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Abstract

Social interactions are a part of day-to-day life of most human
beings. Affect, decision-making and behavior are central to it.
With increase in adaptation of technology in our society, in-
teraction between humans and artificially intelligent agents is
also increasing. Large-scale brain-inspired neural models have
been equipped with capabilities to fulfil a variety of tasks, but
there has been relatively limited focus on making them capa-
ble of handling social interaction. In this paper, NeuroACT,
a neural computational model and implementation of a socio-
psychological theory called Affect Control Theory (ACT) is
presented. This is towards building an emotionally intelligent
AI agent, that can handle interactions. It takes as input a con-
tinuous affective interpretation of a perceived event, consisting
of an actor, behavior and an object and generates post-event
predictions of the next optimal behavior to minimize deflec-
tion. The aim is to model the role of affect guiding decision-
making in AI agents, resulting in interactions that are similar
to human interactions, while inhibiting some behaviors based
on the social context.
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Introduction
Social interaction is central to the human experience; af-
fect and emotion plays an important role in guiding human
thinking and behavior. Affect is a property of consciousness
(Barrett & Satpute, 2019) and a part of every psychologi-
cal phenomenon, even those that are not explicitly emotional
(Hutchinson & Barrett, 2019). Social neuroscience has pri-
marily focused on sense of self identity and how a person’s
mind creates a perception of another person, whereas affec-
tive neuroscience concerns mainly with brain basis of emo-
tions (Barrett & Satpute, 2013). We present a neural model
and implementation of social interaction in an AI system us-
ing a socio-psychological theory called Affect Control The-
ory (ACT), and combine social and affective domain perspec-
tives, thereby dissolving their artificial boundaries. This is
towards gaining deeper understanding of the neural mecha-
nisms of the role of affect guiding decision-making. The goal
here is to show that the calculations required by ACT can be
implemented by spiking neurons, using anatomical structure
that fits the cortex, basal ganglia, and thalamus.

Affect Control Theory (ACT) is a comprehensive social
psychological theory of human interaction that emphasises

feelings (affect) as a key factor (Heise, 1987; N. J. MacKin-
non, 1994; Heise, 2007; N. MacKinnon & Robinson, 2014).
ACT proposes that social perceptions, actions, and emotional
experiences of the people are governed by a psychological
need to minimize deflections between culturally shared fun-
damental sentiments about social situations and transient im-
pressions resulting from the dynamic behaviors of interac-
tants in those situations. Sentiments are said to have three
aspects in an affective space, forming a three-dimensional
vector comprising of Evaluation, Potency, and Activity (EPA)
(Osgood, Suci, & Tannenbaum, 1957; Heise, 2007). Evalu-
ation concerns goodness versus badness, Potency concerns
powerfulness versus powerlessness, and Activity concerns
liveliness versus quietness. The value of each aspect can
vary in degree, in the sense that it can be greater or lesser,
in either a positive or negative direction. The dimensions of
EPA vector is a common cross-cultural representation of so-
cial objects, such as interactants’ concepts of situations, emo-
tions, identities and behaviors, hypothesized to be an organiz-
ing principle of human socio-emotional experience (Osgood,
May, & Miron, 1975).

EPA profiles of concepts can be measured with the seman-
tic differential, a survey technique where respondents, both
males and females rate affective meanings of concepts on
numerical scales. These numerically-measured sentiments
are useful for mathematical analysis. EPA measurements [as
noted in (Heise, 2001)] are appropriate when one is interested
in affective meanings rather than denotative or logical mean-
ings. Affective meanings correspond to sentiments - that is,
the general feelings that we have about something. The EPA
system is notable for being a multivariate approach to measur-
ing affect, as compared, say, to attitude measurement which
deals only with the single dimension of evaluation.

Affect control theorists have compiled datasets of a few
thousand words along with average EPA ratings obtained
from survey participants who are knowledgeable about their
culture (Heise, 2010) 1. For example, most English speak-
ers agree that professors are about as nice as students (E),
however more powerful (P) and less active (A). The corre-

1The EPA profiles in this paper are from ‘Indiana 2002-4’ dataset



sponding EPA profiles are {1.61, 1.58, 0.35} for professor
and {1.49, 0.31, 0.75} for student. The values range by con-
vention from -4.3 to +4.3 (Heise, 2010). In general, within-
cultural agreement about EPA meanings of social concepts is
high even across subgroups of society, and cultural-average
EPA ratings from as little as a few dozen survey participants
have shown to be extremely stable over extended periods of
time (Heise, 2010).

