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Abstract
Decisions under uncertainty are often made by weighing the
expected costs and benefits of the available options. The costs-
benefits tradeoffs may make decisions easy or difficult, partic-
ularly given uncertainty of these costs and rewards. In this re-
search, we evaluate how a cognitive model based on Instance-
Based Learning Theory (IBLT) and two well-known reinforce-
ment learning (RL) algorithms learn to make better choices
in a goal-seeking gridworld task under uncertainty and on in-
creasing degrees of decision complexity. We also use a random
agent as a base level comparison. Our results suggest that IBL
and RL models are comparable in their accuracy levels on sim-
ple settings, although the RL models are more efficient than the
IBL model. However, as decision complexity increases, the
IBL model is not only more accurate but also more efficient
than the RL models. Our results suggest that the IBL model is
able to pursue highly rewarding targets even when the costs in-
crease; while the RL models seem to get “distracted” by lower
costs, reaching lower reward targets.
Keywords: decision complexity; instance-based learning the-
ory; reinforcement learning; goal-seeking task.

Introduction
Goal-seeking in gridworld navigation, has long been a classi-
cal task for developing Artificial Intelligent (AI) agents. Gen-
erally, the agent must navigate an environment (e.g., grid-
world) with uncertainty about the surroundings to achieve a
goal (i.e., consuming the highest rewarding object) given a
number of obstacles and within a time limit. This type of task
underlies a broad range of applications such as search and
rescue or pickup and delivery missions.

Researchers have commonly addressed this type of task us-
ing Reinforcement Learning (RL) models, a computational
method of learning from interaction (Sutton, Barto, et al.,
1998; Gershman & Daw, 2017). A major challenge for re-
search in AI is to develop systems that can replicate human
behavior; and although there is much evidence of RL’s abil-
ity to account for human behavior in some dynamic decision
tasks (Gureckis & Love, 2009; Simon & Daw, 2011), the
concern has been raised that the advance in RL paradigms
is mostly centered on solving computational problems effi-
ciently, rather than replicating or explaining in detail how hu-
mans learn (Botvinick et al., 2019).

Cognitive modeling on the other hand, is aimed at un-
derstanding and interpreting human behavior by representing
the cognitive steps by which a task is performed. In par-
ticular, Instance-based Learning Theory (IBLT) was devel-
oped to provide a cognitively-plausible account for how hu-
mans make decisions from experience and under uncertainty,
through interactions with dynamic environments (Gonzalez,
Lerch, & Lebiere, 2003). IBLT has shown accurate repre-
sentation of human choice and broad applicability in a wide

number of decision making domains, from economic decision
making to highly applied situations, including complex allo-
cation of resources and cybersecurity, e.g. (Hertwig, 2015;
Gonzalez, 2013; Gonzalez et al., 2003).

Nevertheless, in goal-seeking gridworld navigation tasks,
cognitive models of decision making, and IBL models in par-
ticular, have been less common. Fu and Anderson (2006) pro-
posed a RL mechanism within the ACT-R architecture, to ac-
count for repeated choice and skill learning. The study used a
maze learning task, and showed that the model can fit human
data fairly well to account for complex learning in this task.
Also, Reitter and Lebiere (2010) proposed an ACT-R cog-
nitive model, to address the aspects of human path-planning
problems, which are relatively similar to navigation. Finally,
in a prognostic foraging task, Chelian and colleagues showed
that both IBL models and RL approaches can imitate human
decision making well (Chelian, Paik, Pirolli, Lebiere, & Bhat-
tacharyya, 2015). Despite all of these advances, it remains
unclear how RL and IBL models compare with respect to rep-
resenting human decisions under uncertainty.

