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Abstract

Successfully performing everyday activities such as loading
the dishwasher or setting the table relies on the involvement
of many cognitive abilities. As such, everyday activities pro-
vide a unique window for investigating the involved cognitive
abilities as well as their interaction, promising high ecologi-
cal validity of the obtained findings. Against this background
we investigated two cognitive abilities and their combination,
which are crucial for virtually all everyday activities. Specif-
ically, we investigated the nature of mental spatial representa-
tion and planning depth in rational planning by analyzing ta-
ble setting behavior across many environments and actors. As
recent modeling work indicates that rational planning is influ-
enced by spatial properties of the environment, we investigate
how representation of and reasoning about the spatial environ-
ment impact sequential action planning. Using a modeling ap-
proach, we compare models implementing different plannings
depths and differently complex spatial representations. Our
findings indicate that people plan opportunistically (one step
ahead) and rely on a two-dimensional representation of their
environment. These findings lend credit to the idea that hu-
mans minimize their cognitive effort (simpler representations,
shallow planning) to efficiently perform everyday tasks.

Keywords: spatial cognition; rational planning; action se-
quences

Introduction
Everyday activities, such as cooking, cleaning, or setting a
table, seem simple, but are in fact highly complex tasks in-
volving many different cognitive abilities. Setting the table,
for example, requires action and motor planning, navigation,
spatial memory, action and motor control, and error monitor-
ing and correction, among others.

We argue that everyday activities provide a unique and in-
strumental window for investigating the involved cognitive
abilities. For one, everyday activities constitute complex tasks
in the sense of Newell (1973) such that their study promises
not only a deeper understanding of each of the abilities, but
also of their interaction and integration. Furthermore, find-
ings obtained from investigating everyday activities arguably
offer higher ecological validity than findings obtained from
experimental tasks commonly employed in the Cognitive Sci-
ences. At the same time, everyday activities are still simple
enough to also be investigated in the lab. Last but not least,
understanding cognitive abilities in everyday activities is of
great applied relevance by potentially allowing to better sup-
port people to live independently (e.g., in old age) without
requiring professional aid.

Against this background, in this contribution, we investi-
gate the nature of mental spatial representation and planning
depth in rational planning by analyzing everyday activities.
Planning and control of action sequences are necessary re-
quirements for successful task performance in everyday life.
In existing models of sequential action control (e.g. Botvinick
& Plaut, 2004; Cooper & Shallice, 2006), the assumption
seems to be that the to be controlled sequence is completely
known from the outset, whereas we propose a stepwise ap-
proach. Recent modeling work suggests that rational plan-
ning is influenced by spatial properties of the environment,
taking distance, relational dependencies (strong spatial cog-
nition), and topology (containment) into account (Wenzl &
Schultheis, 2020). Building on this modeling work, we ex-
amine how many dimensions people take into account when
representing and reasoning about their spatial environment as
well as how many steps ahead they plan their actions (i.e.,
planning depth). Our investigations take the form of a model
comparison study, in which we develop and compare models
realizing different dimensionalities of spatial representations
and planning depths. The models are compared across three
datasets of human table setting activities comprising various
actors and environments. Modeling results indicate that peo-
ple plan opportunistically employing a single-step look-ahead
and that they rely on a two-dimensional representation of the
environment, largely ignoring the vertical dimension.

The remainder of this paper is structured as follows: First,
we give an overview of the role of rational planning, space,
and minimization of cognitive and physical effort in the con-
text of everyday activities. Subsequently, we investigate the
role of planning depth and dimensionality of spatial repre-
sentation using a modeling approach. We conclude with a
discussion of our results and issues for future research.

Rational Planning, Space, and Minimization of
Effort

Rational Planning
Mechanisms such as knowledge representation and cogni-
tive processes have to be taken into account when trying to
explain human behavior through rational analysis (Jones &
Love, 2011). This is the core assumption of bounded ra-
tionality (Simon, 1955) which takes limitations in knowl-
edge and processing capacity into account. To identify ef-



fective mechanisms that can plausibly be implemented by a
resource-bounded human brain, computational modeling has
been shown to offer a useful analysis tool (Icard, 2018).

