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Abstract 

While much is known about how humans make decisions based 
on the recency, frequency, and similarity of past experiences, 
much less is known about how humans weigh the contextual 
features and the impact it has on decisions. The present study 
uses a novel method of introspecting into a cognitive model of 
human decision making in an abstract cyber security game to 
gain insight about the cognitive salience of the features. The 
results show that cognitive salience can provide valuable 
evidence about how and why individuals make their decisions. 
The implications of these results are discussed with regard to 
theory and application. 

Keywords: cognitive salience; cyber deception; cognitive 
models; instance-based learning, ACT-R 

Introduction 

Feature representation plays an important role in human 

decisions, and while much is known about how experiences 

shape decisions through instance-based learning (e.g., 

frequency, recency, and similarity effects; Gonzalez, 2013), 

much more needs to be understood about what features are 

represented in human decisions and how those features weigh 

in the decision. Instance-based learning (IBL) models have 

accurately modeled human behavior across a number of tasks 

including supply chain management (Gonzalez & Lebiere, 

2005), social dilemmas (Lebiere, Wallach, & West, 2000), 

two-person games (Sanner et al., 2000, West & Lebiere, 

2001), repeated binary-choice decisions (Gonzalez & Dutt, 

2011), and multi-stage Stackelberg Security games (Cranford 

et al., 2020a). According to Instance-Based Learning Theory 

(IBLT; Gonzalez, 2013; Gonzalez, Lerch, & Lebiere, 2003) 

human decisions from experience are generated through the 

aggregate retrieval across past experiences, based on the 

feature similarity of the current situation to past situations. 

While IBL models provide evidence for the underlying 

mechanisms involved in decision making, as well as evidence 

that the representations used in a specific model sufficiently 

describe its respective task, they do not provide any insight 

into the degree to which a decision maker weighs particular 

features of the decision. We believe that thwarting a would-

be attacker could be more successful if we had insight into 

the features they find salient. 

We consider the salient feature of a decision to be the 

feature that most influenced that decision and the greater 

degree of salience a feature has, the more influential it was in 

the decision. While the term, salience, might imply attention, 

in our use the salient feature may not be the most attended 

feature by some measure of attention (eye gaze, etc.). It may 

be the case that a feature is attended more than others but 

ultimately does not contribute to a decision. 

Our salience mechanism is somewhat analogous to 

gradient-based saliency used in image classification (Grün et 

al., 2016). Gradient-based salience techniques calculate the 

gradient of a prediction with respect to the input image to 

estimate the importance of pixels. The result of this process 

is often a heatmap of pixels that, when overlaid on the 

original image, provide some insight into what parts of the 

image were most important for the classification. 

We term our approach cognitive salience in contrast to the 

gradient-based approach. We use the term cognitive for two 

reasons. First, our approach calculates salience by taking the 

derivative of a theorized memory retrieval mechanism, 

blending, the mechanism underlying decision making in IBL 

models (Lebiere, 1999). Second, the features of a cognitive 

model are typically of a higher-level of abstraction than 

pixels, usually conceptual terms, which is typical of a 

cognitive-level description. 

In the present work, we examine the saliency of features in 

a model of human decisions in a cybersecurity game called 

the Insider Attack Game (IAG). IBL models of human 

decisions in the IAG revealed cognitive biases, such as 

confirmation bias, that emerge naturally through memory 

retrieval processes, and lead participants to attack far more 

often than predicted by perfect rationality (Cranford et al., 

2020a). While much has been learned by comparing model 

performance to humans and making inferences about human 



behavior based on the model mechanisms and processes, 

examining feature salience can provide further useful 

information regarding the relative importance of features 

when making decisions. These insights could prove useful in 

further informing how human decisions are shaped through 

their unique experiences, how representation of features 

impact decisions, and also for designing more effect 

cybersecurity defenses. 

In what follows, we first describe the IAG and an IBL 

model that accurately captures human behavior in the game. 