Large-scale brain-inspired neural models like Spaun
(Eliasmith et al., 2012) implement some mechanisms of cog-
nitive processing to perform variety of tasks. A neural model
called POEM (POinter EMotions) (Kajic, Schröder, Stewart,
& Thagard, 2019) provides a detailed account of neurocom-
putational mechanisms responsible for psychological func-
tions required for emotions. Implementing social interaction
mechanisms in an AI system still remains a challenge.

In this paper, NeuroACT, a neural model of social inter-
action based on ACT is presented along with its implemen-
tation using Nengo, a python library for building and simu-
lating large-scale neural models, showing the possibility of
developing a human-like AI agent, which can interact with
human or other agents. In this paper, the mathematical model
of ACT and its non-neural implementation is first outlined.
Then details about NeuroACT model, its implementation us-
ing spiking neurons and its simulation in a doctor-patient sce-
nario and prisoner’s dilemma game play are provided. Lastly,
conclusion and some directions for future work are presented.

Mathematical model of ACT
In an interaction, actor is the agent who behaves (or acts)
towards a target object (who can be self or some other per-
son). An actor or an object can be specified by identity-nouns,
whereas behaviors are specified by verbs.

Interaction Event Description
ACT models the formation of transient impressions from
events with a minimalist grammar of the form Actor Identity-
Behavior-Object Identity (ABO). Each of these have an EPA
profile. A person’s basic identity can be particularized with
specifications of emotion, traits, moods, biological charac-
teristics, statuses, or moral dispositions. In our current ver-
sion of neural model, emotion is considered as the modi-
fier. The state of being has generally more impact on the
outcome impression than the identity does. [Modifier(Mod)-
Identity(I) combinations were analyzed in (Smith-Lovin &
Heise, 1988)]. The interaction can be written as

Event = [Modactor][Iactor][Bactor][Modob ject ][Iob ject ] (1)

Note that each of these elements is an EPA profile.

Modifier-Identity Combination
The addition of attributes or adjectives that modify the iden-
tities (e.g., “good friend” or “abusive father”) is calculated
from the EPA values of both the identity and the modifiers.
The EPA profiles of particular modifiers are symbolized as

P = {Pe,Pp,Pa}, identities as R = {Re,Rp,Ra}, and the pro-
file for identity-modifiers amalgamation as C = {Ce,Cp,Ca}.
The modifier-identity profile is computed by the equation
given below:

C = pP+ rR+a (2)

where p and r are coefficients estimated from empirical stud-
ies of the modifiers and identity, respectively and a is a con-
stant. For example, using the affective dictionary, the EPA
profile of a “stranger” is {0.02 -0.09 -0.23}, the EPA profile
of “happy” is {2.92 2.43 1.96}, and that of “happy stranger”
is {0.6 0.5 0.5}.

The interaction in (1) can be re-written as follows:

Event = [Cactor][Bactor][Cob ject ] (3)

For the rest of the paper, actor A means Cactor and object O
means Cob ject

Deflection
According to ACT grammar, the fundamental sentiment f
(represented by over-bar) is represented as follows:

f = {Āe Āp Āa B̄e B̄p B̄a Ōe Ōp Ōa} (4)

and the transient impression τ (represented by caret) evoked
by an event is given by:

τ = {Âe Âp Âa B̂e B̂p B̂a Ôe Ôp Ôa} (5)

In ACT, the weighted sum of squared Euclidean distances be-
tween fundamental sentiments and transient impressions is
called total deflection D:

D = ( f − τ)2 (6)

Calculation of τ will be discussed in the next subsection. De-
flection arises when impressions produced by an event differ
from sentiments. Deflection that cannot be resolved produces
psychological stress, which is a serious condition that can un-
dermine one’s health. Deflection is related to unlikelihood:
the more deflection an event produces, the more that event
seems stranger, more surprising, more unique and even in-
conceivable.

Consider for example, a professor who yells at a student.
Most observers would agree that this professor appears con-
siderably less nice (E), a bit less potent (P), and certainly
more active (A) than the cultural average fundamentals of a
professor. ACT treats the dynamics of emotional states and
behaviors as continuous trajectories in affective space. De-
flection minimisation is the only prescribed mechanism.

