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Abstract
Different accounts have been developed to explain the mech-
anisms underlying value biases during perceptual decision-
making, within the model framework of bounded accumula-
tion. The starting point bias account suggests a shift in the
starting point of evidence accumulation, in the direction of
the more valuable alternative. The drift rate bias account sug-
gests that the mean rate of accumulation is steepened for the
more valuable alternative. While most studies have supported a
starting point bias (SPB) approach, recent work (Afacan-Seref,
Steinemann, Blangero, & Kelly, 2018) suggests that drift rate
biases (DRB) may also be applied in certain circumstances.
Here, we used human EEG signatures of competitive motor
preparation to construct a cognitive decision model that can
explain the biasing mechanisms through which participants
perform a value-biased orientation discrimination task under
a strict deadline. Motor preparation dynamics showed signs of
a value bias that emerged prior to evidence onset and increased
steadily with time. Accordingly, we constructed a model that
included an anticipatory dynamic urgency signal towards the
High Value alternative. This model provided a better fit to
behaviour than models with either a starting point or a drift
rate bias but no anticipatory dynamics. These results point to
a role for value-modulated, anticipatory motor preparation in
fast-paced decision-making tasks, and suggest a unitary mech-
anism that can generate both static (starting point) and dynamic
(drift rate) biases at the same time.
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Introduction
Simple perceptual decisions can be divided into three key pro-
cessing stages: sensory encoding (the representation of sen-
sory information in the brain), decision formation and mo-
tor execution. Under no time constraints, sensory encoding
and decision formation can typically be completed well in
advance of motor execution. However, in many real-life sit-
uations, such as when playing football or driving at speed in
traffic, the brain has a limited time to integrate sensory infor-
mation before a response must be produced. In such situa-
tions, motor processes must evolve swiftly and prioritise the
action associated with higher value in order to maximise over-
all expected rewards, at the cost of greater uncertainty about
the correct choice. The way in which the brain implements
such prioritisation remains unclear.

For decades, sensorimotor decisions (where perception is
translated into overt action) have been studied using Bounded
Evidence Accumulation models. In this framework, sensory
evidence is integrated over time into a “decision variable”,
that produces an action upon reaching a threshold. Differ-
ent model variants have been devised to explain why choices
tend to be biased towards the more valuable option. The most
prominent of them incorporate static biases that do not change
in time, such as the Starting Point Bias (SPB) model, where
the starting point of the decision variable is shifted towards
the higher value option. The main alternative to this is a
Drift Rate Bias (DRB), where the mean rate of accumula-
tion is biased by value, and results in an increasing displace-
ment of the decision variable with time. In principle, one
way that a DRB can arise is from an enhancement of repre-
sentations of higher-value alternatives at the sensory level or
in the weighting of their readout, because stronger sensory
evidence would lead to a steeper build-up of its integral. An-
other way is through the addition of a dynamic bias signal at
the motor level, known as urgency. Urgency is an evidence-
independent component of decision variable buildup that con-
tributes to bringing the neural activity closer to a given neural
threshold even in the absence of informative sensory evidence
(Hanks, Kiani, & Shadlen, 2014). The decision-making lit-
erature reflects a preference for static (starting point) bi-
ases, because the models that incorporate them usually of-
fer an excellent quantitative fit to response time (RT) distri-
butions across many psychophysical tasks (Ratcliff & McK-
oon, 2008; Hawkins, Forstmann, Wagenmakers, Ratcliff, &
Brown, 2015).

Although not favoured in cognitive model comparisons,
other evidence suggests the plausibility of drift rate biases.
For example, studies have shown that sensory cortical repre-
sentations of stimuli are altered through their association with
reward, in a manner resembling effects of spatial or feature-
based attention (Serences & Saproo, 2010; Stanisor, Van Der
Togt, Pennartz, & Roelfsema, 2013). There has also been em-



pirical evidence for the operation of dynamic urgency, which
has been observed in the firing of neurons associated with mo-
tor preparation in saccade-decision tasks in monkeys (Hanks,
Mazurek, Kiani, Hopp, & Shadlen, 2011). In that study, the
authors used a motion discrimination task, where they manip-
ulated stimulus reliability and the prior probability of motion
direction. Their results showed that a model incorporating a
dynamic bias signal that adds to cumulative evidence and in-
creases as a function of decision time - effectively generating
a DRB - provided a significantly better account of the data
than a static signal implemented as a SPB.