Next, we describe the method for deriving cognitive salience 

from IBL model decisions. Assuming the model accurately 

reflects human decision-making processes, we apply our 

salience technique to the model to gain insight into how 

humans might weigh features when making decisions in the 

IAG. Finally, the results are discussed regarding their 

implications for theories of human decision-making and 

applications to cybersecurity. 

IBL model of Attackers in the Insider Attack Game 

The Insider Attack Game (IAG) was designed as a two-

stage Stackelberg Security Game (SSG) to investigate the 

influence of deceptive signals on cyber-attacker decision 

making (Cranford et al., 2018). Players take the role of an 

insider attacker and make repeated decisions of “hacking” 

computers. In the first stage, attackers must decide which of 

six targets to attack, as depicted in Figure 1A. However, they 

must avoid the two analysts (defenders) that monitor one 

target each. An example target is shown in the zoomed inset 

of Figure 1A. Attackers are presented all information about 

the reward received if they successfully attack a target that is 

not monitored, the penalty received if they attack a target that 

is monitored, and the probability that the target is being 

monitored. After selecting a target, in the second stage, the 

attacker is presented with a message signaling whether the 

computer is being monitored (e.g., see Figure 1B). The 

message is always truthful when claiming a target is not being 

monitored. However, the attacker is informed that the 

message is sometimes deceptive when claiming the target is 

being monitored. The attacker must decide to either continue 

the attack and earn the reward or penalty, depending on the 

true underlying coverage, or withdraw and earn zero points. 

Attackers are incentivized to earn as many points as possible 

across four rounds of 25 trials each; a new set of targets are 

presented each round. 

The defense algorithm in the IAG, the Strong Stackelberg 

Equilibrium with Persuasion (peSSE; Tambe, 2011; Xu et al., 

2015), was designed to optimize the rate at which deceptive 

messages are sent so that belief in the signal is maintained, 

but does so under assumptions that adversaries make 

perfectly rational decisions. In the first stage, the algorithm 

optimizes the allocation of the two defenders based on the 

reward and penalty values of the targets. The algorithm 

effectively equalizes the expected value of all targets so that 

no target is more preferred than another and assigns defenders 

to targets across the trials according to the derived 

probabilities (these are the monitoring probabilities attackers 

see). In the second stage, the algorithm optimizes the rate of 

deceptive signals. If signals were only truthful, the expected 

value would be negative when indicating that a target is being 

monitored. The peSSE determines the probability with which 

to send deceptive signals so that the expected value given a 

signal increases to zero, and under assumptions of perfect 

rationality, an adversary will still defer to the safe option and 

withdraw. In the IAG, with a 1:3 defender-target ratio, the 

signal is present and truthful on 1/3rd of trials, on average. 

Therefore, the peSSE can send deceptive signals on another 

1/3rd of trials when the target is not monitored. Thus, the 

peSSE increases the perceived coverage of the system by 

finding the optimal combination of bluffing (sending a 

deceptive message that the target is monitored when it is not) 

and truth-telling (sending a truthful message that the target is 

covered) so that a rational attacker would always withdraw in 

the presence of a signal. 

 

 

Figure 1: Screenshot of the IAG (A) and an example signal 

message (B). The first line of the message is omitted if the 

signal is absent. The zoomed inset shows a target, including 

the value of the reward if the attack is successful (yellow 

stars), the value of the penalty if the attack is unsuccessful 

(red stars), and the monitoring probability (given as 

percentage in text and graphically as a fillable gauge). 

 

 

Humans, however, do not always make rational-best 

decisions. Instead, human decisions in the IAG can be 

explained under Instance-Based Learning Theory (IBLT; 

Gonzalez, 2013; Gonzalez et al., 2003), and an IBL model 

was created that captures this behavior (Cranford et al., 2018; 

2020a). According to IBLT, decisions are made by 

generalizing across past experiences, or instances, that are 

similar to the current situation. In the IBL model, instances 

are represented by the contextual features of the decision. For 

example, in Figure 2, the features include the information 

available in the environment: the reward, penalty, monitoring 

probability, and signal, the action taken, and its associated 

utility, or outcome. Each experience is saved in memory and 

when a new decision is to be made, an expected outcome is 

retrieved from memory that represents a weighted average 

across all memories based on their probability of retrieval. 