Adaptive rationality proposes that good prediction meth-
ods are adapted to the structure of a given local environment,
providing highly efficient solutions for a specific task (Schurz
& Thorn, 2016). Human cognition generally is assumed to be
locally optimal. This is consistent with research on sequential
information search and planning which indicates that humans
tend to use heuristic stepwise-optimal strategies rather than
planning ahead (Meder, Nelson, Jones, & Ruggeri, 2019).

Taking the limitations of the human mind and the com-
plexity of everyday activities into account, we propose that
humans deal with such activities by using a rational planning
strategy to choose their next action.

Space
All human activity takes place in space: Required items for
a given (everyday) activity are located in the physical envi-
ronment, and movement within this environment is necessary
to perform the activity. Spatial properties, e.g., distance, are
directly related to the required physical effort. While choos-
ing the action sequence for performing a specific activity, the
spatial properties of the environment may impose constraints,
such as having to move one object first before being able to
reach another object located behind it. Even if there are no
hard constraints there are a number of reasons to believe that
the order of action sequences is influenced by the spatial en-
vironment and its mental representation.

First, the organization of objects in physical space aims to
minimize cognitive effort and to facilitate the performance
of everyday activities (Kirsh, 1995). People use spatial ar-
rangements to serve as cues what to do next by simplifying
internal computation, e.g., by arranging objects in the kitchen
in a way that it is obvious which vegetables need to be cut,
washed, etc. in the next step. Minimizing computational ef-
fort by using the properties of the spatial environment to fa-
cilitate one’s actions is also consistent with behavioral strate-
gies relying on strong spatial cognition (van de Ven, Fukuda,
Schultheis, Freksa, & Barkowsky, 2018) and cognitive of-
floading (Clark, 1996; Wilson, 2002) (see Minimization of
Effort). Second, previous research has shown that the nature
of mental representations of space has a marked influence on
peoples behavior. Three-dimensional spaces seem to be rep-
resented in a “bicoded” way, splitting the representation in a
metric planar representation of the plane of locomotion and
a separate, possibly non-metric representation of the orthog-
onal space (Jeffery, Jovalekic, Verriotis, & Hayman, 2013).
Human spatial navigation performance is significantly worse
when navigating in a vertical environment than in a horizon-
tal environment (Zwergal et al., 2016) and distance is rep-
resented with higher accuracy along the horizontal than the
vertical axis (Hinterecker et al., 2018).

Taking the above considerations into account, we assume
spatial properties of the task environment, i.e., distance, func-
tional dependencies, and topology to be important factors

when deciding for the next action.

Minimization of Effort
Hull’s “law of less work” (Hull, 1943) states that physical ef-
fort tends to be avoided. Newer research indicates that phys-
ical and mental effort are equally aversive (Kool, McGuire,
Rosen, & Botvinick, 2010). The concept of an internal cost
of cognitive effort allows to explain the (globally) suboptimal
strategies frequently observed in humans, as favoring simpli-
fying strategies (heuristics) can be subjectively optimal when
reducing the internal cost of mental effort outweighs the ben-
efit of a more accurate strategy.

External scaffolding is a possible strategy to reduce cog-
nitive effort (Clark, 1996). Accordingly, external structures
are used to facilitate human problem-solving and to reduce
the cognitive effort of a specific task by offloading (part of)
the problem solution to external scaffolds such as tools or
memory aids. Strategies to offload cognition are used par-
ticularly often in the context of spatial tasks (Wilson, 2002)
(see Space).

Against this background, we assume that humans prefer
planning strategies that locally minimize the effort required
for task success.

Rational Planning Model for Table Setting
Consistent with the spatial environment being used to facil-
itate task performance, i.e., intelligent use of space (Kirsh,
1995), external scaffolding (Clark, 1996; Wilson, 2002),
strong spatial cognition (van de Ven et al., 2018), and mental
representation of space (Hinterecker et al., 2018), we expect
specific spatial constraints to be of importance for planning.

