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Abstract

Learning by instruction is one of the most common forms
of learning, and a number of research efforts have modeled
the cognitive process of instruction following, with many suc-
cesses. However, most computational models remain brittle
with respect to the given instructions and lack the ability to
adapt dynamically to variants of the instructions. This paper
aims to illustrate modeling constructs designed to make in-
struction following more robust, including (1) more flexible
grounding of language to execution, (2) processing of instruc-
tions that allows for inference of implicit instruction knowl-
edge, and (3) dynamic, interactive clarification of instructions
during both the learning and execution stages. Examples in the
context of a paired-associates task and a visual-search task are
discussed.
Keywords: Instruction following; cognitive architectures;
cognitive code; interactive task learning.

Introduction
Learning by instruction can be defined, in simplified terms,
as the process by which a teacher provides a learner with in-
structions for a task and the learner follows the instructions
to perform the task. The process of learning by instruction
has been a focus of numerous cognitive-modeling efforts in
past decades, such as those using ACT-R (e.g., Anderson et
al., 2004; Salvucci, 2013; Taatgen & Lee, 2003; Taatgen,
Huss, Dickison, & Anderson, 2008) and Soar (e.g., Howes
& Young, 1997; Huffman & Laird, 1995; Lewis, Newell, &
Polk, 1989). More recently, there has been an increased focus
on interactive task learning through natural interaction with a
human instructor (see Laird et al., 2017; Kirk & Laird, 2014).

This research on instruction following has primarily fo-
cused on skill acquisition and improvements with learning
over time. In contrast, less attention has been paid to the
translation of instructions to knowledge: while past efforts
have generally included a basic version of the translation pro-
cess, this aspect of the models is often brittle and dependent
on a very particular specification of instructions. For exam-
ple, the model described in Salvucci (2013) accepts simplified
textual instructions and would break easily with only slightly
different instructions. Some efforts have aimed to make such
a process more robust—for instance, by utilizing a more flex-
ible knowledge representation (e.g., Taatgen et al., 2008) or
by relying on dynamic interaction with the teacher (e.g., Laird
et al., 2017). Nevertheless, the robustness of instruction fol-
lowing and learning continues to be a challenge for modern
cognitive models and architectures.

This paper explores several ways in which instruction fol-
lowing can be made more flexible and robust. Specifically,
this work examines three areas for improving robustness:
grounding of instruction language to knowledge representa-
tions, inference of implicit instruction knowledge, and dy-

namic interaction to clarify or augment instruction knowl-
edge. The models here have been developed using the Think
architecture (https://github.com/salvucci/think) which uses a
cognitive-code approach (Salvucci, 2016) to embed the the-
ories and mechanisms of cognitive architectures (primarily
ACT-R: Anderson et al., 2004) into a modern programming
language (in this case, Python). The following sections pro-
vide an overview of the modeling approach, focusing on the
instruction interpretation and execution processes, and then
discuss the three areas of improvement along with a descrip-
tion of the associated models.

Modeling with Cognitive Code
Before exploring the fuller model of instruction following,
first we present a basic model of a simple task to illustrate the
workings of Think’s cognitive code and how it contrasts with
traditional production-system cognitive architectures. The
sample task examined here is the so-called paired-associates
task (Anderson, 1981): the participant reads a word, tries to
recall and type a digit associated with that word, and then
reads the associated digit, eventually learning the word-digit
pairings. Cognitive code allows for a clean separation of task
and model code, each of them running on separate threads and
interacting via elements of the environment (e.g., a desktop-
computer display, keyboard, mouse, speakers, etc.).

Table 1 shows the simple (Python) code that implements
the task itself. The code first clears the display and then
presents the word stimulus on the display, then waits 5 sec-
onds (as dictated by the experiment). If the participant keys
in a response, the response is logged for correctness; other-
wise, if no response is keyed, an incorrect response is logged.
The trial ends when the code presents the associated digit and
waits another 5 seconds. These steps are repeated for the var-
ious stimulus pairings and across trial blocks.