To that end, the primary goal of this work is to examine
how RL and IBL agents learn in a goal-seeking gridworld
task under different degrees of decision complexity. Deci-
sions under uncertainty are often made by weighing the ex-
pected costs and benefits of the available options. Some deci-
sions are easy (e.g., choosing between an option of low cost
and high expected reward and one with high cost and low
reward), while others are complex (e.g., choosing between
low cost low reward, and high cost and high reward options).
These decisions’ complexity increases given uncertainty in
the costs and rewards. Thus, we first leverage IBLT, to de-
velop an IBL model of an agent that is able to accomplish the
goal-seeking task in a gridworld environment under different
levels of decision complexity. Using simulation experiments,
we explore the impact of decision complexity on the perfor-
mance of different types of agents, RL and IBL, including a
Random that serves as a baseline comparison for the models.

Instance-Based Learning Theory
IBLT is a theory of decisions from experience, developed to
explain human learning from interaction with dynamic deci-
sion environments (Gonzalez et al., 2003). IBLT provides an
algorithm and a set of cognitive mechanisms that can be used
to implement computational models of decision learning pro-
cesses. The algorithm involves the recognition and retrieval
of past experiences (i.e., instances) according to their similar-
ity to a current decision opportunity. Instances retrieved are



used to calculate the expected utility of a potential decision
in such situation. Potential decision alternatives a are eval-
uated sequentially, and a process of choice provides a stop-
ping point for evaluating potential alternatives and making a
choice. The choice alternative with the highest expected util-
ity among a set of alternatives is selected. Finally, a feedback
process updates the expected utility of past instances with the
observed actual outcome of choices executed. Such updated
instances are then reused in future decisions.

An “instance” in IBLT is a memory unit, that results from
the potential alternatives evaluated. These are memory rep-
resentations consisting of three elements: a situation (S) (set
of attributes that give a context to the decision, or state s); a
decision (D) (the action taken corresponding to an alternative
in state s, or action a); and a utility (U) (expected utility u
or experienced outcome x of the action taken in a state). The
essential sub-symbolic mechanisms of IBLT have been dis-
cussed in multiple past publications (e.g. (Gonzalez et al.,
2003; Gonzalez & Dutt, 2011; Gonzalez, Ben-Asher, Martin,
& Dutt, 2015; Hertwig, 2015)), but we include these mecha-
nisms here for completeness.

Each instance i in memory has a value of Activation, which
represents how readily available that information is in mem-
ory (Anderson & Lebiere, 2014). The instance could be per-
fectly or partially matched to the attributes of a decision op-
portunity at the current point of time, which is determined
by the partial matching mechanism (Anderson & Lebiere,
2014). But here we consider a simplified version of the Ac-
tivation equation which only captures how recently and fre-
quently the considered instances are activated:

Ai = ln

(
∑

t ′∈{1..t−1}
(t− t ′)−d

)
+σ ln

1− γi

γi
, (1)

where d and σ are respectively the decay and noise parame-
ters; t ′ refers to the previous timestamp in which the outcome
of instance i was observed resulting from choosing an action
a at state s. The rightmost term represents the Gaussian noise
for capturing individual variation in activation, and γi is a ran-
dom number drawn from a uniform distribution U(0,1).

Activation of an instance i is used to determine the proba-
bility of retrieval of such instance from memory. The proba-
bility of an instance i is a function of its activation Ai relative
to the activation of all other instances corresponding to exe-
cuting action a at state s:

pi =
eAi/τ

∑l eAl/τ
, (2)

where τ is the Boltzmann constant (i.e., the “temperature”) in
the Boltzmann distribution (Kittel, 2004).

For simplicity, we defined τ as a function of the same σ pa-
rameter used in the activation equation τ = σ

√
2. The param-

eter τ gives some variability to the probability of retrieving
instances from memory.

The expected utility of taking action a in state s is calcu-
lated based on a mechanism called Blending (Lebiere, 1999)

as specified in IBLT (Gonzalez et al., 2003), using the past
experienced outcomes stored in each instance x. Here we
employ the blended value that was defined and used for bi-
nary choice tasks in Lejarraga, Dutt, and Gonzalez (2012);
Gonzalez and Dutt (2011):

V (a,s) =
n

∑
i=1

pixi. (3)

Essentially, according to (Gonzalez & Dutt, 2011), Blend-
ing (Equation 3) is the sum of all the past experienced out-
comes weighted by their probability of retrieval, where xi is
the outcome stored in an instance i associated with taking ac-
tion a at state s; pi is the probability of retrieving the instance
i from memory (Equation 2); and n is the number of instances
stored in memory for taking action a up to the last trial.