In a recent human EEG study of rapid color discrimina-
tion under a very strict deadline, it was shown that a DRB
model in which a constant value-bias is added to an increas-
ing drift rate outperformed both standard SPB and DRB mod-
els (Afacan-Seref et al., 2018). This model could predict both
behaviour and the temporal dynamics of neurophysiological
signals reflecting decision formation. In particular, the model
was able to capture a sudden, stimulus-evoked deflection in
relative motor preparation initially towards the higher-value
alternative, which, for low-value stimuli, was dynamically re-
directed toward the correct alternative. The model explained
this by assuming that value biases are applied to sensory re-
sponses that are initially nonselective for color and become
gradually more selective. In this way, the drift rate of the
decision process, assumed to be driven by the difference in
responses tuned to the two sensory alternatives, is initially
dominated by value and later dominated by sensory informa-
tion, as observed in the motor preparation dynamics.

Since the preceding model required assuming a two-phase
sensory response that first detects (via nonselective activity)
and then increasingly discriminates the sensory change be-
ing decided on, the question naturally arises, whether drift
rate biases are peculiar to this situation, or are more gener-
ally invoked for any sensory feature when task demands re-
quire prioritisation. It has been shown that orientation-tuned
neurons in the V1 region are immediately selective - that is,
they respond quickly and vigorously to their preferred orien-
tation and respond little if at all for the orthogonal orientation
(Shapley, Hawken, & Xing, 2007). In this study, we therefore
used an orientation discrimination task in order to assess the
generality of drift rate biasing mechanisms when responding
to sensory stimuli under time pressure.

Several lines of work have established that action selec-
tion dynamics at the motor level provide a key window onto
the evolving decision process, because evidence accumula-
tion is continuously fed to motor circuits (Selen, Shadlen, &
Wolpert, 2012). For example, an fMRI study found a lat-
eralized activation of the primary motor cortices since the
very beginning of the evidence accumulation process (Gluth,
Rieskamp, & Büchel, 2013). These authors also found that
activity in the pre-supplementary motor area (pre-SMA) in-
creased with time and was correlated with total accumulated
evidence. This continuous involvement of the motor sys-
tem during the decision-making process has been extended

to value-biased decisions, where it has been shown that the
Lateralized Readiness Potential (LRP), an event-related po-
tential thought to reflect the relative degree of preparation to
move the left versus right hand (Kornhuber & Deecke, 1965;
Vaughan, Costa, & Ritter, 1968) reflects the ongoing process
of evaluating the incoming sensory information from its very
beginning (Noorbaloochi, Sharon, & McClelland, 2015).

Studies such as Gratton et al. (1988), Van Vugt et al. (2014)
and Noorbaloochi et al. (2015) found evidence for static
SPB signals reflected in the LRP component, which were
strongly associated with response outcomes. In particular,
Noorbalochi and colleagues showed that separate evidence
related and reward related components could be clearly dis-
tinguished in the LRP signal. These features make this signal
a great candidate for the analysis of our task.

Figure 1: Orientation discrimination task.

In the present study we examined the static and/or dynamic
biases at play in sensorimotor decisions under conditions of
intense speed pressure. For this purpose, we recorded EEG
activity during a value-biased orientation discrimination task
under a strict deadline (Figure 1), where a correct response to
one orientation was worth more (40 points) than to the other
(10). We developed a bounded accumulation model informed
by value-biasing signatures in the LRP and compared its fit to
behaviour with that of existing models.

Method
A total of 25 participants took part in the study, but 3 were ex-
cluded from the analyses due to inadequate EEG signal qual-
ity. They were compensated with C32 for their participation
and they could earn up to C12 depending on their perfor-
mance. They all had normal or corrected-to-normal vision
and gave informed consent to participate in the study which
was approved by our local ethics committee.

In the task, after the initial fixation, a cue (two crossed,
coloured lines) was presented at fixation to indicate which of
the two alternatives was worth more points (40 vs 10) if it was
to be presented and responded to correctly, though the orien-
tation actually presented was equally likely. The trial’s value



was randomised and each block contained an equal amount
of High and Low value trials. 850-900ms following the cue,
an oriented grating target appeared on the upper left or up-
per right of the screen (fixed within a block and counter-
balanced across blocks). The appropriate amount of points
was awarded if a left or right-hand response was made to a
left-tilted or right-tilted grating, respectively, within a 360-
ms deadline. The main EEG recording consisted of 8 blocks
of 160 trials each.

