
An Imperative Alternative to Productions for ACT-R
Anthony M Harrison (anthony.harrison@nrl.navy.mil)

U.S. Naval Research Laboratory
Washington, DC, 20375 USA

Abstract

As cognitive modeling has matured, so too have its tools.
High-level languages are such tools and present a rich oppor-
tunity for the acceleration and simplification of model devel-
opment. Reviewing some of a the major contributors to this
area, a new language (Jass) is introduced for building ACT-R
models. Jass simplifies and accelerates model development by
providing an imperative language that is compiled to produc-
tion rules. A complex model implemented using this language
is detailed.
Keywords: cognitive modeling, ACT-R, high-level languages,
cognitive architectures

Introduction
Cognitive modeling allows us to generate high-fidelity mod-
els of human behavior for a wide array of applications and
research questions. These models are the result of complex,
time-consuming development processes. Many researchers
and engineers have developed tools and theories in order
to simplify, democratize, or otherwise accelerate this devel-
opment process (e.g., John, Prevas, Salvucci, & Koedinger,
2004). Of particular interest at present is the work on higher-
level languages for cognitive modeling. These languages all
share a common goal of simplifying the process of model-
ing by abstracting away some set of low-level features, while
retaining or extending functionality. The theoretic commit-
ments and approaches vary, but common across most of the
studies in recent years has been the commitment to a compila-
tion model (Ritter et al., 2006). In a compilation model high-
level source code is compiled into production rules to be run
on the underlying cognitive architecture. This permits models
developed in the high-level language to avoid low-level pain
points while still having access to the full explanatory power
of the underlying architecture.

To differentiate the various approaches to the compilation
model it is worth considering the intended scope of the gener-
ated models and the degree of theoretic commitment the lan-
guage makes. Degree of commitment is the extent to which
the language makes modeling commitments for the modeler.
For instance, some of these languages provide a press-button
construct for computer interaction. While the construct is
simple enough, it can actually be implemented in many dif-
ferent ways at the lowest level. The language could employ
a single implementation, theoretically committing the user of
the language to that approach. Alternatively, the language
could provide a set of implementations, allowing the user to
select a particular commitment. Yet another alternative is to
minimize the commitment by not providing the construct at
all, leaving the implementation entirely up to the user. These
design decisions make theoretic commitments that can ob-
struct or hinder some theoretic accounts. Generally speaking,

the higher the level of abstraction the greater the number and
degree of theoretic commitments made. More precisely, all of
these languages commit the modeler to a specific goal struc-
ture and management which would make it difficult to study
alternative accounts for those elements.

The earliest high-level compiled language for ACT-R was
ACT-Simple (Salvucci & Lee, 2003). This GOMS-like lan-
guage took basic primitives (e.g., click, type, speak, think)
and mapped them to a fixed set of specific production se-
quences. Intended for simple, serial, computer-based tasks,
the executable models are able to make realistic time-based
predictions. The basic primitives used in ACT-Simple are
appealing from a user-design evaluation perspective but they
are too limiting for the modeling of general tasks. GOMS
is an abstract analysis formalism, not a programming lan-
guage proper, and therefor lacks many of the constructs nec-
essary for general modeling tasks (e.g., error handling). As
described in the earlier press-button example, ACT-Simple
used fixed mappings between behaviors (e.g., press-button)
and production sequences, committing the user to those par-
ticular theoretic accounts.

GOMS to ACT-R (G2A) (St Amant, Freed, & Ritter, 2005)
adopts a similar approach as ACT-Simple. Also based on
GOMS, G2A inherits some of the challenges therein. It
simply lacks many of the concrete formalisms necessary to
express arbitrary task and flow structures. While still well
suited for simple, computer-based tasks, G2A does vary the
primitive-production mapping. Recognizing that multiple
production solutions exist for each primitive, G2A allows
those mappings to be manipulated at compile time. This low
degree of commitment permits G2A to generate families of
related models that vary in individual theoretic commitments.
It is unclear if the user of the language is able to contribute
these primitive-production mappings directly.