The choice rule is to select the action a that corresponds to
the maximum blended value.

Goal-seeking Task in Gridworld Environment
A gridworld environment is made up of a 11×11 grid maze
as illustrated in Figure 1. Each gridworld contains randomly-
located obstacles (black bars). The number of obstacles
varies from one to five and their size ranges from one to six
1× 1 cells. There are four targets of different values, which
are represented as four colored objects (blue, green, orange,
and purple) of size of 1× 1 in the grid and set at random lo-
cations in a way that does not overlap with the obstacles.

Figure 1: Illustration of the goal-seeking task in the gridworld
environment. The agent’s preferred goal is the “green” object.

The primary task is a goal-seeking problem in the grid-
world environment, where an agent (black dot), starting in a
random location (i.e., (x,y)), moves through the 11×11 grid
to search for the most valuable goal among the four objects,
while avoiding obstacles. The agent is tasked with consum-
ing the object that has the highest reward (i.e. “green” in Fig-
ure 1) within a 31 step limit. Starting in its initial position, the
agent makes sequential decisions about which actions to take
(i.e., up, down, left, right). An episode ends when the agent
decides to “consume” any of the four objects, or by reaching
the 31 step limit without a consumption.

A sequence of moves from the initial location to the end lo-
cation forms a trajectory (dotted red line) which is produced



by the sequence of decisions that the agent adopts. Each agent
performs the task over 500 episodes for learning in the same
gridworld.

Technically, each agent Ak is driven by a fixed reward,
rk, j ∈ (0,1), for consuming an object o j where j = 1, . . . ,4.
Hence, the vector rk = (rk,1, . . . ,rk,4) has four components
(one for each of the four objects), and it was drawn from
a Dirichlet distribution (∑ j=1,...,4 rk, j = 1 and rk, j > 0) with
concentration parameter α = 0.01, which signified that the
agent Ak was favourably attracted to one of the four objects.
In other words, if the agent successfully consumes the most
preferred object, it will receive the highest reward while con-
suming any of the other 3 objects (i.e. the distractors) results
in receiving much smaller rewards. Besides, the agent is pe-
nalized 0.01 for each step, which is a movement cost, and
0.05 for walking into a wall.

Agents in the Gridworld
IBL Agent
In the gridworld task, an instance is defined by a triplet
(s,a,x), where x is the outcome or expected utility resulting
from taking action a (i.e., up, down, left right) in state s (i.e.,
the state is the location of the agent, defined by the x-y coordi-
nates) in a grid (Nguyen & Gonzalez, 2020). When making a
prediction about which action a the agent Ak will take at state
s, the IBL agent selects the action with the highest expected
utility using the blended value (Equation 3).

Importantly, the agent only gets a positive outcome when
consuming an object after a sequence of decisions. Thus, the
IBL agent must learn to update the expected utility from the
outcome received after consuming an object, so that differ-
ent instances created by the trajectory are reinforced accord-
ingly. The delayed feedback mechanism proposed in IBLT
(Gonzalez et al., 2003) is underdeveloped, and most of the
tasks that IBLT has been applied to, include immediate feed-
back. Thus, a mechanism to deal with delayed feedback is re-
quired in the gridworld task. Unlike prior work that focused
on how humans learn from delayed feedback (Walsh & An-
derson, 2011; Kelly & West, 2013), we simply use the final
outcome and distribute it equally to all actions taken in a tra-
jectory. That is, considering the trajectory Tk = {(st ,at)}T

t=0
if the Ak gets the outcome x′ at the end of the episode (t = T )
then the expected utility of executing {(st ,at)}T−1

t=0 is all up-
dated to x′. We leave the alignment to human judgements of
delayed feedback for future research.