Motor preparation was measured as the LRP (Gratton et
al., 1988; de Jong, Wierda, Mulder, & Mulder, 1988; Eimer,
1998), at standard EEG sites C3 and C4. Four simplified ver-
sions of the bounded diffusion models were constructed to
examine the two alternative value biasing mechanisms (SPB
and DRB) and also to examine the mechanisms that produce
fast errors (starting-point variability [‘VS’] versus increasing
evidence [‘IE’]) as was done in Afacan-Seref et al. (2018).
The SPB-VS model was defined by the following equation:

x(t) = x(t−1)+d ·dt +N(0,s
√

dt)

x(0)∼U(±zB,±zB + sz)
(1)

Where d is the drift rate, dt is the discrete time increment
(1 ms in simulations) and N(0,s

√
dt) refers to Gaussian noise

with zero mean and variance s2 · dt. The SPB is zB, with
a positive sign for High Value and negative for Low Value
trials. The starting point variability was determined by sz.
The DRB-VS model was defined by the following equation:

x(t) = x(t−1)+(d±dB)dt +N(0,s
√

dt)

x(0)∼U(−sz,+sz)
(2)

Where dB is the symmetric bias in the drift rate (positive
for High Value trials and negative for Low Value ones). The
SPB-IE model was defined by:

x(t) = x(t−1)+ c · t ·dt +N(0,s
√

dt)

x(0) =±zB
(3)

Where c is the slope for the linearly increasing drift rate.
The DRB-IE model was defined by:

x(t) = x(t−1)+(c · t±dB)dt +N(0,s
√

dt)

x(0) = 0
(4)

A fifth model was created inspired by the observed LRP
dynamics (see Results), which included an early biased dy-
namic urgency signal. This model was defined by:

x(t) = x(t−1)+u ·dt + e(t)
(
d ·dt +N(0,s

√
dt
)

x(uoT ) = 0

e(t) =

{
0, if t < eoT

1, if t ≥ eoT

u∼ N(±uµ,uσ)

(5)

Where u is the rate of increase of the urgency signal. The
onset time of the urgency signal is defined by uoT . The mean
of this urgency signal has a positive sign for High Value con-
ditions and a negative one for Low Value ones. The appear-
ance of the evidence and start of the accumulation process is
represented by the unit step function e(t) with onset at eoT .
For all models the decision variable x evolved with the stated
dynamics until it crossed either an upper (+1) or lower (−1)
bound resulting in a correct or incorrect outcome, respec-
tively, with the RT equated to the bound crossing time, such
that any non-decision time is allowed for by the onset timing
parameters uoT and eoT .

All models were fitted by Monte-Carlo simulation meth-
ods to individual participant choice and RT distributions with
a bounded SIMPLEX routine (Nelder & Mead, 1965) imple-
mented in the MATLAB function fminsearchbnd with a G2

likelihood ratio statistic as the cost function, quantifying the
divergence between the bins separated by the five quantiles
[.1, .3, .5, .7, .9] for correct and error trials in the simulated
and real datasets.

Results
As expected, correct responses were more frequent on High
Value than Low Value trials (90% versus 54%, F(1,21) =
51.51, p < .001; Figure 2). There was a significant inter-
action of value (high/low) x accuracy (correct/error) on RT
(2 x 2 rmANOVA, F(1,21) = 600.45, p < .001), driven by
the fact that correct trial RTs were significantly faster for
High Value targets compared to Low Value targets (t(21) =
−76.773, p < .001) and the opposite was observed for Errors
t(21) = 11.027, p < .001). When plotting Accuracy over RT,
a shift in the responses was observed for low value trials, from
very fast, purely value-driven erroneous responses to slow
sensory-driven correct ones (Figure 2). The fast value-driven
responses are further emphasized by the perfect overlap in the
leading tail of the distribution for Low value errors and High
Value correct trials.

Figure 2: Response Time distribution and Conditional Accu-
racy Function averaged over participants.