The High Level Symbolic Representation (HLSR) lan-
guage (Jones, Crossman, Lebiere, & Best, 2006) shares many
features with Prolog, and brings with it the rich functional-
ity of that programming language. What sets HLSR apart is
that the compiler is able to target multiple cognitive archi-
tectures, generating productions for both ACT-R and SOAR.
This opens the door to performing architectural comparisons
while holding the model itself fixed. At such a high-level of
abstraction, HLSR has a high degree of commitment, which
while enabling greater productivity, ultimately limits the lan-
guage’s ability to provide alternative accounts.

Herbal (Paik, Kim, & Ritter, 2009; Paik et al., 2010) is a
graphical language, based on Newell’s Problem Space Com-
putational Model (Newell, Yost, Laird, Rosenbloom, & Alt-
mann, 1993). Designed initially for SOAR, it was adapted

to also compile to multiple cognitive architectures, includ-
ing ACT-R. Similar to HLSR, Herbal is intended as a gen-
eral modeling language, even though it makes significant the-
oretical commitments. Herbal’s most novel contribution is
in the generation of productions at multiple levels of com-
petency. Its production generator can output novice models
that rely predominantly upon declarative representations and
a few general purpose productions; full expert models where
the declarative components have been fully proceduralized;
and any mixture of the two endpoints. In order to provide this
feature, Herbal commits the user to very specific goal struc-
tures and management, as well as specific declarative repre-
sentations for instructions.

This paper introduces the jACT-R Assembler (Jass)1, a
high-level imperative language that compiles into ACT-R
productions for the Java implementation of ACT-R, jACT-R
2. It aims to simplify development by abstracting away low-
level productions, while retaining the full range of ACT-R’s
explanatory power.

jACT-R Assembler (Jass)
Motivation
Jass3 is intended for modelers specifically familiar with the
theoretic underpinnings of ACT-R. It codifies ACT-R’s theo-
retic constraints while providing significant control over how
a model’s commitments are expressed. The language was de-
veloped with three goals in mind: eliminate the production
as the unit of development, maximize the modeler’s theoretic
control by minimizing the language’s commitments, and to
allow the language to co-evolve with ACT-R.

Eliminate the Production
Central to this work is the thesis that developing in produc-
tion rules is itself a hindrance to developing cognitive models.
Because of the small granularity of productions, it is often
challenging to understand what any one is doing without un-
derstanding those that are supposed to fire before and after it
as well. This implicit ordering problem makes understanding
and developing productions very difficult. Any cognitive re-
sources that can be freed up by not working on productions
can be directed towards the development of the model’s core
theoretic predictions. However, productions lie at the heart of
ACT-R as a theory and cognitive architecture. Jass achieves
this abstraction by providing an imperative C-style language
from which productions are generated for execution by the
architecture (see Figure 1).

Production Generation Unlike Herbal (Paik et al., 2010),
Jass does not to produce novice or expert models, rather
something in between, an intermediate model where all the
declarative information has been compiled out, but the se-
quencing and timings have yet to be optimized. The pro-

1https://github.com/amharrison/jass
2http://jact-r.org/
3Jass is implemented using Eclipse’s Xtext language develop-

ment toolkit. http://eclipse.org/xtext/

/∗
∗ See s o m e t h i n g ? p r e s s b u t t o n
∗ /

f u n c t i o n void TaskA () {
s l o t tmp = n u l l
/ / r e s e t t h e v i s u a l s y s t e m
r e q u e s t v i s u a l (r e s e t V i s u a l)

=>{
tmp= n u l l

}
/ / w a i t f o r s o m e t h i n g t o be seen
whi le (g o a l (t m p I s N u l l))
{

r e q u e s t v i s u a l− l o c a t i o n (n e w V i s u a l L o c a t i o n)
−> tmp = v i s u a l− l o c a t i o n
=>{
tmp= n u l l

}
}

/ / and p r e s s a b u t t o n
r e q u e s t motor (b u t t o n P r e s s)

=> {
tmp = n u l l

}
r e t u r n

}

Figure 1: Simple perceptual-motor task in Jass.

ductions generated by Jass are also sparse in that there is
at most one instruction per production. This is in contrast
to normal, dense, hand-coded productions which often load
multiple instructions into a single production. Early work
suggest that Jass models have around 3x more productions
than hand-coded models. Productions generated by Jass still
have room for compilation and optimization by the architec-
ture’s production compilation mechanism (Taatgen & Ander-
son, 2002).