RL Agents
We compare the performance of the IBL agent against two RL
agents called Q-learning and SARSA which are well-known
temporal difference techniques in RL (Sutton et al., 1998).
The basic difference between these two RL algorithms is in
the way of updating a value of current state-action pair. In
SARSA (on-policy method), the update takes into account the
value of the actual action taken at one state ahead of the cur-
rent state whereas in Q-learning (off-policy method), it simply

considers the highest possible action that can be taken at the
current state.

Q-learning Agent. A Q-learning agent was implemented
with a tabular form of Q-learning algorithm (Sutton et al.,
1998). In general, the goal of the RL agent Ak is to esti-
mate the optimal state-action values referred to as Q-values,
where Q(s,a) returns the expected future reward of action a at
state s. Initially, all the Q-values are set to zero and then are
iteratively updated. Given enough iterations, the agent can
learn the optimal Q-values denoted by Q∗(s,a), and for each
state s the agent selects the action having the highest Q-value,
π∗k(s) = argmaxa Q∗(s,a).

SARSA Agent. A SARSA agent was designed based on the
SARSA algorithm. The name SARSA comes from the fact
that the updates depend on a quintuple of events (s,a,r,s′,a′),
where s and a are the current state and action of the agent, r
is the observed reward for choosing the action a, and s′ and a′

are the new state-action pair. Essentially, SARSA, in contrast
to Q-learning, learns the value of each state–action pair (i.e.
the Q-value) by looking ahead to the next action to see what
the agent will perform at the next step and then update the
Q-value of its current state-action pair accordingly.

Random Agent
A random agent Ak selects an action a in state s based on
the probability πk(a|s). Precisely, the policy of Ak is drawn
from a Dirichlet distribution πk ∼ Dir(α) with concentration
parameter α, so that ∑a∈A πk(a|s) = 1 and πk(a|s) > 0. If α

is close to 0 then the policy of an agent is characterized to be
near deterministic. Conversely, the action of the agent is far
more stochastic if α is much greater than 0.

Experiments
To investigate how different agents perform under different
levels of the decision complexity, we designed experimental
manipulations in which we control cost-benefit tradeoffs of
choices made in a gridworld task.

Inspired by general decision processes and animal behav-
ior, we designed levels of complexity. In animal foraging the
complexity involves a tradeoff between the quality of food
and the effort of obtaining it, and this tradeoff also applies to
human decision processes (Mehlhorn et al., 2015). A grid-
world can be more complex when its arrangement of goals
and obstacles creates a high conflict between benefits (i.e.,
the object’s reward) and associated costs (i.e., the distance, or
number of steps needed to consume that object). For instance,
a setting in which an agent must decide whether to consume a
close (e.g., one step distant from the current agent’s location)
but low-reward object or to search for a far-away but higher
reward object is more challenging than a decision between a
close and high-reward object and a far and low-reward ob-
ject. We refer to low-reward objects as “distractors” and to
the highest reward object as the “preferred object”. Agents



(a) ∆d = d−d′ = 1 (b) ∆d = d−d′ = 2 (c) ∆d = d−d′ = 3 (d) ∆d = d−d′ = 4

Figure 2: Illustration of the designed gridworlds with the level of complexity increasing from left to right.

generally prefer high value objects but they need to explore
the environment to learn the value of the four objects, since
this is only known after they consume an object.

In our experiment, complexity is characterized by the dif-
ference between the distance from an agent to the preferred
object (d) and the distance from the agent to the closest dis-
tractor (d′), i.e., ∆d = d−d′. Intuitively, the larger the value
of ∆d , the more complex the decision is, given the temptation
to consume a closer distractor than to consume the highest
value distant goal. Simply put, the high value of ∆d signi-
fies the high conflict between consuming the preferred object
with the longer distance d or the distractor with the shorter
distance d′.