 

Figure 2: Example representation of instances in IBL. 

The IBL model was created in the ACT-R cognitive 

architecture (Anderson & Lebiere, 1998; Anderson et al., 

2004), which provides a theoretical framework that 

accurately simulates human-like cognition and processes 

such as memory retrieval, pattern matching, and decision 

making. In ACT-R, the probability of retrieving an instance 

is based on its activation strength which is determined by its 

recency and frequency of occurrence, and its similarity to the 

current context. The IBL model uses ACT-R’s blending 

mechanism (described in more detail in the next section; 

Gonzalez et al., 2003; Lebiere, 1999) to retrieve an expected 

outcome of attacking a target based on a consensus of past 

instances. The expected outcome is the value that best 

satisfies the constraints of all matching instances weighted by 

their probability of retrieval. 

The IBL model played the same game as humans. In the 

first stage of the IAG, the features of the decision include the 

monitoring probability [0.0, 1.0], the reward [1, 10], and the 

penalty [-1, -10]. The model generates an expected outcome 

for each target, via blending across previous outcomes, and 

selects the target with the highest expected outcome. In the 

second stage, the only feature in the decision is the signal 

[present, absent] and the model generates a new expected 

outcome of attacking. A straightforward decision rule is then 

applied: if the value is greater than zero the model attacks, 

else it withdraws, and ground truth feedback is given. 

The model saves two instances to memory each trial. One 

represents the expectation generated during the decision to 

continue the attack or withdraw (includes the features: signal, 

action, and expected outcome), and the other represents the 

ground truth decision and feedback received (includes all 

features: signal, reward, penalty, monitoring probability, 

ground truth action, and ground truth outcome). Storing the 

expectations as well as the ground truth drives a confirmation 

bias in which the availability of additional positive instances 

in memory (i.e., from the positive expectations generated 

prior to deciding to continue an attack) perpetuates a behavior 

to attack when faced with a signal, even after suffering losses. 

Cranford et al. (2020a) showed that humans attacked about 

80% of trials on average, far more than the predicted 33% of 

perfectly rational attackers (i.e., on average, signals are 

absent on only 1/3rd of trials). The IBL model very accurately 

captures this behavior across trials in the game (overall total 

RMSE = 0.04 and r = 0.73), as shown in Figure 3 (adapted 

from Cranford et al., 2020a). The pattern of spikes across 

trials can be attributed to the schedule of coverage and 

signaling, which was the same for each player and reflects 

experiences of success/failure given the probability of seeing 

a signal. In fact, the correlation between the probability of 

seeing a warning and the probability of attacking is -0.84 for 

humans and -0.89 for the model. 

 

Figure 3. Mean probability of attack across trials for human 

participants compared to the IBL model runs. 

The data presented in Figure 3 averages across substantial 

individual differences in behavior. In addition to capturing 

mean human performance across trials, the model also 

captures the full distribution of attack probabilities as seen in 

Figure 4 (adapted from Cranford et al, 2020a). Like humans, 

approximately 40% of participants (e.g., model runs) attack 

greater than or equal to 95% of trials. In another study that 

examined human behavior in the IAG, Cranford et al. (2020b) 

reported that approximately 23% of participants that attacked 

greater than or equal to 95% of trials also reported that they 

ignored the signal in their decisions. The study reported in 

Cranford et al. (2020a) did not collect such data, but we can 

assume similar responses would have been made. 

 

Figure 4: Probability of attack distribution for human 

participants compared to the IBL model runs. 

In summary, the IBL model very accurately captures 

human behavior in the IAG and has proven useful in making 

inferences about human decision making in the task. Humans 

do not compute all information and make rational-best 

decisions, but instead make decisions based on past 

experiences, which are represented by the important features 

of the situation. These decisions are heavily influenced by the 

dynamics of memory retrieval processes which result in 

emergent cognitive biases (e.g., recency, frequency, and 

confirmation bias). These biases lead to overweighting of 

certain outcomes that, often, results in inflated expectations. 