Productions for Goal Management At the heart of all
ACT-R models are the productions that manage the current
goal. A random sampling of available published models 4

shows that the vast majority of models (90%) use an explicit
state representation to control production flow. That is, the
goal has a single, perfectly predictive variable devoted to con-
trolling production sequencing, as opposed to controlling se-
quencing using multiple variables or states. Given that fact,
Jass adopts a similar goal structure, with an explicit state vari-
able. However, because goal management is still an area of
active research, management is implemented as a pluggable
interface. This allows the goal management to be swapped
out as necessary so long as there exists a variable devoted to
maintaining the explicit state. Jass subsumes goal manage-

4http://act-r.psy.cmu.edu/publication/, as of 2/20/20

ment for the modeler by transforming goal management into
imperative function-calls. That is, each goal is expressed as
a callable function with parameters. In this way, the mod-
eler is freed from managing goal representations themselves
and instead just structure function calls to complete the actual
goal. Without productions, the language is effectively one of
managing the contents of the working memory buffers.

Theoretic Control

Theoretic control is the ability to express a particular mod-
eled behavior using the full extent of the theoretic framework.
Tools with a high degree of theoretic commitment limit one’s
theoretic control. The aim of Jass was a language designed
around the architecture as it is used, hopefully enabling it to
avoid many of the theoretical commitments present in prior
work. By designing around the architecture we can support
or fully codify the five major modeling paradigms in ACT-R
(Taatgen, Lebiere, & Anderson, 2006). This allows Jass to
exploit ACT-R’s full theoretic coverage and not just a subset
of it. Two of these paradigms, instance learning and com-
peting strategies, are so pervasive in ACT-R models that they
were reified as language constructs.
Competing Strategies Production rules are heavily parallel
by their very nature. But since ACT-R imposes a serial pro-
cessing bottleneck, only one of many competing productions
can be selected for firing at any given time. This very pro-
cess accounts for many modeled phenomena in ACT-R. But
because of low-level of productions it can be difficult on ca-
sual inspection to determine which productions are supposed
compete without running the model directly. Jass makes this
explicit through the use of the match-case statement. Nor-
mally Jass’s generated productions are strictly serial, follow-
ing the imperative instruction order. When it reaches the
match-case statement, it knows to generate a competing pro-
duction branch for each case encountered. Figure 2 shows a
snippet that picks between three strategies and falls back to
default in case none match the current system state.
Buffer Requests Instance learning in ACT-R is the retrieval
and application of prior problem or goal state information. To
achieve this, productions must make a request of the retrieval
buffer to fetch from declarative memory some matching pat-
tern (see Figure 3). The pattern of requesting and using in-
formation from a particular buffer is so pervasive that most
major predictions are derived from the consequences of these
requests. As such all request patterns are subsumed by Jass’s
request statement. The behavior of the request instruction
is determined by the buffer that it is making the request of.
Jass includes a contributable meta-definition for buffers that
defines their expected behavior. For instance, a buffer can be
marked as having a potential error state which will require the
request instruction to have an error handler. Figure 3 shows a
retrieval request (7) of something matching underspecifiedE-
pisode with success and error handlers.

1 . . .
2 match{
3 case g o a l (n e x t I s A) : {
4 TaskA ()
5 }
6 case g o a l (n e x t I s B) : {
7 TaskB ()
8 }
9 case g o a l (n e x t I s C) : {

10 TaskC ()
11 }
12 case g o a l (n e x t I s D) : {
13 TaskD ()
14 }
15 d e f a u l t : {
16 TaskA ()
17 }

Figure 2: Match-case statement with three alternative
branches competing with the default branch. Priorities can
be specified using [#] after the case. Function calls denote a
change of goal.