The experiment design is illustrated in Figure 2. It is worth
noting that we only examine the cases when ∆d > 0 as when
d > d′. Take Figure 2a as an example of how the setup works.
Here the distractor is the “orange” object while the highest
value goal is “purple”. The distance from the agent’s location
to its goal is d = 5 and to the distractor object is d′ = 4, and
hence ∆d = (d−d′) = 1. This is a simple environment since
the cost to reach the highest value goal and the distractor is
nearly equal (and thus, preferring the highest value goal over
the distractor is a simple choice). In contrast, as exempli-
fied in Figure 2d, with ∆d = 4, the choice is more complex,
since preferring the highest value goal (“blue” object) is more
costly than consuming the distractor (“yellow” object) and as
a result, the agent may be attracted to the closer object (even
if the reward is lower).

Model Parameters

The IBL agent’s parameters are σ = 0.25 and d = 0.5, default
parameters that come from the ACT-R architecture (Anderson
& Lebiere, 2014). For the Random agent, we consider πk ∼
Dir(α = 3). Regarding the parameters of Q and SARSA, we
set the discount factor γ = 0.99 and the learning rate α = 0.1.

Independent Variables

For simplicity, in this experiment we deal only with the trade-
off between one preferred goal and one distractor, where the
distance between an agent and its preferred goal is fixed to
d = 5. Hence, to manipulate decision complexity, we only
vary the distance from the agent to the distractor (d′ = 1 . . .4).
We examined four levels of decision complexity (∆d = 1..4)
and four types of agents (IBL, Q, SARSA, and Random). For
each of the four levels of complexity, we ran 100 agents of
each type, that is, for each value of ∆d , 100 different grid-
worlds were generated. In each gridworld, the agents had
500 learning episodes.

Evaluation Metrics

For each model we calculated the following measures: (1)
Fraction of object consumption: the proportion of episodes
(out of 500) in which the agent reaches one of the four ob-
jects (i.e., rather than wandering around and reaching the
limit of steps without consuming any object); (2) Fraction
of steps: the average ratio (across 500 episodes) between the
number of steps for consuming any of the four objects and
the maximum number of steps; (3) Accuracy: the proportion
of episodes (out of 500) wherein the agent accomplishes the
task (i.e. successfully consumes the highest value goal); and
(4) Efficiency: the ratio between the reward from consum-
ing an object and the movement cost (i.e., the multiplication
of the penalty for each step and the number of steps taken)
across the 500 episodes. The efficient values were normal-
ized to the range in [0,1] using min-max normalization, i.e.
(value−min)/(max−min).

Results

We have analyzed the performance of the four types of agents,
namely IBL, Q, SARSA, and Random, with respect to com-
plexity (∆d = 1 . . . 4).



(a) Fraction of obj. consumption (b) Fraction of steps

(c) Accuracy (d) Efficiency

Figure 3: Performance of the agents in the task when varying
the degree of complexity ∆d = 1 . . .4 (X-axis).

Fraction of Object Consumption
Figure 3a shows that the Fraction of object consumption for
IBL and the two RL agents (Q and SARSA) reaching any
of the objects is approximately equal to 1 regardless of com-
plexity. Unsurprisingly, the Random agent performed con-
siderably worse than the other agents, but their capability to
consume an object in less than 31 steps increased with com-
plexity. This can be explained by the environment design that
the more challenging the environment is, the closer the agent
is to a distractor. Hence, it is evidently easier for a Random
agent to bump into an object when ∆d increases.

Fraction of Steps
Figure 3b shows the Fraction of steps, suggesting that the IBL
agent took about the same steps to get an object regardless
of the level of complexity, while the Q and SARSA agents
took slightly less steps with larger complexity. We also ob-
serve that the Random agent required the most steps to find
an object, but the fraction decreases as complexity increases.
Again, the most likely explanation is that the agents tend to
consume the closer distractors.