Based on previous research evidencing that humans favor
stepwise-optimal strategies over planning ahead (Meder et
al., 2019) and the “law of less work” (Hull, 1943; Kool et
al., 2010), we assume that the control of routine sequential
actions, such as table setting, follows a strategy of rational
planning. Taking the role of spatial properties in everyday ac-
tivities into account, we propose that humans prefer specific
action orderings: The next item to be picked up and taken to
the table is assumed to be chosen based on the current loca-
tion as well as the perceived cost of each possible action, with
the lowest-cost action being chosen.

Employing a modeling approach, we examine the influence
of the following spatial aspects of the task environment on
action organization during table setting:
• Distance: minimizing traversed distance,
• relational dependencies: e.g., saucer goes below cup and

should therefore be taken first, so both items have to be
moved to and placed on the table only once, and

• topology (containment): picking up items from, e.g., a
counter top, is considered less effortful than picking up
items stored in a closed cupboard.

We implemented our core assumptions in a computational
model. The model approximates rational planning by deter-
mining the lowest-cost next action for each step from episode



start (no items on the table, subject at starting position) to task
success (all required items on the table and – if specified – in
the target position, subject standing in front of the table).

Each cost Cp,q is calculated by determining the Eu-
clidean distance between two item locations p(x1,y1,z1) and
q(x2,y2,z2) in a nD representation of the specific environ-
ment, where n is either 1, 2, or 3. This distance is further
qualified by relational dependencies (parameter k) and con-
tainment (parameter c) yielding a weighted cost computed as
given in Eq. 1, where d is the Euclidean distance. Setting pa-
rameter k to a value < 1.0 decreases the weighted cost, thus
corresponding to a higher probability of taking the item in
question first, whereas setting parameter c to a value > 1.0
increases the weighted cost.

Cp,q = d(p,q)k · c (1)

Relational dependencies are defined as constraints that fa-
vor putting one item on the table earlier than a second item,
e.g., because the first item is supposed to be placed below the
second item (saucer and cup, etc.) or because the item is used
to define the place setting on the table (placemat, plate). Con-
tainment indicates whether an item can be accessed directly
or whether it is stored in a cupboard or the like which has to
be opened first.

We assume relational dependencies to have an influence on
the ordering of items as, with an ideal ordering, each item has
to be picked up and placed on the table only once, and the
placement of subsequent items is facilitated (e.g., not having
to know how much space to leave between items of silver-
ware for the plate). In contrast to choosing an arbitrary or-
dering, in which items already on the table might have to be
moved again (e.g., lifting the cup to place the saucer below
it, or making space for the plate by moving the silverware),
this ideal sequence minimizes the cognitive and physical ef-
fort. Since the opening of cupboards involves physical ef-
fort, containment is considered to be another cost factor. The
weighted cost for each possible item also depends on which
dimensions are considered when calculating the cost: Dis-
tances differ depending on whether they are computed in 1D
(i.e., with respect to the x, y, or z axis), 2D (i.e., with respect
to the xy, xz, or yz axes), or 3D (i.e., with respect to the xyz
axes). Parameters k and c are treated as free parameters of the
model and will be estimated from the data.

Simulations
Simulations aim to test two specific aspects: Planning depth
and dimensionality. For this purpose, we conducted two
model comparison studies: The purpose of the first simulation
was to compare different levels of planning depth: whether
the model assumes a one- or a two-step look-ahead (see Plan-
ning Depth). The second simulation examined the dimen-
sionality of the spatial representation people employed for
distance calculations (see Dimensionality).