The cognitive code representing the cognitive model, in Ta-
ble 2, is similarly straightforward. The first line directs the
vision module to wait for a particular stimulus of type word,
and when it is found, encodes the visual object in the word
variable. Each line of code incurs a passage of virtual time
that aligns temporally with the task code (as well as any other
cognitive threads that may be running; see Salvucci & Taat-
gen, 2010). The next few lines attempt to recall a memory
chunk that associates the word with its associated digit, and if
successful, the model types the digit. Finally, the model en-
codes the visual digit and stores the association between word
and digit in memory.

Because cognitive code is grounded in a modern program-
ming language familiar to most programmers, learning to
write models under this approach is much easier than with



Table 1: Paired-associates task code.

self.display.clear()

self.display.add text(50, 50, word, isa=’word’)

self.wait(5.0)

if not self.responded:

self.log(’incorrect response’)

self.display.add text(50, 50, digit, isa=’digit’)

self.wait(5.0)

Table 2: Paired-associates model code.

visual = self.vision.wait for(isa=’word’)

word = self.vision.encode(visual)

chunk = self.memory.recall(word=word)

if chunk:

self.motor.type(chunk.get(’digit’))

visual = self.vision.wait for(isa=’digit’)

digit = self.vision.encode(visual)

self.memory.store(word=word, digit=digit)

production systems, which are not nearly as familiar to pro-
grammers today. Cognitive code also takes advantage of
common programming idioms—for instance, returning None
for a failed memory retrieval, compared to a more complex
production-system method of handling such a failure. On
the other hand, production systems offer some of their own
benefits, such as a more flexible partial ordering of execu-
tion. Nevertheless, cognitive code aims to provide the ma-
jor advantages of cognitive modeling—broadly speaking, ac-
counting for and predicting cognitive, perceptual, and motor
performance—to a wider programming audience with as low
barriers as possible to getting started in the modeling process.

Instruction Interpretation and Execution
We now take the next step in our modeling, moving from
single-task models (like the one above) to a more general
model that takes instructions and can execute a variety of
tasks. The model of instruction following proposed here can
be characterized at the highest level in terms of two stages: in-
terpretation and execution. The interpretation stage involves
translating the given instructions into a mental representation
that encodes the necessary cognitive, perceptual, and motor
actions that combine to perform the desired task. The execu-
tion stage involves recalling each instruction and then actually
performing the cognitive, perceptual, and/or motor actions in-
volved. Our model also aims to account for a realistic pas-
sage of time through both stages—most notably, processing
instructions step by step over time (as opposed to assuming
an already-encoded full set of instructions in memory).

The interpretation stage is implemented in the model as
follows. Each instruction is assumed to be spoken aloud

by the teacher such that the model can, like an experiment
participant, hear and process the information incrementally.
(Alternatively, we could assume that each instruction is pre-
sented on-screen to the participant; the model would behave
largely the same except for utilizing visual instead of aural
channels.) The model then interprets each instruction by at-
tempting to understand its meaning and converting it to an
associated mental representation. Because of the real-time
nature of how the model receives instructions, the decay in
the architecture’s memory system—again, based on ACT-
R—necessitates some practice of these instruction chunks so
that they can be properly recalled in the next stage.

For example, consider the instructions in Table 3 for the
paired-associates task. When interpreting these instructions,
the model starts with the first statement—‘To perform a
task’—and understands that what follows are instructions for
this particular task. Then, the model translates each step
of the instructions to one or more relations, implemented
as ACT-R-like chunks—for example, WaitFor(word) or
If(Recall(digit, word), Type(digit)) for the first
two steps in Table 3. Each of the chunks is boosted in mem-
ory to ensure later recall.

Table 3: Sample instructions for the paired-associates task.