Accuracy
Figure 3c demonstrates that Accuracy of the RL agents and
the IBL agent are comparable in simple environments (∆d = 1
and 2). However, when complexity increases (∆d = 3 and
4), IBL exhibits only a light drop in accuracy, while the Q
and SARSA agents dropped accuracy significantly, reaching
close to random accuracy with the highest complexity. More
concretely, the IBL agents with an approximate 70% overall
success rate by far surpassed the Q and SARSA agents whose
the fraction of successful episodes was less than 5% over all

500 episodes. With respect to the Random agent, its curve is
flat and nearly constant at about 0.18 over the values of ∆d ,
signifying that its performance is independent of complexity
due to its random characteristic.

Efficiency
Figure 3d reveals that the Q and SARSA agents are the most
efficient agents in the simple decisions (∆d ≤ 2), followed by
IBL and then by Random. The higher value of the ratio be-
tween the benefit (i.e. the consumption reward) and the move-
ment cost (i.e. the penalty for each step that the agent takes
× the number of steps) indicates that the RL agents are able
to obtain an object having the highest reward within a limited
number of steps, when the decision is simple. Conversely,
in complex decisions (∆d > 2) the results show that the IBL
agent is the most efficient, followed by the RL agents and the
Random agent. The Efficiency together with the Accuracy re-
sults suggest that the RL agents are “distracted” by the closer
objects and end up consuming the closer objects rather than
affording the costs of searching for the highest value object.
As a result, they got a significantly small amount of reward.

Learning Curves of Accuracy
To start to explain the observations above regarding the ac-
curacy of the models, we analyzed the average Accuracy for
each type of agent over the course of 500 episodes. This anal-
ysis would help observe how the accuracy developed within
each level of complexity. Figure 4 demonstrates that the IBL
agent learned slightly faster than the RL agents even in lower
levels of complexity. The learning speed of the IBL mod-
els decrease with increased complexity, but the difference be-
tween IBL and the RL agents is larger in the complex settings
(∆d > 2). The Random agent does not learn.

(a) ∆d = d−d′ = 1 (b) ∆d = d−d′ = 2

(c) ∆d = d−d′ = 3 (d) ∆d = d−d′ = 4

Figure 4: Learning curves of the agents over 500 episodes for
each level of complexity ∆d .

Specifically, in the most complex decision environment
(∆d = 4), the average Accuracy achieved by the IBL agent



Figure 5: Learning curves of the Q and SARSA agents over
3000 episodes when ∆d = 4.

was over 0.6 just after 100 episodes, while the average Ac-
curacy of the RL agents was nearly zero. To investigate this
further, we ran the RL models for 3000 episodes under the
highest level of complexity (∆d = 4). The results shown in
Figure 5 demonstrate that the Q and SARSA agents have a
low start but learn to be more accurate in the highest complex-
ity levels, after extended practice. We speculate that the one-
step update of state-action values in the RL algorithms may
prevent them from learning faster and determining the value
of the various objects within 500 attempts. In contrast, the
IBL model uses all the past instances in the blending mecha-
nism (but these instances are decayed to different degrees as
in Equation 1). This aggregation of more experiences may
help to evaluate the decision tradeoffs more accurately, re-
sulting in faster and more successful weigh of the costs and
benefits in the decisions.

Conclusions

We investigated the performance of an IBL agent, two RL
agents (Q-learning and SARSA), and a Random agent, while
performing a navigation task under uncertainty and under in-
creasing decision complexity. The decision complexity is for-
malized as the tradeoff between the objects’ rewards and the
associated movement costs. To select the object to consume
in the presence of uncertainty, the agents must evaluate the
expected reward of the object and the steps needed to reach it
(costs), from experiential learning.

Experimental results revealed that the Accuracy and Ef-
ficiency of the two RL agents were not robust to increased
levels of decision complexity, while the IBL cognitive model
was more resilient to higher levels of complexity. The ex-
planation is that the one-step update of state-action values
in the RL agents results in these agents getting “distracted”
by near objects, which are consumed even when they are of
lower value. Thus, as the difficulty of the decisions increases
the Accuracy and Efficiency of the RL agents decrease. The
IBL agent is less efficient than the RL agents under low lev-
els of complexity but under higher complexity levels it learns
to consume the higher value objects even when it takes more
steps to reach those objects.
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