Based on a given spatial layout with item coordinates, the
task description (required items), and a sequence of current

Table 1: Parameter estimates for different items

Category of relational
dependencies (k) Items

strong tray, placemat, table cloth
medium plate (empty), napkin
none (k = 1) all other items

locations, simulations were conducted as follows: For each
predicted next item, the prior location was taken as the cur-
rent location, regardless of whether the corresponding action
was a table setting action. In each step the cost for all next
possible actions was calculated (Eq. 1, p = current location,
q = item location), from which the item with the lowest asso-
ciated cost was chosen to be picked up next (Fig. 1). If there
were multiple items with the same associated cost, one item
was chosen randomly.

starting

position

tray

plate

cup

plate

cup

cup
5.20

5.40

5.40

6.92

7.59

Figure 1: Example for stepwise-optimal item selection based
on weighted cost (TUM environment, k and c set)

Parameters k and c were estimated by grid search. Param-
eter k was estimated per item category (see Tab. 1), i.e., items
with strong relational dependencies (e.g., placemat), items
with medium-strength relational dependencies (e.g., plate)
and items without relational dependencies (k = 1). c was es-
timated for all objects in closed containers (e.g., cupboard,
drawer). To evaluate how well the sequences generated by the
model and the observed sequences matched, we computed the
Damerau-Levenshtein edit distances (Damerau, 1964) and
normalized by sequence length to make results comparable
across sequences of different length. The resulting distance
measure, DLn, see Eq. 2, ranged from 0 (i.e., identical) to 1
(i.e., maximally different). As a baseline, mean edit distance
was calculated for n! samples generated without replacement
for observed sequences of length n and averaged over all se-
quences. For each parameter combination, model-generated
and observed sequences were compared for n = 100 itera-
tions, considering the median edit distance over all iterations.

DLn =
edit distance

maximum edit distance
(2)

Using a modeling approach, we investigated planning
depth and dimensionality across three table setting datasets
(Sec. Data). We estimated k and c by finding the best-fitting
model over all unique sequences of action orderings. Values
for (strong) k were tested in a range between 0.1 and 0.8 (in-
cluding ending values), with medium-strength k defined as



k + 0.1 and steps of 0.1. Parameter c was tested in the range
between 1.1 and 1.9 (including ending values), with steps of
0.1.

Data
TUM Kitchen The TUM Kitchen Data Set (Tenorth, Ban-
douch, & Beetz, 2009) contains data from four subjects set-
ting a table in different ways, each time using the same items
in the same environment. Each trial began with the subject
facing the kitchen (standing between location A and B, see
Fig. 2) and ended with all required items being on the table
(at location C or D). The necessary items for table setting
were stored in location A (tray, napkin), in the drawer be-
tween A and B (silverware), and B (plate, cup). The x axis
represented the traversable space between table and storage
locations (cupboards, drawers) as well as kitchen appliances
(stove, fridge), while the y axis represented the axis of move-
ment along storage locations and kitchen appliances (fridge,
cupboard, stove, etc., see Fig. 2). Of the 20 video episodes,
video 18 consists only in repetitive movement and had to be
excluded from our analysis.

Figure 2: Layout of the TUM kitchen (Tenorth et al., 2009)

EPIC-KITCHENS EPIC-KITCHENS (Damen et al.,
2018) is a large-scale first-person vision data set collected
by 32 participants in their native kitchens. Since each
participant recorded their activities in their home kitchen,
spatial environments and items vary between participants.

The participants recorded all their daily kitchen activities
with a head-mounted GoPro (video and sound) for three con-
secutive days. Each recording starts with the participant en-
tering the kitchen and stops before leaving the kitchen. The
participants were asked to be in the kitchen alone, so that the
videos capture only one-person activities. Each participant
recorded several episodes.