Commitments The greatest commitment that Jass makes
is to the mapping of language constructs to production rules
generated. Implemented as a pluggable, extensible interface,
new mappings can be swapped in or added if the current com-
mitments are deemed inadequate. The next major commit-
ment is to the goal structure, but as previously mentioned it
should be able to handle the majority of models. It too is
implemented as a pluggable interface should the goal com-
mitments need to be modified.

Evolve with Architecture
Cognitive architectures are implementations of evolving theo-
ries. To be truly useful, any high-level language must be able
to evolve with its underlying architecture. Failing to do so
ultimately undermines the tools influence and utility (Ritter
et al., 2006). As mentioned previously, Jass uses a pluggable
software architecture for all of its major components. This
allows goal management and even individual language con-
structs to be swapped out as theoretical explorations dictate.
The language also directly supports the contribution of new
modules and buffers through the buffer meta-descriptor (Fig-
ure 4). This makes it possible to consolidate the various buffer
behaviors into the singular buffer request construct discussed
earlier.

Memory for Goals: A Test Case
To gauge the relative success at achieving the design goals of
Jass a validation model was implemented. That model should
in someway inform each of the design goals discussed previ-
ously. Specifically, the elimination of the production should
facilitate the development of more complex models; a high

u n d e r s p e c i f i e d E p i s o d e = {
i s a e p i s o d e

}

. . .

r e q u e s t r e t r i e v a l (u n d e r s p e c i f i e d E p i s o d e)
−> c u r r e n t = r e t r i e v a l . r e f e r e n c e
=>{

. . . / / e r r o r h a n d l e r
}

. . .
}

Figure 3: Request of retrieval module to fetch a chunk match-
ing underspecifiedEpisode. On success, grab the reference.
On failure, do something else.

g o a l w r i t a b l e r e q u e s t s ∗ −> ∗
i m a g i n a l w r i t a b l e r e q u e s t s ∗ −> ∗
r e t r i e v a l readable r e q u e s t s ∗ −> ∗
motor error r e q u e s t s motor−command −> ,

motor−c l e a r −>
v i s u a l readable error

r e q u e s t s move−a t t e n t i o n −>
v i s u a l−o b j e c t ,

c l e a r −>

Figure 4: Jass’s buffer meta-descriptor specifying writability,
potential for error, and the expectations of the request state-
ment.

degree of theoretic control should allow the modeler fully ex-
ploit the underlying architecture; and it should adapt new the-
oretic contributions seamlessly. Altmann & Trafton’s Mem-
ory for Goals models (2007; 2011) fit these requirements.

Memory for Goals
Memory for goals is a theory of goal management extensively
applied to interruptions that accounts for various resumption
errors (Trafton et al., 2011) and lags (Altmann & Trafton,
2007). It posits that we rely upon short-lived episodic traces
and their retrieval to manage our goals. Resumption errors
are due to the inappropriate retrieval of noisy episodes, and
lags are due to incrementally rebuilding episodic context after
interruption. These features map nicely to the design goals
of Jass. First, the model is complex requiring multiple tasks
and their interleaving due to interruption. Second, it relies
upon unanticipated uses of ACT-R’s underlying architecture
(i.e., clearing the goal buffer for an interruption) and makes
strong predictions about goal usage. Finally, their account
makes use of custom episodic module (i.e., a novel theoretic
contribution outside of Jass’s initial design scope).

Experimental Task The original primary task was a com-
plex computer game (Trafton, Altmann, Brock, & Mintz,
2003) that exhibited two primary features. First, the fre-
quency of response was high permitting the collection of nu-
merous samples as recovery interruption recovery progresses.
Second, the task is complex enough that it requires some cog-
nitive state for an interruption to disrupt. The interrupting
task was a radar-classification task (e.g., Brock, Stroup, &
Ballas, 2002) where subjects selected targets and classified
them based on simple rules. For every twenty minute block of
the primary task, there were twelve randomly distributed in-
terruption phases. Reaction times were recorded for the first
ten responses after an interruption resumption. Each partic-
ipant completed three blocks (early, middle, late) to assess
learning. The remaining details can be found in (Altmann &
Trafton, 2007).