To perform the task
Wait for a word
If you can recall the digit for the word, type the digit
Wait for a digit
Remember the word and the digit
Repeat

The execution stage then uses the stored mental represen-
tations to perform the given task. At each step, the model
recalls the chunk(s) for that step and performs the actions
associated with the step—for instance, the WaitFor(word)
chunk would invoke the visual system in waiting for a visual
stimulus, and when found, the model would note the encoded
object as the word. In doing so, the model builds up a context
such that it may use information later (such as when the word
and digit need to be remembered together in the sample task).

While our description above might suggest that interpreta-
tion and execution are two discrete stages that occur one after
another, in fact these two stages are often interwoven: partial
instructions might be provided so that a learner can practice a
subgoal of the task; the learner may forget certain instructions
and need to refresh their memory; the learner may also realize
that their mental representation is ambiguous or deficient in
some way and need clarification during execution; and so on.
Such examples will be expanded further in the next section.

Interactive Grounding and Inference
The above description of instruction following as interpre-
tation and execution are quite general; however, a simple



straightforward implementation of these processes may yield
a model that is very fragile with respect to the instructions.
The predecessor to this work (Salvucci, 2013) focused on a
model that could account for behavior across a wide range
of tasks, and did not emphasize aspects of instruction flex-
ibility; the model had only a minimal interpreter for the
simplest pseudo-English instructions (e.g., ‘Wait-for visual-
change’). At the same time, the general problem of natural-
language understanding with respect to instruction following
is of course an extremely difficult problem in its own right,
and such a general model is not currently feasible. Thus,
our primary aim is to develop a model that minimizes the
most general natural-language challenge but still allows for
as much flexibility and robustness as possible. We now de-
scribe severals ways in which we can generalize the previous
approach, including incorporation of ideas from other efforts
into a single integrated account of instruction following.

Instruction Grounding
One critical aspect of the interpretation stage can be char-
acterized as instruction grounding in which the natural-
language statements and their subcomponents are grounded
to objects and actions in the real world. Several recent ef-
forts in the Soar community in particular have made signif-
icant strides in this area (e.g., Lindes, Mininger, Kirk, &
Laird, 2017; Mohan, Mininger, Kirk, & Laird, 2012). For
example, the Lucia system incorporated into the Rosie agent
(Lindes et al., 2017) provides grounding for simple objects
(e.g., ‘the green rectangle’), prepositional phrases (e.g., ‘the
green square to the left of the blue square’), and whole sen-
tences; in doing so, Rosie can learn tasks (in this case, simple
games) and uses the grounded knowledge to reason about and
act upon the associated objects in the world.

We follow a similar approach here, interactively receiv-
ing the instructions in sequence and incrementally grounding
each component. Consider the paired-associate instructions
presented earlier in Table 3. The parser implemented in Think
takes a natural-language phrase such as ‘Wait for a word’
and builds a declarative memory chunk WaitFor(word) as
a mental representation of the phrase. The concept of word is
grounded to the next visual object that appears to the model,
and the model will store the mapping from word to this ob-
ject in the current context (equivalent to ACT-R’s imaginal
buffer; see Anderson et al., 2004). In other cases where a spe-
cific visual object is referenced (e.g., on a crowded screen),
the model allows the (virtual) experimenter to “point out” vi-
sual information—for instance, hearing the phrase ‘Read the
letter’ while pointing at the object—which gives the model
an associated visual point along with the verbal information
(Salvucci, 2013). Later in the model’s simulation run, actions
such as Wait for or Read will be grounded to their respective
psycho-motor actions during the execution stage.

Sometimes, ambiguity in grounding can arise when the
same object is referred to by different words or phrases. For
example, consider a case in which a teacher directs the learner
to ‘Wait for a digit’ and then later to ‘Type the number’. From

the context, and in this case the lack of any other realistic in-
terpretation, a human participant could understand the change
and ground both digit and number to the same object, whereas
a simpler model interpreter could not make this leap. The
model here allows for the inclusion of potential synonyms in
its declarative memory, which are assumed to be part of a per-
son’s general knowledge (not something learned during the
task). When a term is discovered that cannot be grounded—
e.g., ‘Type the number’ when the model has not yet seen a
number—the model checks for other potential interpretations
within its existing context. In our example, the model will
have already grounded the digit, and thus it can search for
and find an interpretation whereby number and digit are the
same object.

