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Abstract

Human reasoning systematically deviates from conclusions
predicted by classical logic. It is nonmonotonic and defeasi-
ble, i.e., new information can lead to the retraction of previous
inferences. While these results hold for the analysis of popu-
lation data, it is an open question, if nonmonotonic logics can
capture individual human reasoning. In this article, we take
three prominent nonmonontonic approaches, the Weak Com-
pletion Semantics, Reiters Default Logic, and OCF, a ranking
on possible worlds, implement variants of them and evaluate
them within the CCOBRA-framework for their predictive ca-
pability in the Suppression Task. We demonstrate that non-
monotonic approaches are able to predict individual reasoner
on 82% (median). Furthermore, we can demonstrate that OCF
and an improved version of Reiter make identical predictions
and that abduction is relevant on the level of an individual rea-
soner. We discuss implications of logical systems for human
reasoning.

Keywords: Human Reasoning; Nonmonotonic Logic; Evalu-
ation; Individual Reasoner

Introduction

Humans draw different conclusions when they are presented
with additional information. Consider the following informa-
tion:

If Lisa has an essay to write then she will study late in
the library.
She has an essay to write.

In a study about 96% of participants concluded, that she will
study late in the library (Byrne, 1989). However, only 38%
of the participants receiving in the same study the additional
conditional

If the library stays open, she will study late in the library.

endorsed the conclusion that She will study late in the li-
brary. In contrast to about 90% of the reasoners endorsing
the respective conclusion when receiving the alternative con-
ditional

If she has a textbook to read, she will study late in the
library.

While this change in the inference behavior between the first
case to the second case might be intuitively clear for the
reader, because the second conditional provides a possible
constraint, the inference she will study late in the library

even with such an additional constraint is classically logi-
cally valid. Hence, this and other findings (e.g., in the Wa-
son Selection Task, see Ragni, Kola, & Johnson-Laird, 2018)
demonstrate that the normative framework of classical logic
is not a good descriptive framework for about ~ow humans
reason. Despite that logical inference problems require that
humans derive the logical conclusion. In recent years this has
lead to a number of different modeling approaches, e.g., prob-
abilistic models (Oaksford & Chater, 2013), heuristic models
(Evans & Over, 2004), and recently to the discovery that non-
monotonic logics might be appropriate (Stenning & Lambal-
gen, 2008). A reasoning theory is called nonmonotonic if new
information can lead to the retraction of previous inferences
(Antoniou, 1997). Hence, the reasoning process allows for
defeasible conclusions or reasoning under exceptions. In fact,
many cognitive theories are nonmonotonic, e.g., probabilistic
(Oaksford & Chater, 2013), mental models (Johnson-Laird,
Girotto, & Legrenzi, 2004), and cognitive logics (Stenning
& Lambalgen, 2008). In this article, we investigate three
noteworthy logical theories are to predict an individual rea-
soner conclusion, before the reasoner generates it. The paper
is structured as follows: First, we will introduce the neces-
sary background for conditional reasoning and the Suppres-
sion Task. In the next section we introduce three prominent
models of nonmonotonic reasoning. Then, a section with
the evaluation framework CCOBRA and the description of
a data-set follows. Finally, a section on the evaluation of the
different nonmonotonic logics and their variants and a discus-
sion about the implications concludes the paper.

Background & Related Work
Conditional Reasoning

Conditional reasoning (i.e., reasoning about “if”’) is diverse
from reasoning about given facts. It can represent assump-
tions about states, e.g., about causal relations or in ac-
tion planning, considering hypothetically potentially different
past states (e.g., counterfactual reasoning), or hypothesizing
theories (e.g., inductive reasoning). It is highly relevant for
both automated and human reasoning. There is a long history
in cognitive science about modeling conditional reasoning,
i.e., a statement of the form, “if e then 1”, often written by
e — 1 or (I|e). For a given conditional four inference mecha-
nisms are possible:



Modus ponens (MP) is a deductively valid argument in
classical logic: from the premises e — [ and e, the con-
sequent / is inferred. Consider the premises:

If she has an essay to write then she will study late in
the library. She has an essay to write.

The valid conclusion is:

She will study late in the library.