The episodes contain a multitude of kitchen activities, such
as cooking, stowing away groceries, and table setting. For
the purpose of this analysis, we only used episodes with table

setting actions, which reduced the sample size to 16 videos.1

Since the table setting actions are interleaved with cooking
actions, specific items can fulfill different functions, such as
a plate being used as container for a meal or as an empty
(eating) plate. To account for such differences, items are not
categorized according to item type but function (e.g., a plate
not serving as the eating plate is not considered to have strong
relational dependencies as defined in factor k).

cupboard

kitchen counter

serving tray sink

drawer 1
drawer 2

fridge

kitchen island

drawer3

starting
position

table

Figure 3: Layout of the Virtual Reality kitchen

Virtual Reality Dataset The data contains table setting se-
quences in a VR environment from a single participant.The
virtual kitchen consisted of three separate regions (fridge, tray
area, island area; Fig. 3), each of which had to be visited
at least once. The fridge contained a number of dairy prod-
ucts and orange juice, drawer 1 silverware, drawer 2 mugs
and glasses, drawer 3 bowls, and the cupboard a number of
food packages, such as cereal. The participant moved through
the virtual environment by moving through a corresponding
but open physical space, experiencing the virtual environment
through a HTC Vive head-mounted display. Movement was
tracked via the head-mounted display while interaction with
the environment was realized through two HTC Vive con-
trollers (one in each hand).

The participant was asked to set the table for one person
having breakfast. The minimum set of items (cereal bowl,
spoon, cereal, milk, glass, juice) could be expanded by the
participant if desired. The task was to first assemble all nec-
essary items on the tray and then to carry the items to the
table. The participant was familiar with the kitchen and knew

1P01 01, P01 03, P01 05, P01 09, P10 01, P12 01, P12 06,
P21 01, P21 03, P21 04, P22 12, P22 16, P24 02, P24 04, P24 05,
P26 11.



the location of all required items well. Data from 39 trials
was collected. For action orderings we considered the order
in which items were grasped and put on the tray.

Model Comparisons
Planning Depth
We ran model simulations for one and two steps of planning
ahead (Fig. 4). The one-step model works as described above.
The two-step model works as follows: after choosing a first
item, a second item is already chosen while picking up the
first item, based on the same weighted cost calculation as be-
fore. The second item is then picked up next regardless of
whether it is the lowest-cost item for the next starting point,
repeating this process until task completion. Because both
models have the same number of parameters, functional form,
and draw on identical sample sizes, a goodness of fit measure
is equivalent to more complex measures of generalizability
(Pitt & Myung, 2002). Accordingly, we considered and re-
port goodness of fit measures for comparing the models.

Both models consider a 3D environment for distance cal-
culation (see Eq. 1). The best fit for the one-step model is
achieved for parameters strong k = 0.6, medium k = 0.7, and
c = 1.9, which yield an average edit distance of 0.411 (me-
dian: 0.4). The best fit for the two-step model is achieved for
parameters strong k = 0.5, medium k = 0.6, and c = 1.2, which
yield an average edit distance of 0.415 (median: 0.4). Both
results are lower than the baseline of 0.603 (see Simulations).

Figure 4: Model fit based on planning depth (k = strong k)

Although the models differ in the action orders they gen-
erate, they seem to perform similarly well in accounting for
human behavior (Fig. 4). To further investigate, we computed
the average edit distances across all possible parameter value
combinations. Again, models performed very similar (1 step:
0.446, 2 steps: 0.446, median for both: 0.4) and comparing
their prediction accuracy using the Wilcoxon signed rank test
shows no significant difference (W = 831.500, p = 0.686).

As cognitive offloading tends to be used particularly often
in spatial tasks (Wilson, 2002), we argue that the results in-
dicate that people plan only one step ahead, as the process of
remembering the second item to be picked up can be consid-

ered cognitively effortful and adding a second step does not
achieve a better fit between predicted and observed behavior.

Dimensionality
To assess dimensionality, we compared seven models that as-
sumed spatial representations along the x, y, z, xy, xz, yz, xyz
axes, respectively, all of which assumed one-step planning.
For the same reasons as with the depth model comparison,
we again used goodness of fit as comparison measure.