Table 4: Sample instructions for the visual-search task.

(a) To perform the task
Find the ‘C’
Move the mouse to it
Click on it
Repeat

(b) To perform the task
Find the ‘C’
Click on it
Repeat

(c) To perform the task
Click on the ‘C’

Another common and useful aspect of natural language for
instructions arises in anaphora resolution, or more specifi-
cally, pronoun resolution. Table 4(a) provides sample instruc-
tions for a visual-search task in which the participant finds the
letter ‘C’ among a set of distractors (such as the letter ‘O’).
Pronoun resolution—specifically here, resolving the meaning
of the word it—allows for two major benefits: first, it allows
for more natural expressions of the instructions of the part of
the teacher; and second, it allows the model to ground mul-
tiple references to the same physical object (in this case, the
same ‘C’ mentioned earlier in the instructions). Much like
the model of Lindes et al. (2017), the model here builds up
a representation context incrementally, first noting that there
is an object ‘C’, and later noting that it must refer to this ear-
lier object. Admittedly, pronoun and anaphora resolution are
much more complex in the general case; however, even the
straightforward method here covers many simpler cases and
already nicely enhances the flexibility of the model’s parsing
and interpretation.

Instruction Inference
Beyond the language of the instruction steps, some of the
variability from a teacher’s instructions arises in inclusion or
exclusion of the steps themselves. In particular, some steps



may be explicitly stated in one circumstance but only implic-
itly suggested in another; in the latter case, the model must in-
fer any intermediate instructions or actions. Table 4 includes
three alternative sets of instructions: (a) long-form instruc-
tions that explicitly direct the participant to Find, Move to,
and finally Click on the desired target, plus an explicit Re-
peat step; (b) shorter instructions that skip the Move step; and
(c) even shorter instructions that only direct the participant to
‘Click on the ‘C’’ without any other steps. In each case (and
one might easily imagine further alternatives), we would ex-
pect the same behavior from the learner.

Our approach to this challenge represents a blend of two
key ideas in earlier work. First, more recent models of in-
struction following developed in ACT-R (e.g., Taatgen et al.,
2008) have encoded instructions along with a set of precon-
ditions and postconditions, such that an instruction step may
execute only when its preconditions have been satisfied, and
its execution then results in postconditions that may in turn
be needed by other steps. Second, the Soar cognitive archi-
tecture (Laird, Newell, & Rosenbloom, 1987) has as one of
its core principles the idea of resolving an impasse: when
the next action cannot be easily determined, the architecture
generates an impasse and creates a subgoal to resolve this im-
passe. The model borrows the spirit of each approach in the
execution of instructions. Certain actions, such as clicking
the mouse on an object, have a natural precondition, such as
moving the mouse to that object. When attempting to fol-
low such an action, if the precondition is not met, the model
first tries to execute a subgoal that will resolve that precon-
dition, which could potentially trigger another subgoal. In
Table 4(c), the Click action requires the Move action, which
in turn requires the Find action—and thus the single instruc-
tion ‘Click on the ‘C’’ triggers the same sequence of actions
as the equivalent three steps in Table 4(a).

Along these lines, similar simple inferences could be made
in other ways for these instruction sets. For example, Table
4(c) omits the final Repeat step, but it would be reasonable
to assume that if a participant would continue to be presented
with similar stimuli, they would infer this repeat on their own,
and the model does the same.