Modus tollens (MT) is a deductively valid argument in
classical logic: from the premises e — / and —/ the negated
antecedent —e is inferred. An example:

If she has an essay to write then she will study late in
the library. She will not study late in the library.

The valid conclusion is:

She does not have an essay to write.

Denial of the antecedent (DA) is a deductively invalid ar-
gument in classical logic: from the premises ¢ — [ and —e
the negated consequent —/ is inferred. An example:

If she has an essay to write then she will study late in
the library. She does not have an essay to write.

The erroneous conclusion is:

She will not study late in the library.

Affirmation of the consequent (AC) is also a deductively
invalid argument in classical logic: from the premises e — [
and /, the antecedent e is inferred. An example:

If she has an essay to write then she will study late in
the library. She will study late in the library.

The erroneous conclusion is:

She has an essay to write.

All inference mechanisms are logically valid in case of a
biconditional interpretation, i.e., if and only if she has an es-
say to write she will study late in the library. It has been
claimed that the nonmonotonic System P satisfies minimal
rationality criteria. And, that it is close to human reason-
ing (Pfeifer & Kleiter, 2005). A different study could not
support the relevance of the nonmonotonic System P as a
good descriptive theory to explains psychological findings
(Kuhnmiinch & Ragni, 2014). So we exclude this theory.

Suppression Task

Together with the aforementioned Wason Selection Task, the
Suppression Task (the difference in resoning behavior with
or without the additional conditional) is one core problem
for reasoning theories (Byrne, 1989; Neth & Beller, 1999;
Chan & Chua, 1994; Politzer, 2005). Accordingly, this task
and human nonmonotonic reasoning has been modeled by
many researchers (Dietz, Holldobler, & Ragni, 2012a; Sten-
ning & Lambalgen, 2008). Recent research (Ragni, Eichhorn,

& Kern-Isberner, 2016) analyzed if nonmonotonic systems
have the competence to grasp the specific nonmonotonicty
of the Suppression Task without additional background in-
formation. It demonstrated that the inference mechanisms
of all nonmonotonic logics despite the weak completion se-
mantics required additional knowledge. This was, however,
an evaluation on the aggregated level. So theories and mod-
els were competent to solve the problems with some requir-
ing additional background knowledge. So far no analysis on
predictive performance of the cognitive models or logics for
the individual human reasoner on conditional reasoning in the
Suppression Task. Before we can do so we present three main
theories for nonmonotonic reasoning.

Models of Nonmonotonic Reasoning
The Weak Completion Semantics

One main criticism against classical two valued approaches
is that in everyday life we typically have degrees of (un-) cer-
tainty. The traditional two symbols T, L, are extended with
U denoting true, false, and unknown, respectively. Stenning
and Lambalgen (2008) have claimed that conditionals should
be encoded by “licenses for inferences”. For example, the
conditional if she has an essay to finish, she will study late in
the library or short (I < e) should be encoded by the clause
[ + e Aaby, where ab is an abnormality predicate which ex-
presses that / holds if e holds and nothing abnormal is known.
The programs obtained for the two main examples of the Sup-
pression Task are depicted in the first two columns of Table 1.

The abnormality predicates (e.g., aby) represent abnormal
cases: For instance, ab; is true when the library does not
stay open and abj is true when she does not have an essay
to finish. Weak completion is the process of substituting the
conditional with a biconditional.

In the case of AC where the conclusion holds the propo-
sitional variable e is mapped to unknown. Hence, if we ob-
serve that ‘she will study late in the library’, then we cannot
explain by the model that ‘she has an essay to write’ without
abduction (Saldanha, Hoélldobler, & Rocha, 2017). Abduc-
tion searches for the minimal explanation. Since e is the only
undefined propositional letter in this context, the set of ab-
duciblesis e < T , e + L. The above observation can be ex-
plained by selecting e <— T from the set of abducibles, weakly
completing it to obtain e <— T and adding this equivalence to
the logic program.