Prediction accuracies for the first simulation show a highly
significant difference (χ2(6) = 507.748, p < 0.001), which
lends support to the idea that dimensionality has a strong in-
fluence on action organization in everyday activities. Since
previous research shows a preference for 2D spatial repre-
sentation and better navigation performance in 2D environ-
ments, we assume that calculating distances in 2D instead of
3D might reduce the necessary cognitive effort.

Figure 5: Model fit based on dimensionality (k = strong k)

The distribution shows that the average edit distance be-
tween model-generated and observed sequences is lowest
when considering xy or xyz for dimensionality (Fig. 5, base-
line shown as plane), with xy achieving slightly better results
(0.438 vs. 0.444, averaged over all possible parameter com-
binations; median for both 0.4). In a pairwise comparison of
model simulations based on xy and xyz spatial representations
using the Wilcoxon signed rank test, the model results consid-
ering a horizontal versus a horizontal and vertical spatial rep-
resentation also differ significantly (W = 1561.000, p = 0.05),
indicating that people seem to ignore the vertical dimension.

As the importance of single (1D) axes might be dependent
on how much they can influence the calculation of physical
distance, i.e., the actual possible movement span, we com-
pared the span for each axis (x,y,z). y has the highest average
span: 3.17 vs. 1.89 and 1.833 for x and z, respectively. The
average edit distance and the average volume of all task en-
vironments show a strong negative correlation (ρ = -0.708,
p < 0.001), i.e., with decreasing volume/span of the task en-
vironment, the prediction error increases (Fig. 6).

In order to account for the possibility that people assign
different importance to the individual spatial axes dependent
on their span width, we ran a second simulation of the model



Figure 6: Correlation between average edit distance and vol-
ume/span of task environments for each spatial representation

that incorporated a weight criterion for each axis. We calcu-
lated a weighted Euclidean distance between item locations
by multiplying the partial difference for each axis as shown
in Eq. 3, where the axis weight wn was defined as in Eq. 4.
Assuming an environment with axes spans x = 3, y = 2 and
z = 1, this results in wx = 0.5, wy = 1

3 , and wz = 1
6 .

d(p,q) =
√
(px −qx)2 ·wx +(py −qy)2 ·wy +(pz −qz)2 ·wz

(3)

wx =
spanx

spanx + spany + spanz
(4)

In the new model, z still shows the highest error rate
in prediction (0.60 average edit distance, thus similar to
the baseline), whereas xyz achieves a slightly better fit, but
still has a higher average edit distance than xy (xyz: 0.510,
xy: 0.514; median: 0.51 for both). Comparing two- and
three-dimensional representation using the Wilcoxon signed
rank test indicates a significant difference (W = 1348.000,
p = 0.005), i.e., xy achieves the best fit in both model vari-
ations.

Conclusion and Future Work
Our results lend to support to our initial argument of the mer-
its of investigating cognitive abilities by analyzing everyday
activities. Our analyses of table setting provided two main
findings: First, people behave consistently with a model that
plans one step ahead and, second, a representation of two-
dimensional horizontal space seems to be preferred over a
three-dimensional representation including the vertical.

Both findings indicate that the cognitive costs of alternative
planning strategies and representation structures outweigh
their potential benefits. These findings are consistent with
previous research showing human navigation performance to
be better in 2D environments (Zwergal et al., 2016), differ-
ences in the accuracy of distance encoding in horizontal vs.

vertical space (Hinterecker et al., 2018), and the theories of
external scaffolding and cognitive offloading, i.e., humans us-
ing properties of the environment to their advantage.

We expect our proposed planning model not to be specific
to the task of table setting, but to be generalizable to other ev-
eryday activities as well. Aspects to consider in future models
are possible interdependency effects between planning depth
and dimensionality, as well as cognitive effort. While we con-
sider cognitive effort in the scope of relational dependencies
and dimensionality, further research is needed on how cogni-
tive effort impacts everyday activities.

As the model is not able to provide reliable predictions
for sequences with low variance in the considered constraints
(e.g., similar distances, no relational dependencies between
items or containment), other potentially influential factors
need to be investigated further and addressed in future ver-
sions.
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