Model

Since this modeling endeavour was more of a proof-of-
concept than a rigorously validated model, large portions of
the primary and interruption tasks were simplified, focusing
primarily on the core of memory for goals.

Modeled Tasks Three independent Jass libraries were de-
veloped, one for each of the interruption, primary, and man-
agement tasks. The interruption task was modeled as an ex-
haustive visual search, followed by some key inputs. The
primary task was itself made up of multiple smaller Jass
libraries, each designed to be basic perceptual/action tasks
strung into a repeating sequence. It was the manager task’s
job to determine which of the primary tasks to run at any
given time. During normal execution, the model alternates
between the manager and the next primary task to be exe-
cuted. On interruption, the working memory buffers were
cleared, triggering the interruption task.

The manager encapsulates the majority of Memory for
Goal’s theoretic account. Under normal conditions, the man-
ager tracks the prior and current tasks. This context allows it
to rapidly retrieve the next task in the sequence. Under inter-
rupted conditions, this context is wiped out and the task man-
ager must try to retrieve the most recent episode which con-
tains the tag representing the completed task. Assuming the
task was completed, the task manager tries to retrieve the next
task in the sequence. With the to-be-completed task known,
the manager creates a new episodic encoding and optionally
rehearses it, if it is currently rebuilding context. This new
episode is then retrieved, relying only upon the spreading ac-
tivation from the current context for priming. The retrieved
episode (possibly incorrect due to noise) is then used to exe-
cute the next task.

Goal Management While memory for goals makes spe-
cific predictions regarding how goals are rehearsed and re-
trieved for execution, it is silent on the actual form of the
goal. Because of this, Jass’s default goal management was
able to be used without any modification. However, Altmann

& Trafton’s use of buffer clearing to model interruptions did
require the inclusion of three hand-written productions to deal
with the empty goal buffer state.

Episodic Module Memory for goals depends upon some
form of an episodic module. Altmann & Trafton underspec-
ify this component, choosing instead for a minimal commit-
ment. All this episodic module does is create a unique, time-
stamped, chunk with a single reference. This reference can be
to anything and in their models it is the task representation of
the to-be-completed task. Jass was easily able to accomodate
the new module using the buffer meta-descriptions mentioned
previously (see Figure 4).

Results

Figure 5: Average response times from the Altmann &
Trafton (2007) experiment (solid lines) and average model
fits (dotted lines), plotted by block (1-3) and serial position
after interruption (1-10).

Model The model was run one hundred times with an ac-
tivation noise of 0.1, all other parameters were set at their
defaults. Model and empirical response times are plotted in
Figure 5. The model fits well (RMSE = 0.243, R2 = 0.94).
This shows the primary resumption lag effect as it rebuilds
its context after interruption. Unfortunately, the model does
not show the same learning effect across blocks as seen in the
empirical data. This is due to the relatively lean declarative
needs of the model, that is, only the episodes and task tags
are retrieved. Had there been task information retrieved dur-
ing the execution of the primary and interruption tasks, we’d
expect to see a greater effect of practice.

While the general pattern of the reaction times is consistent
with the empirical findings, the model is consistently slower
at the later positions. At this late point, declarative retrievals
are effectively immediate, the latency is largely due to the
overhead of the productions. Had production compilation
been enabled, we’d expect the generated production overhead
to be reduced, making up the difference.

Jass While too early for a formal study, it is worth consid-
ering the anecdotal experience of modeling memory for goals
in Jass. From inception to first batch runs was less than four
days of engineering time. The coding of the three tasks took
less than eight hours, yielding a moderately sized model of
183 productions, approximately 22.5 productions per hour.
In terms of lines of code, the Jass models took a combined
592 lines versus the generated productions taking a combined
2945 lines (5x more compact).