Reiter’s Model for Default Reasoning

Reiter (1980) proposed a system for default reasoning. Ac-
cording to Reiter, conditionals of the form e — [ are inter-
preted as default rules, i.e., they are true as long as no ex-
ception is known. This idea was inspired that the conditional
“if an animal is a bird, then it can fly” is true as long as we
know that this animal is not a penguin (or any other exception
such as a dodo etc.). For reasons of simplicity we do not in-
troduce the formalizations of a background theory. A default
rule constructed from a conditional has:



Table 1: The WCS approach to the suppression task. ELT =
the statements ‘essay’, ‘late’, and ‘textbook to read’; ELO =
the statements ‘essay’, ‘late’, ‘open hold’; ab are abnormality
predicates; wc is the weak completion; and Im are the least
model; Table adapted from Dietz et al. (2012b).
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aby < 1 aby e
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ImywcP Infers [ Not infers /
Empirical Results 96 % infer 38 % infer
Byrne (1989) [ l

e : justifications

l

e the precondition: e (an essay to write)

o the justifications: depends on the scenario, for the library
scenario a justification is that the library is open.

e the consequence: / (study /ate in the library)

To model the Suppression Task we construct the default rules
from the conditionals, i.e., for the conditional “if Lisa has
an essay to write then she will study late in the library.” we
assume that no exception is known and so the exception above
is empty. This changes when we learn about the exception
that the library is not open, then the justification is that the
library is open. Facts can be formulated as a conditional with
a true antecedent.“Lisa has an essay to finish”

e

This means that without any precondition and without any
justification it can be inferred that Lisa has an essay to fin-
ish. Conditionals with tautology as antecedent are plausible
statements or facts about the world (Beierle & Kutsch, 2019).
Statements such as “Mostly, Lisa has an essay to finish” can
be translated to: e

e

Table 2: The successive generation of ranks (ranks are repre-
sented by K) of possible worlds for the conditionals ‘if e then
I’ and ‘if ¢ then [’.

e I 1t ko) of(le) ko) o) ko)

o 001 O e 1 tl 3
wm 011 0 e 1 tl 1
o 1 01 O el 2 tl 4
o 1 11 0 el 0 tl 0

the justification ensures that the cases where she does not
have an essay to finish, are handled as an exception. Our
implementation works as follows: After translating the fact
and conditionals, the defaults are executed, starting with the
fact and keeping the order of the conditionals from the origi-
nal task. Since the defaults, constructed from the fact, do not
have any precondition and our knowledge about the world
(which is written as W in Reiter’s terminology) is empty, they
are always added to the world knowledge W.

Ordinal conditional function

A different approach is inspired by the relevance of worlds
and so some worlds are more relevant than others. This in-
spired the idea that the relevance of the worlds impose a rank
on the worlds. There are three kinds of worlds for a condi-
tional (|e):

e worlds satisfying e and [/, ® = el

e worlds falsifying the conditionals, assuming e is true but
the consequence / to be false ® |= el

e worlds assuming e to be false, e, called inapplicable
worlds.

An inapplicable conditional means that there can’t be made
any statement about /, as e is already assumed to be false.
The different sets can be represented by an indicator function
(Calabrese, 1991):

1 IfokEel
0 Ifolkel

u IfolEe

where u means undefined, i.e., a case where the precondition
is false. This represents that when the precondition does not
hold, a conclusion about the truth value of the consequence
relation / cannot be made. The conditional (/|e) is evaluated
as true (has the value 1), if the possible world ® has e and [
as true. In this case we write for this world el.

Instead of assigning probabilities to a world, we can use
ordinal conditional functions (OCFs)

(le)(w) =

K:Q = NU{eo} withx 1(0) =0



which maps possible worlds to an integer value. They map
any possible world ® € Q to natural number, which repre-
sents the degree of disbelief (Spohn, 1988). They express
degrees of plausibility of propositional formulas ¢ by specify-
ing degrees of disbelief of their negation ¢ (Beierle & Kutsch,
2019). The more plausible a world ® is, the smaller its rank
k(). Consequently k(®;) = 0 describes the world ®;, which
is the most plausible. Hence x(m,) = 1 is a world a little
bit less plausible, than ®,, whereas k(®) = 10 or higher is
a world very unplausible. At least one world needs to have
the ranking of 0. x = (I]e), iff k(el) < k(el) means the agent
would conclude that the verification of the conditional is more
plausible or less surprising than the falsification of the con-
sequence (Beierle & Kutsch, 2019). The main idea of our
model is that all possible worlds or assignments, are ranked
by their plausibility. The most promising world, that matches
our choices will be returned accordingly.