Humans fail to fully comply with the signal because they are 

more likely to expect a positive outcome than a negative one 

as belief in the signal deteriorates. While much has been 

learned about how experience influences decisions in the 

IAG regarding recency and frequency of instances, it is less 

clear how humans weigh the features in their decisions. 

Therefore, in the present study, we examine the salience of 

the features during the selection and attack decisions of the 

model to inform why certain decisions are made and if there 

are differences between types of participants in how 

information is processed that leads to the observed individual 

differences in attack behavior, as described in Figure 4. 

Blending and Cognitive Salience 

The cognitive salience of a feature can be derived from the 

blended retrieval mechanism. The blending mechanism in 

ACT-R retrieves an estimated outcome by interpolating 

across previously experienced outcomes (Lebiere, 1999). 

That interpolation process is weighted by the contextual 

similarity of the present instance to previous instances and is 

computed with the following equation: 

𝑉 =  𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝑃𝑖 

𝑛

𝑖=1

∙ 𝑆𝑖𝑚(𝑉𝑡 , 𝑣𝑖𝑡)2 

The value, 𝑉, therefore is an interpolated value based on 

matching chunks 𝑖, weighted by their retrieval probability 𝑃𝑖. 

The complete blending process is outlined in Figure 5. The 

retrieval probability, equation 2, is derived from a Boltzmann 

softmax function that is based on the activation strength of 

chunks, which is influenced by power laws of frequency and 

recency, according to ACT-R theory of memory retrieval 

(Anderson & Lebiere, 1998; Anderson et al., 2004), and also 

the similarity or match between the current instance in 

memory and past instances. The match score in equation 1 is 

equivalent to the similarity function, 𝑆𝑖𝑚(𝑉𝑡 , 𝑣𝑖𝑡)2, and is 

used to compare memory chunks 𝑣𝑖𝑡 and candidate consensus 

values 𝑉𝑡. In the simplest case, where the values are 

numerical (i.e. the return RT) and the similarity function is 

linear, the process simplifies to a weighted average by the 

probability of retrieval, as shown in equation 3 of Figure 5. 

 

 

 

 

Figure 5: Description of blending mechanism. 

We calculate salience by taking the derivative of the 

blending equation with respect to each feature: 

𝑆(𝑉𝑡 , 𝑓𝑘) = 𝑐 ∑ 𝑃𝑖 ∙ (
𝜕𝑆𝑖𝑚(𝑓𝑘 , 𝑣𝑖𝑘)

𝜕𝑓𝑘
− ∑ 𝑃𝑗

𝑛

𝑗=1

𝜕𝑆𝑖𝑚(𝑓𝑘 , 𝑣𝑗𝑘)

𝜕𝑓𝑘
) ∙ 𝑣𝑖𝑡

𝑛

𝑖=1

 

This derivative gives us the degree of influence a particular 

feature (𝑓𝑘) had in a decision (𝑉𝑡). The value S can be 

infinitely positive or negative. While the direction of the 

value provides information about how the feature is used, to 

compare between features, the magnitude tells us which 

feature has the greater impact on the decision. Therefore, in 

all analyses below, we examine the absolute values of S. 

Cognitive salience was first applied in an explainable 

artificial intelligence context (Somers et al., 2019), where 

ACT-R was used to model a reinforcement learner (RL). In 

that context, the baseline equations in ACT-R, which are 

responsible for effects of recency and frequency, were not 

used because in an RL context, there is no reason to expect 

decay in memory. This is the first time that cognitive salience 

has been applied in a human experimental context. 

Salience Analysis 

We examined the salience of features during the first-stage, 

selection decision and during the second-stage, attack 

decision of the IBL model. During target selection, a 

perfectly rational attacker would display no preference for 

features because all targets have the same expected value. No 

one feature is more informative than another and do not 

differentiate targets. However, it is possible that, for 

boundedly rational humans that derive expected outcomes 

from very limited experiences, selection preferences could 

emerge if one feature becomes more salient than another. It 

is hypothesized that saliencies will be higher when few 

instances are available in memory, thus skewing the mental 

representation of expected values. With more experiences, 

the attacker should gradually and implicitly learn that all 

targets are of about equal values. Saliencies can inform us 

whether decisions reflect the statistics of the environment, 

that the features are by all accounts meaningless. 