Discussion
We successfully demonstrate the use of Jass to develop com-
plex cognitive models for ACT-R. The imperative model sim-
plifies the temporal sequencing of actions required for task
completion relative to working with productions directly. The
design of Jass allows it to accommodate many different the-
oretical accounts, even for core elements such as goal man-
agement. The design flexibility also permits Jass to adapt
to changes in the underlying architecture, allowing it to
keep abreast of current theoretical trends. Jass’s compilation
mechanism effectively creates goal-based libraries of func-
tionality. Each of the modeled tasks was implemented sep-
arately and only combined into a single model at run time.
This is a promising feature as it applies to model reuse across
projects and researchers. As a tool for cognitive modeling,
this simple proof-of-concept bodes well for the utility of Jass.
However, much more rigorous usability testing is required to
get a full sense of the tool’s benefits and drawbacks (Ritter et
al., 2006).

Acknowledgments
This work was supported by ONR under funding document
N0001420WX00496 awarded to Dr. Laura Hiatt. The views
and conclusions contained in this document should not be in-
terpreted as necessarily representing the official policies of
the U.S. Navy.

References
Altmann, E. M., & Trafton, J. G. (2007). Timecourse of

recovery from task interruption: Data and a model. Psy-
chonomic Bulletin & Review, 14(6), 1079–1084.

Brock, D., Stroup, J. L., & Ballas, J. A. (2002). Effects of 3d
auditory display on dual task performance in a simulated
multiscreen watchstation environment. In Proceedings of
the human factors and ergonomics society annual meeting
(Vol. 46, pp. 1570–1573).

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K.
(2004). Predictive human performance modeling made
easy. In Proceedings of the sigchi conference on human
factors in computing systems (pp. 455–462).

Jones, R. M., Crossman, J., Lebiere, C., & Best, B. J. (2006).
An abstract language for cognitive modeling. In Proceed-
ings of the 7th iccm.

Newell, A., Yost, G. R., Laird, J. E., Rosenbloom, P. S., &
Altmann, E. (1993). Formulating the problem space com-
putational model. In The soar papers (vol. ii) research on
integrated intelligence (pp. 1321–1359).

Paik, J., Kim, J. W., & Ritter, F. E. (2009). A preliminary act-
r compiler in herbal. In Proceedings of iccm-2009-ninth
international conference on cognitive modeling (pp. 466–
467).

Paik, J., Kim, J. W., Ritter, F. E., Morgan, J. H., Haynes, S. R.,
& Cohen, M. A. (2010). Building large learning models
with herbal. In Proceedings of iccm-2010-tenth interna-
tional conference on cognitive modeling (pp. 187–192).

Ritter, F. E., Haynes, S. R., Cohen, M., Howes, A., John, B.,
Best, B., . . . Lewis, R. L. (2006). High-level behavior
representation languages revisited (Tech. Rep.). PENN-
SYLVANIA STATE UNIV STATE COLLEGE COLL OF
INFORMATION SCIENCES AND

Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive model-
ing in a complex cognitive architecture. In Proceedings of
the sigchi conference on human factors in computing sys-
tems (pp. 265–272).

St Amant, R., Freed, A. R., & Ritter, F. E. (2005). Specify-
ing act-r models of user interaction with a goms language.
Cognitive Systems Research, 6(1), 71–88.

Taatgen, N. A., & Anderson, J. R. (2002). Why do children
learn to say “broke”? a model of learning the past tense
without feedback. Cognition, 86(2), 123–155.

Taatgen, N. A., Lebiere, C., & Anderson, J. R. (2006). Mod-
eling paradigms in act-r. Cognition and multi-agent inter-
action: From cognitive modeling to social simulation, 29–
52.

Trafton, J. G., Altmann, E. M., Brock, D. P., & Mintz, F. E.
(2003). Preparing to resume an interrupted task: Effects
of prospective goal encoding and retrospective rehearsal.
International Journal of Human-Computer Studies, 58(5),
583–603.

Trafton, J. G., Altmann, E. M., & Ratwani, R. M. (2011).
A memory for goals model of sequence errors. Cognitive
Systems Research, 12(2), 134–143.