A bias mechanism in the form of a SPB around target
onset was observed in the LRP (Figure 3), across the dif-



ferent value conditions (F(1,21) = 21.583, p < .001) and it
had an influence on choice outcome (for Low Value trials
F(1,21) = 6.88, p = 0.016). Interestingly, this bias in start-
ing level at target onset did not appear to be static, but contin-
uously grew through the post-target delay period before the
process accelerated due to bottom-up input. This reflects a
dynamic urgency bias (value difference in the slopes of the
target locked LRP from -100 to 100ms t(21) = 4.6, p < .001;
Figure 3) and represents an empirical neural signature of
DRB. We used this anticipatory urgency signal from the LRP
to estimate an “urgency onset time” that we could compare
to the urgency onset time estimated by our model (Table
1). A straight line was fitted to the target-locked LRP sig-
nal from -100ms to 100ms and extended backward in time
until it reached zero, producing an estimate of the starting
point of this dynamic bias: around 442ms before target onset.
This empirical urgency onset time differed from the model’s
estimation (-442ms vs 72ms). Response-locked LRP plots
showed a pre-response “threshold” level that did not signif-
icantly vary with value (F(1,21) = .547, p = .468) or loca-
tion (F(1,21) = .250, p= .622). This was consistent with our
model’s assumption of constant bounds set above and below
a one-dimensional decision variable.

Table 1: Estimated parameter values for the Urgency model,
averaged across participants.

uoT uµ uσ d s eoT
0.072 3.0342 4.205 9.973 2.839 0.27

Figure 3: From left to right, LRP motor preparation dynam-
ics time-locked to the target onset for High and Low value
(left), separating Fast and Slow Low Value (center), and time-
locked to the response (right), broken out by behavioural out-
come. Upward deflections reflect preparation toward the cor-
rect response.

As in previous work (Afacan-Seref et al., 2018), a DRB
model with increasing evidence showed a better fit to be-
haviour (lower Bayes Information Criterion [BIC], Figure 4)
than SPB models, or models that included variability in their
starting point rather than increasing evidence. However, our
neurally-informed model, which instead incorporated an an-

ticipatory biased urgency signal and time-invariant but later-
onsetting evidence, provided the best fit overall (lowest BIC,
Figure 4).

Figure 4: Mean BIC values quantifying goodness of fit. Er-
ror bars indicate S.E.M. after factoring out between-subjects
variance.

Discussion
When faced with different environmental demands, choice-
associated rewards need to be taken into account to make a
decision that maximises expected gain. Within the stream
of processes that lead to an action, at what point is this re-
ward exerting its influence? What neural mechanism is re-
sponsible for it? Answering these questions and provid-
ing a neurally informed model that can capture behaviour
in time-constrained situations is key to guiding leading the-
ories about cognitive dysfunction in brain disorders such as
ADHD, Autism, Depression, Addiction, Borderline Person-
ality Disorder, Obsessive-Compulsive Disorder, and Parkin-
son’s disease.

In this study, we examined behaviour and motor prepara-
tion dynamics during a two-choice rapid orientation discrim-
ination task with asymmetric rewards (10 vs 40 points). Neu-
rally informed mathematical modelling indicated that both
static and dynamic biases are needed to explain behavioural
data in fast decision scenarios and that the effects of both can
be generated through a unitary mechanism, namely an antici-
patory biased urgency signal.

Despite the prevalence of studies supporting static biases
over dynamic ones for many years, recent studies are suggest-
ing that dynamic biases might also play a role in the decision
making process, especially when faced with time restrictions
(Afacan-Seref et al., 2018). However, the literature already
held examples of mixed results. On the one hand, for ex-
ample, Ratcliff and McKoon (2008), used a biased motion
discrimination task in which stimulus proportion for left or
right responses was varied. The authors interpreted a shift
in the leading edges of the RT distributions due to stimulus
probability, as an indication of a SPB. This conclusion was
also supported by their model, which showed that the differ-



ence in starting point accounted for most of the proportion
effect. On the other hand, in one monkey single-cell record-
ing study (Hanks et al., 2011) using a motion discrimination
task, firing rates of decision variable encoding sensorimotor
neurons built at a steeper rate toward the more probable op-
tion. They thus constructed a model that included a dynami-
cally growing, evidence-independent bias component, which
was able to account for human and monkey behaviour bet-
ter than standard models. Although this bias signal would
effectively implement a DRB, this interpretation was not uni-
versally accepted (Ratcliff, Smith, Brown, & McKoon, 2016).
The model we constructed here is very similar but has the dis-
tinction that, as reflected in motor preparation dynamics, the
biased urgency signal can, under time pressure, be well under
way before the evidence begins to be processed. In doing so,
we demonstrate that both starting point biases and drift rate
biases are at play in the same scenario and can be generated
by a single mechanism.