During the second-stage, attack decision, there are clear 

individual differences in the probability of attack. It is 

therefore hypothesized that, when the signal is present, 

salience for the signal is lower for those participants with 

high probabilities of attack. If the salience of the signal is low 

then, when a signal is present, the expected outcome 

generated should be higher because the decision will 

discriminate less between signal types, giving more weight to 

instances when a signal was not present and that have positive 

outcomes, thus driving up the blended outcome. 

First-Stage Decision: Selection 

Figure 6 shows the average magnitude (i.e., absolute value) 

of saliencies for the reward, penalty, and monitoring 

probability (Mprob) features of the selected target across the 

four rounds of the experiment. The saliencies presented in 

Figure 6 are calculated during the outcome generation 



process. When generating expected outcomes, the model 

interpolates from previous experiences, weighing those 

experiences by their similarity to the features of the current 

target. The saliencies indicate that the model initially displays 

differences between features, but quickly merge within a few 

trials. After merging, all saliencies start out relatively high 

and decrease over time. The dashed gray line in Figure 6 

shows the mean expected outcome across trials on the 

secondary y-axis. The expected outcomes are initially 

inflated and gradually decrease over time along with 

saliencies. These results suggest that the model is learning 

that the targets have equal expected outcomes and no feature 

is more salient than another. The decreasing trend in 

saliencies implies that the features are less influential in the 

decision over time. The model does not have any explicit 

awareness or explicit modeling of this decrease. 

While the average magnitude of saliencies indicates no 

preferences for any particular feature, Figure 7 examines the 

individual differences between model runs (i.e., players) 

regarding the relative magnitude of the saliencies. The 

ternary plot takes the overall mean magnitude saliencies for 

each feature for each player and plots a point for each player 

to show the relative importance of each feature (i.e., the ratio 

between the three saliencies). The results show that players 

mostly display no preference for features as they learn over 

time that no feature is more meaningful and the saliencies 

trend downwards (as shown in Figure 6). Figure 7 shows that 

players mostly center around the middle point of the plot, 

indicating saliencies for features are all close to the same 

magnitude. However, all players display a higher saliency for 

one of the features, even if miniscule, and some do extend 

toward the corners of the ternary plot if only by a small 

percentage. Players were therefore split into 3 groups 

depending on the feature that is overall most salient, the 

reward, penalty, or Mprob, to examine if these groups display 

any target selection preferences. 

Figure 8 shows a scatterplot of target selections by the 

reward and penalty values of the selected target. The size of 

the dots indicates the percent of selections for that target 

within a round. Thus, the dominant color for a point indicates 

a greater percent of selections for that group on that target. 

The distributions of penalties and rewards for each “Max 

Saliency” group are shown as marginal plots on the right and 

top, respectively. Figure 8 shows clear differences in target 

selection behavior between groups. The players that have 

higher saliency for the penalty tend to select the targets with 

higher penalties, which incidentally also have higher 

rewards. Meanwhile, players that have higher saliency for 

reward or Mprob tend to select the targets with lower 

penalties, and the ones with more moderate reward/penalty 

tradeoffs, more often. 

Second-Stage Decision: Attack 

In the second-stage decision, it was hypothesized that 

aggressive attackers (i.e., those that attacked ≥ 95% of the 

time) may weigh the signal differently than the other cautious 

attackers. Figure 9 shows the mean magnitude of saliencies 

 

Figure 6: Mean magnitude of saliencies across trials for 

each feature of the selected targeted. The dashed gray line 

shows the mean expected outcome of the selected target. 

 

Figure 7: Mean relative saliency per player. Colors indicate 

the most salient feature for that player. 