An example for computing ranks of worlds For every
task, we assume that, in the beginning, all worlds are equally
possible and have the rank O (cp. Table 2), since we do not
know anything about our environment. The rank will be up-
dated with multiple conditionals. Secondly all k¥ values for
these sets are determined: k(el), k(el), x(I). The Kk values
for the sets will have the same rank as the world with the
smallest rank from each set accordingly. In Table 1 we have
an example of possible worlds, which are revised with two
conditionals. For the input:

If Lisa has an essay to finish, she will study late in the
library. She will study late in the library.

The possible worlds can describe an environment with 2 lit-
erals 1 and e. We write T for a tautology, i.e., the truth value
true. The first sentence of the task is encoded to the condi-
tional (/|e) and the fact is encoded to a conditional without a
precondition (I|T).

At the beginning all worlds are equally plausible, therefore
k() = 0. We use the first conditional (/|e) to revise the be-
lief and to update the K values for each world. Therefore the
worlds are split into three sets: verifying, falsifying and inap-
plicable worlds. Then, the variables k(el), k(el), k(¢) can be
determined, all having a starting value 0. Finally, all worlds
are updated accordingly and a new conditional can revise our
belief in the same way the first one did. The second infor-
mation is a fact and is transformed into a conditional with
a precondition which is always true: (I|T). The values for
K(el), k(el), k() are computed. The most plausible world is
the last one. When having the choice between:

Lisa has an essay to finish
Lisa has not an essay to finish

we will chose the first one, because it is consistent with the
most plausible world: 4.

Individual Predictions
CCOBRA

The Cognitive Computation for Behavioral Reasoning Anal-
ysis (CCOBRA) framework is a benchmarking tool imple-
mented in Python that actively integrates the individual hu-
man into the prediction loop. There is a close connection
to psychological experiments. Implemented models are sup-
posed to simulate the experimental procedure for individ-
ual participants. By providing responses to individual tasks,
models are evaluated based on their predictive accuracies'.
The CCOBRA framework offers multiple possibilities, e.g.,
a pretrain, adapt and predict methods that we used for our
model evaluation.

Database of
Observations

Prediction of
Human
Response

True
Response

Evaluation

2
by CCOBRA! hittpss/forca.informatik.uni-freiburg.de/ecobra/

Figure 1: The CCOBRA-framework to evaluate the predic-
tive power of cognitive theories.

Data-Set

The data can be found online?. It consists of 96 participants
with no background in logic. Participants were recruited for a
laboratory experiment at the University Freiburg. In 12 prob-
lems participants were requested to answer if specific con-
clusions follow from given information. Participants were
divided into four groups. Group A received tasks with sim-
ple conditional arguments (non-suppression group). Group
B also received tasks with simple conditional arguments but
with a linguistic modification in premise one by adding the
keyword “mostly” (they received the problem description in
German).

If Lisa has an essay to finish then she will mostly study
late in the library. Lisa will study late in the library.
Does Lisa have an essay to finish?

Group C received the modification in premise two by
adding the keyword “mostly”:

If Lisa has an essay to finish then she will study late in
the library. Mostly, Lisa will study late in the library.
Does Lisa have an essay to finish?

Ihttp://orca.informatik.uni-freiburg.de/ccobra

thtps://github.com/CognitiveComputationLab/cogmods
/tree/master/suppression_task
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Figure 2: Boxplots for the models indicating individual subject performance. The data used for the plot are accuracies for each

individual human reasoners performance (cp. Fig. 1.)

Group D received items with simple conditional arguments
and two additional arguments:

If Lisa has an essay to finish then she will study late in
the library. If Lisa has some textbooks to read then she
will study late in the library. If the library stays open
then she will study late in the library. Lisa will study
late in the library. Does Lisa have an essay to finish?