Accurately adjudicating between alternative cognitive
models of the decision process can be difficult based on
behaviour alone (O’Connell, Shadlen, Wong-Lin, & Kelly,
2018). In the present study, we used neural data to inform
the structure and the fitting process of our models. A dy-
namic bias signal observed in the LRP, which started before
evidence onset, effectively producing a SPB as well, indi-
cated that an anticipatory urgency signal must have been at
play. This is well expected in such a fast-paced task where
the participant has very limited exposure to the stimulus be-
fore the deadline. Also, a unique threshold was observed in
the motor preparation dynamics across conditions, inspiring
the construction of a one-dimensional decision model.

It has been suggested that top-down expectations could in-
fluence the creation of representations or templates of the ex-
pected stimulus in the visual cortex, and these representations
would later be compared to bottom-up stimulus information
(Friston, 2005; Rao & Ballard, 1999; Mumford, 1992). Neu-
ral responses to redundant (expected) information in early
sensory regions might be suppressed by higher-order regions
(Mumford, 1992; Murray, Kersten, Olshausen, Schrater, &
Woods, 2002; Rao & Ballard, 1999) or they could be rather
increased by suppressing responses to stimuli that are incon-
sistent with the current expectations (Lee, Yang, Romero, &
Mumford, 2002). Value biases could influence the creation of
such representations as expectations do (Stanisor et al., 2013),
by means of changing the drift rate during the decision mak-
ing process. Alternatively, a modulation of the weighting or
reference values used in the readout of these sensory repre-
sentations could cause a change in the drift rate (Afacan-Seref
et al., 2018). The present results can neither prove nor ex-
clude the possibility that biases are also exerted at the sensory
level or its readout. Further studies looking into an explicit
modulation of the early visual cortical responses are needed
in order to answer this question.

However, we found evidence for the third possibility men-
tioned above, a simpler mechanism that can produce drift rate

biases that originate at the motor level (urgency). Up to now,
motor preparation dynamics have been shown to reflect the
continuous evaluation of incoming sensory information only
from the beginning of the evidence accumulation process, as-
sumed in standard models to onset after sensory encoding has
been completed (Ratcliff & McKoon, 2008). However, our
results suggest that decision-related motor preparation dy-
namics are in play well before the evidence is encoded, and
that under time constraints, reward information is fed to the
motor circuit to bias these anticipatory dynamics independent
of the evidence presentation. This finding bears some simi-
larity to Noorbaloochi et al. (2015) where separate evidence
and reward related components were observed in the LRP, but
our model is distinct in that rather than assuming two sepa-
rate value-biased guess and sensory accumulation processes,
reward information and sensory evidence jointly influence a
single, dynamically evolving decision process. That there is
a single, thresholded process is evidenced in the unique de-
cision threshold that we observed in the LRP across value
conditions (Figure 3).

In our study, unlike Noorbaloochi et al. (2015), the antic-
ipatory urgency bias did correlate with response choice (see
Results). This discrepancy could be caused by the different
deadlines used in each study. Here, the deadline was very
tight and to perform optimally you needed to start prepar-
ing before seeing the stimulus on the screen. In fact, our
neural data suggest that this preparation started ∼ 442ms be-
fore stimulus onset and continuously grew over time, whereas
in Noorbaloochi et al. (2015), the SPB was static, and their
model estimated that the fast guess process onsets at∼ 150ms
after target onset. In fact, our own model’s estimated param-
eter for the start of the urgency signal (0.072 s) did not coin-
cide with our neural data. Even accounting for the fact that
our onset estimate would be misestimated to be later by an
amount equal to the motor non-decision time, the latter can
be expected to be approximately 50-100 ms, leaving still a big
discrepancy between the empirical and the estimated data. A
possible next step could be to constrain the model, in order to
match this urgency onset time and test whether it is still able
to account for the behavioural dynamics. So far, the present
model presents one unique mechanism that can qualitatively
account for the increase in Starting Point Bias observed in the
LRP and quantitatively capture the observed RT distributions.
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