The approach here is not as general as Soar’s impasse
mechanism, since it does not claim to be a general approach
to subgoaling; the approach is more akin to the precondi-
tion/postcondition work of Taatgen et al. (2008), although
here, conditions are not stored in the declarative memory
chunks but instead embedded in the execution processing of
the individual actions. Our approach could also be viewed as
a basic form of backward chaining seen in other systems (e.g.,
Langley & Choi, 2006). On a larger scale, the interaction
between teacher and learner (described shortly) may lead to
even more complex scenarios—for example, a teacher could
modulate instructions based on learner’s expertise, common
and shared knowledge, and so on, leaving the learner to infer
simple steps or perhaps to derive more complex inferences
between new pieces of knowledge.

Interactive Learning and Execution
As stated earlier, although we have mostly emphasized sep-
arate interpretation and execution stages to this point, the re-
ality of instruction following is often much more complex,
involving interaction between teacher and learner throughout
the learning process. This idea has been a focus of the work
on interactive task learning (see Laird et al., 2017), in which
“the learner actively tries to assimilate the meaning of the in-
struction while performing the task, and learning occurs in
conjunction with that task’s performance.” During the inter-
pretation stage, a learner might stop when confused by an
instruction and ask the teacher what is meant by that instruc-
tion. During the execution stage, the learner might realize
that there is actually ambiguity where they did not anticipate
(e.g., two words on the screen when looking for a word).

The current model is built with interactivity in mind, al-
lowing for a stream of communication between the (simu-
lated) teacher and the (model) learner. The teacher provides
verbal instructions to the model, and the model performs the
task over time—but at any stage, either of them may inter-
act with the other to communicate questions or information
(see the description of “communicative grounding” in Chai et
al., 2018). For example, consider a situation for the paired-
associates task in which the model remembers a digit but then
is instructed to ‘Type the number’. As mentioned earlier, the
model has one avenue to solve this ambiguity, namely in re-
calling number as a possible synonym of digit. But what if
this synonym pair was not known to the learner, or is a dis-
tant semantic relation that could not be easily inferred (e.g.,
digit and target)? If no synonym is available, the model stops
and asks the teacher a question such as ‘Which is the num-
ber?’, and waits for a response to process using its audition
module. When the response is given—e.g., ‘the digit’—the
model remembers this association and uses it for future pro-
cessing. (The association might even be forgotten if the mem-
ory chunk decays too much before its next use, which would
trigger the model to repeat the question to the teacher.) In this
way, the model gains additional ways to augment its under-
standing and clarify ambiguities and/or gaps in its knowledge.

Discussion
This paper has provided an overview of several ways in which
computational models of instruction following can be made
more flexible and robust with respect to variations in the in-
struction and learning process. Our discussion of the relation-
ship to human data has been somewhat non-traditional for a
cognitive-modeling effort: we have generally argued that hu-
man participants can adjust to these variations and then shown
that the model can do the same. From a more traditional per-
spective, we can note that these models do indeed provide a
reasonable fit to human performance. For example, Figure 1
shows the results of 10 simulations of the paired-associates
model along with the results from human participants over
blocks of trials (Anderson, 1981). The model fits the human
data well for both correctness, R = .98, RMSE = .08, and



response time, R = .99, RMSE = .17, with ACT-R memory
theory driving the predictions. In fact, for any of the variants
of the instructions described here, the model results would be
largely the same; small differences might arise due to extra
cognitive processing of, for example, synonyms or interac-
tive communication, but the qualitative behavior and fit of the
model would not change in a significant way.
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Figure 1: Human and model results for the paired-associates
task showing (a) correctness and (b) response time.

Thus, unfortunately our current human data does not al-
low us to fully validate the techniques here. To address this
challenge, our current work is part of a larger effort to de-
velop an undifferentiated agent which is not specific to any
one task but instead can take instruction and then perform
a wide range of tasks (see, e.g., Salvucci, 2013). We are
working toward applying such an agent to a battery of tasks,
addressing various challenges along the way, especially with
respect to the types of inference (or “gap-filling”) that might
be done more robustly with a fuller knowledge ontology and
reasoning system. This effort aims to provide dual benefits of
deeper understanding of human behavior and broader devel-
opment of systems for practical applications such as synthetic
teammates (e.g., Myers et al., 2018).
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