
choices between model and human participants divided by 
the total number of human participants). Thus, the error ratio  
was calculated as:   

 
Error Ratio = (AmBh + BmAh) / (AmAh + BmBh + AmBh + BmAh) (4) 

 
where, AmBh was the number of participants where the model 
predicted an A (or C) program choice but the human made a 
B (or D) program choice. BmAh was the number of 
participants where the model predicted a B (or D) program 
choice but the human player made a A (or C) program choice. 
Similarly, the AmAh and BmBh were the number of 
participants, where the model predicted the same choice  as 
made by the human participant. The smaller the value of the 
error ratio, the more accurate is the model in accounting for 
individual choices in CDP. 

 
Model Calibration 

 
    The IBL model described here possessed two free 

parameters d and s. These parameters were calibrated using 
a genetic algorithm program in both gain and loss conditions 
separately. The genetic algorithm repeatedly modified a 
population of individual parameter tuples in order to find the 
tuple that minimized the error ratio in a condition. The d and 
s parameters were both varied in the range [0, 10]. In each 
generation, the genetic algorithm selected individual 
parameter tuples randomly from a population to become 
parents and used these parents to select children for the next 
generation. Over successive generations, the population 
evolved toward an optimal solution. The population size used 
here was a set of 20 randomly selected parameter tuples in a 
generation (each parameter tuple was a particular value of d 
and s). The mutation and crossover fractions were set at 0.1 
and 0.8, respectively, for an optimization over 150 
generations. For each parameter tuple, the IBL model was run 
10 times across the 40 human participants per condition to 
account for run-to-run uncertainties present in the model. 
Across the 10 runs, the model’s average error ratio was 
computed by averaging the error ratios from each run and it 
was minimized. The parameter tuple that minimized the 
average error ratio across 150 generations were reported as 
the calibrated parameters for the IBL model. 

Results 
We evaluated the IBL model’s ability to account for 

individual consequential choices in both gain and loss 
conditions separately. In the gain condition, the best-
calibrated values of d and s parameters were found to be 7.05 
and 0.07, respectively.  In the loss condition, the best-
calibrated values of d and s were found to be 9.70 and 0.22, 
respectively. A large d value exhibited excessive reliance on 
recency during sampling. Also, the smaller s value exhibited 
lesser participant-to-participant variability in instance 
activations.  

 
Table 1 shows the individual-level results from the gain and 
loss conditions. The same results were obtained across 10-
runs of the model and there was no deviation in the 
percentages from the mean. As shown in Table 1, the 
calibrated IBL model in the gain condition produced 83% of 
AmAh combinations and 17% of BmBh combinations, 
respectively. In contrast, for the IBL model in the gain 
condition, the erroneous AmBh and BmAh combinations were 
both 0.0%, respectively. Based on these statistics, the IBL 
model showed 100% accuracy in the gain condition. 
Furthermore, the calibrated IBL model in the loss condition 
produced 70% of AmAh combinations and 30% of BmBh 
combinations, respectively. In contrast, for the IBL model in 
the loss condition, the erroneous AmBh and BmAh 
combinations were both 0.0%, respectively. Thus, again, the 
IBL model possessed 100% accuracy in the loss condition.  

 
Table 1: The calibration results from the IBL model in the 

CDP. 
 

Human and Model 
data combination 

H/M 

Gain condition Loss condition 

Parameters d = 7.05, s = 0.06 d = 9.70, s = 0.22 
Number of participants 401 40 
AmAh percentage 83 70 
BmBh percentage 17 30 
AmBh percentage 00 00 
BmAh percentage 00 00 
Error Ratio 00 00 

Note. 1 Each of the 10-runs of the model produced the same 
percentage with 0.0 as the standard deviation.  
 
Table 2 shows the results of the IBL model in the CDP where 
the model possessed ACT-R default parameters (d = 0.5 and 
s  = 0.25).  
 

Table 2: The IBL model in the CDP with ACT-R default 
parameters. 

Human and Model 
data combination 

H/M 

Gain condition Loss condition 

Parameters d = 0.50, s = 0.25 d = 0.50, s = 0.25 
Number of participants 40 40 
AmAh percentage 41.61 (5.5)2  34.5 (5.9) 
BmBh percentage 14.7 (3.0) 13.0 (2.6) 
AmBh percentage 03.3 (3.0)  17.0 (2.6) 
BmAh percentage 41.4 (5.5) 35.5 (5.9) 
Error Ratio 0.45 (0.10) 0.53 (0.10) 

Note. 1 The average percentage across 10-runs. 2 The standard 
deviation across 10-runs. 
 
As seen in Table 2, in the gain condition, there were, on 
average, 41.6% of AmAh combinations and 14.7% of BmBh 
combinations, respectively. In contrast, on average, the 
erroneous AmBh and BmAh combinations were 3.3% and 
41.4%, respectively. The average error ratio being 0.45. In the 
loss condition, on average, there were 34.5% of AmAh 
combinations and 13.0% of BmBh combinations, respectively. 



In contrast, on average, the erroneous AmBh and BmAh 
combinations were 17.0% and 35.5%, respectively. The 
average error ratio being 0.53. Overall, the IBL model with 
ACT-R default parameters performed poorly compared to the 
calibrated IBL model. 
 
Figure 2 shows the proportion of A choice (gain condition) or 
proportion of C choices (loss condition) from human data, IBL 
model with calibrated parameters, and IBL model with ACT-
R default parameters. As can be seen in the Figure, the IBL 
model with calibrated parameters captured the human choices 
accurately; whereas, the IBL model with the ACT-R default 
parameters exhibited a close to a chance performance.  
 