All four groups received three different scenarios (an ab-
stract version, a story on an exoplanet with aliens having
specific properties, and the library example above) and these
in turn with the four inferential figures modus ponens (MP),
modus tollens (MT), denial of the antecedent (DA) and af-
firmation of the consequent (AC). The arguments were pre-
sented sequentially and the concluding question had to be an-
swered with “yes” or “no”.

As our goal is to model the individual reasoner, we only
report some aggregate statistic: Group A indicated the highest
likeliness (88%) that the made conclusion holds true followed
by Group D (80%), Group C (70%) and Group B (67%). For
the logical correctness Group D shows the highest correctness
rate (61.0%) followed by Group C (55.8%), Group A (54.9%)
and then Group B (52.0%).

Predictive Performance of the Models

We compare now the predictive performance of the models
with each other and baselines (cp. Fig. 2):

Baseline 1: Most Frequent Answer. To compare the cog-
nitive models the most frequent answer is a good empirical
measure. It represents the answers of all participants given
for the same problem and returns the response which was an-
swered the most. Taking the majority vote into account, it
achieves a precision of 89.2%. This means that participants
are quite homogeneous, i.e., they do not differ much in the
responses they give.

Baseline 2: The Uniform Model. The uniform random
model provides another base line, namely for participants that

select randomly an answer. In the presented experiments, the
participants had two choices for each task. So the uniform
random model selects randomly one of the two choices and
returns it as the predicted answer. It achieved, as expected, a
50% prediction performance.

The Weak Completion Semantics. This model which is
based on a ternary logic and logic programs with allowing
for abductive reasoning has a predictive performance of 82%
based with an upper bound of 100% and a lower bound of
50%. If abductive reasoning is not allowed the performance
drops to 56.1%, with a lower 12.5% and an upper bound of
87.5%.

The OCF-Model. The OCF model which is based on com-
puted ranks of models reaches a high level of predictivity of
about 82.2%. This model achieved an accuracy of 82.2%,
with an upper bound of 100% and a lower bound of one sin-
gle person with 37.5%.

The Classical Reiter Model. This is Reiter’s original
model Reiter (1980). It achieves a predictive accuracy of
65.5%, with predicting some persons as high as 87.5% and
others as low as 25%.

Reiter Model Improved. The basic Reiter Model can be
extended by adding default rules in order to model the phe-
nomen that subject tend to use the modus tollens or affirma-
tion of the consequent inference rule. By adding these two
rules we reach the identical predictivity of the OCF-model
with 82.2%, i.e., it predicts the exact same answer for every
single subjects. This demonstrates a functional equivalence
of the Reiter Model that is augmented with two additional
rules with the semantic based approach by the OCF.

Discussion

Human reasoning has often been disqualified as “unlogical”.
While many psychological findings demonstrate that humans
do deviate from valid inferences predicted by classical logic,



this paper demonstrates that nonmonotonic logics are com-
petitive. They are even able to predict a median of 82% of
the inferences drawn by every individual human reasoner in
the Suppression Task. While the classical approach by Reiter
did not match the high performance of the OCF model, we
extended Reiter’s model with two rules and demonstrated a
functionally equivalent model to the OCF. The performance
of the pre-trained version of the WCS model is only slightly
lower than Reiter Model Improved and OCF Model. WCS
deviated on some problems in the MP-case from the partic-
ipants responses, where due to introduced abnormalities, it
did not predict the classical MP conclusion. On the other
hand, the WCS model successfully managed to model De-
nial of Antecedence problems by abductive reasoning in the
cases of induced non-monotonicity, which the Reiter Model
Improved and OCF did not succeed in. This analysis gives
further support for the importance of abductive reasoning that
has been reported relevant in the Weak Completion Semantics
(Breu, Ind, Mertesdorf, & Ragni, 2019). Focusing on the in-
dividual predictivity of each system in a training set and a test
set of participants in the CCOBRA-framework allows to esti-
mate the true power of logics and cognitive models and makes
even more progress possible, because it allows to identify in-
dividuals that are perfectly predicted and individuals in turn
that are not captured. Future research needs to cover more ex-
perimental data, more cognitive theories, and aim to identify
successful mechanisms of highly-predictive theories.
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