 

Figure 8: Scatterplot of reward and penalty of selected 

targets for each Max Saliency group. The size of the bubbles 

represent the percent of selections for the target within each 

Max Saliency group and round. 



for the signal feature across the four rounds. The breaks in 

the solid line for the signal-absent condition are trials in 

which every target was scheduled to present a signal. When 

the signal is absent, the saliency for the signal is about equal 

in Round 1, but is higher for the aggressive attackers through 

the remainder of the game. For both player types, the saliency 

is overall higher when the signal is absent than when the 

signal is present. When the signal is present, however, the 

salience of the signal is lower for aggressive attackers than 

for the cautious ones. As predicted, when present, the signal 

is less influential in aggressive attackers’ decisions than 

cautious attackers’ decisions. 

 

Figure 9: Mean magnitude of salience for the signal during 

the attack decision, for each signal and player type. 

Figure 10 shows the mean expected outcome for the attack 

decision across the four rounds. An interesting interaction 

presents when compared to the pattern for saliencies. For 

expected outcomes, when the signal is absent, the aggressive 

attackers generate higher values than cautious attackers, 

echoing the pattern for saliencies. However, in contrast to 

saliencies, when the signal is present, cautious attackers 

generate lower expected outcomes than aggressive attackers. 

 

Figure 10: Mean expected outcome of the attack decision, 

for each signal and player type 

These results suggest that salience influences decisions 

through its influence on memory retrieval. A higher saliency 

for a signal means that, for blending, more weight is given to 

past instances that have the same value as the current signal, 

and when saliency is low for the signal more weight is given 

to past instances that have a different value as the current 

signal so that probabilities are more evenly distributed across 

past instances. When a signal is absent, the higher salience 

for aggressive attackers means more weight is given to past 

instances whose signal is absent. Because these instances 

have only positive values, the expected outcomes are inflated. 

When a signal is present, the lower salience for aggressive 

attackers means the probability of retrieving past instances 

whose signal is absent is higher, and more evenly distributed 

across all targets (hence the expected outcome by Round 4 is 

approximately equal to the true expected value, irrespective 

of the signal, of 1.43), and again the expected outcomes are 

inflated. Meanwhile, cautious attackers that have higher 

salience for the signal when present have expected outcomes 

near zero, which is the true expected value given a signal. 

Conclusion 

The present study is the first to use this method for calculating 

cognitive salience to introspect into the model how humans 

weigh the contextual features in their decisions. The results 

provide additional insight into how the representation of 

features can influence decisions. Specifically, we can infer 

that players learn quickly that all targets have equal expected 

values and no feature is more informative than another. But 

also, because human decisions are based on limited 

experiences, some individuals have a slight preference for 

some targets that can be predicted by the degree of salience 

for a particular feature. An interesting path for future research 

will be to examine whether target selection preferences 

emerge if the targets are not of equal expected value and/or 

certain features are more indicative of success than others, as 

was shown in the original work on cognitive salience in an 

explainable artificial intelligence context (Somers et al., 

2019). In that research, feature preferences emerge as certain 

features are more indicative of successful decisions. 

In contrast to the selection decision, during the attack 

decision the degree of salience for the signal has a direct 

impact on the probability of retrieving past instances which 

in turn impacts the expected outcomes generated. The results 

provide unique insights into how individual differences can 

emerge through unique experiences. Understanding how an 

individual weighs the feature in their decisions provides 

valuable evidence about how information is processed and 

how it impacts decisions, which is vitally important for 

improving security defenses, especially for defenses that rely 

on adaptive and personalized defense (Cranford et al., 

2020b). Therefore, one avenue for future research will be to 

validate the observed model results with human experiments 

designed to investigate what features are most important in 

decisions. For example, Cranford et al. (2020b) showed that 

aggressive attackers tended to report that they ignored the 

signal feature, and a model that omitted that feature from the 

representation was a better predictor of these aggressive 

attackers. As was demonstrated, understanding what features 

are important in a decision can inform the design of models 

and about the underlying representation of the decision. More 

accurate models can provide more accurate predictions about 

human behavior which can be used to improve security 

algorithms. Examining cognitive salience with cognitive 

models provides valuable information about individual 

differences between players, and future research aims at 

exploring its utility for designing more effective 

personalized, adaptive signaling schemes for cyber defense. 
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