 
Figure 2. The proportion of A choice (gain condition) or C 
choices (loss condition) in human data, calibrated IBL model, 
and IBL model with ACT-R default parameters. The error bars 
show 95% CI around the average estimate.  
 

Generalization 
Since, we first calibrated the IBL model in the gain and loss 
conditions independently, generalizing the model by running 
the calibrated parameters in the non-calibrated conditions 
(from loss condition to gain condition or from gain condition 
to loss condition) would help account for parameter 
differences and model consistency across the two conditions. 
As there was an absence of the framing effect in the 
experimental data, generalization of loss condition parameters 
to the gain condition or generalization of gain condition 
parameters to the loss condition should produce accurate and 
similar results.  
 
Table 3 shows the results of generalizing the IBL model from 
calibrated conditions to the non-calibrated conditions. The 
same results were obtained across 10-runs of the model and 
there was no deviation in the percentages from the mean. As 
shown in Table 3, the generalization of loss condition’s 
parameters in the gain condition and the generalization of gain 
condition’s parameters in the loss condition produced most 
accurate results with 0 error ratios. Thus, these parameters are 
equivalent and they meet our expectations on the absence of 
the framing effect in the experienced-based CDP. 
  
   
 

Table 3: Generalisation of the calibrated IBL model 
parameters from calibrated condition to the non-calibrated 

conditions in CDP. 
 

Human and Model 
data combination 

H/M 

Loss condition’s 
parameters in 
gain condition 

Gain condition’s 
parameters in loss 

condition 
Parameters d = 9.70, s = 0.22 d = 7.05, s = 0.06 
Number of participants 401 40 
AmAh percentage 83 70 
BmBh percentage 17 30 
AmBh percentage 00 00 
BmAh percentage 00 00 
Error Ratio 00 00 

Note. 1 Each of the 10-runs of the model produced the same 
percentage with 0.0 as the standard deviation. 

Discussion and Conclusions 
     Prior research had experimented with the framing effect 
in the Asian disease problem (ADP) where the problem was 
presented in gain and loss frames either in a descriptive 
format (description) or experiential format (experience) to 
participants (Gonzalez et al., 2005; Gonzalez and Mehlhorn 
2015; Tversky & Kahneman, 1981). The main result was the 
presence of the framing effect (i.e., a preference reversal) 
between gain and loss problems in description and its absence 
in experience. However, little was known about the existence 
of the framing effect in problems with an applied disease 
context (e.g., COVID-19) in experience. Also, little was 
known about how computational cognitive models could 
account for the framing effect in applied disease contexts in 
experience. The primary objective of this research was to 
address these gaps in literature. In this paper, we showed the 
absence of the framing effect between the gain and loss 
frames in an applied COVID-19 disease problem (CDP) in 
experience. Furthermore, we showed that a single IBL model 
could account for the absence of framing effect in both gain 
and loss frames in the CDP in experience. The IBL model 
showed participants relying excessively on recency and 
frequency of information and showing very little variability 
in participant-to-participant decisions across both the gain 
and loss frames in CDP.  
 
First, our experimental results showed an absence of the 
framing effect across the gain and loss frames in CDP in 
experience. This result is consistent with those of Gonzalez 
and Mehlhorn (2015), who also showed the absence of the 
framing effect across the gain and loss frames in the 
experience-based ADP. Thus, it seems that the specific 
COVID-19 disease context (in CDP) is treated by participants 
in the same manner as the general Asian disease context (in 
ADP). One likely reason for the absence of the framing effect 
between gain and loss frames in CDP could be that in 
experience, people underweight the probability of low 
frequency events and overweight the probability of the high 
frequency events (Hertwig & Erev, 2009). Here, this effect of 
underweighting and overweighting of probabilities seems to 
be present irrespective of the problem’s framing.   



 
Second, our model results showed that the IBL model with 
calibrated parameters performed exceedingly well compared 
to the IBL model with ACT-R default parameters. This result 
extends the work of Gonzalez and Mehlhorn (2015), who 
developed an IBL model with the ACT-R default parameters. 
Specifically, it shows that in experience, the default ACT-R 
assumptions of low recency and reasonable variability may 
not exist, and people may make more deterministic final 
choices that are driven by excessive reliance on recent and 
frequent samples. 
 
Third, our results showed that the generalization of model 
parameters from calibrated conditions to non-calibrated 
conditions showed very accurate model performance. This 
results in particular shows that the IBL model parameters in 
the gain and loss frames were similar and these parameters 
tended to agree with the experimental findings on the absence 
of the framing effect: If there is no preference reversal 
between gain and loss frames, then the model parameters 
should also similarity in their values. 
 
There are a number of future directions from this work. First, 
researchers may also develop the CDP in description and 
experimentally evaluate whether there is a presence of the 
framing effect in the description-based CDP. Next, 
researchers may attempt whether there is an effect of the 
people’s location (being in Asia or in America) on the 
contextual disease framing in experience and description 
formats. Furthermore, cognitive models like IBL may be 
developed on these data to see the potential of such models 
in capturing the presence or absence of framing effects. In 
this paper, only base level activation as well as the cognitive 
noise were used in explaining the framing effect in the IBL 
model. However, future work may experiment with other 
ACT-R mechanisms like partial matching or spreading 
activation to account for these experimental findings. We 
plan to continue experimenting with some of these ideas as 
part of our future work in the decisions from experience 
theme.     
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