Transient impression formation The transients existing
after an event can be predicted from the transients that pre-
cede the event by the equation given below:

τ = Mt (7)

M is the matrix of prediction coefficients estimated in
impression-formation research, with one column for each



post-event transient being predicted. For example, Matrix M
is 20 x 9, consisting of coefficients estimated from U.S male
data on ABO. Vector t contains pre-event transients along
with interaction terms that have been found to have predic-
tive value in empirical analyses. Vector t given below is 1 x
20, hence τ is 1 x 9. [Refer to (Heise, 2007)]

t = {1 Āe Āp Āa B̄e B̄p B̄a Ōe Ōp Ōa

ĀeB̄e ĀeŌp ĀpB̄p ĀaB̄a B̄eŌe

B̄eŌp B̄pŌe B̄pŌp ĀeB̄eŌe ĀeB̄eŌp}
(8)

To show an example of how M and t affects the calculation of
τ, the following equation shows the post-event Actor’s eval-
uation dimension estimated using the impression equations
(considering non-zero values of first column of M which re-
lated to Âe):

Âe =−0.26+0.41Āe +0.42B̄e−0.02B̄p−0.10B̄a +0.03Ōe

+0.06Ōp +0.05ĀeB̄e +0.03ĀeŌp +0.12B̄eŌe

−0.05B̄eŌp−0.05B̄pŌe +0.03ĀeB̄eŌe−0.02ĀeB̄eŌp

(9)

The coefficients in the above equation indicate the factors and
the degree to which they contribute towards the post-event
evaluation of the actor. For example, the positive coefficient
on pre-event evaluation of actor Āe, means that the good ac-
tors are evaluated more positively (in E) and bad actors are
evaluated more negatively (in E), with a factor of 0.41. The
positive coefficient on combination terms like pre-event be-
havior and object evaluation B̄eŌe means that the actors are
evaluated more positively (in E) if they are observed doing
good things to good people, or bad things to bad people, but
more negatively (in E) if they are observed doing bad things
to good people or good things to bad people, with a factor of
0.12. Similarly, the other dimensions can be calculated for Â,
B̂ and Ô giving us the value of τ as mentioned in eq. (5).

Optimal Behavior
Action selection in an interaction would be based on any
institutionally-appropriate, feasible, and sentiment-affirming
behavior. For example, in a medical setting, there would be
a doctor-patient interaction, where doctor’s identity is gener-
ally considered as quite good and potent and somewhat active
with an EPA profile as {1.90,0.69,0.05}, whereas a patient
identity is considered a bit good, less powerful and quite weak
with an EPA profile as {0.90,-0.69,-1.05}. The sentiment-
affirming behavior for a doctor would be to treat, instruct etc
to the patient, so that his impression is maintained as good. If
he does acts of yelling, cruelty etc, his impression will be bad
and will cause deflection and conflict.

An event seems more unlikely, uncanny, or unique as de-
flections (D) are larger. In ACT, the EPA profile for the op-
timal behavior is regarded as the one that minimizes the un-
likeliness of an event, that is defined as below.

k+
Oe

∑
i=Ae

wiDi (10)

From eq. (10) and (6), we have

k+
Oe

∑
i=Ae

wi( fi− τi)
2 (11)

where k is a constant and w stands for summation weights.
Minimizing unlikeliness or maximizing normality is obtained
by setting partial derivatives of the right side of the above
equation to zero and solving for behavior terms, giving us the
suggested optimal behavior [for details refer (Heise, 2007)].

Predicted Emotion and Identity
ACT predicts the emotion and identity of both the actor and
the object post interaction, which can also affect the dynam-
ics. In this paper only optimal behavior will be focused upon.

Non-Neural implementations
Interact A computer software tool named Interact, imple-
ments ACT’s mathematical model in Java. It provides a
user interface to setup the interactions and analyze the re-
sults. It has a dictionary of various datasets across six
nations, ranging from 1977 to 2007, and consists of EPA
profile ratings for identities, behaviors, modifiers rated by
male and female raters, which is useful in cross-cultural
and historical analysis. [New datasets can be found at
https://research.franklin.uga.edu/act ].

BayesAct BayesAct (Hoey, Schröder, & Alhothali, 2016;
Schröder, Hoey, & Rogers, 2016) generalises ACT by main-
taining multiple hypothesis of behaviors and identities simul-
taneously as a probability distribution. It uses partially ob-
servable Markov decision process (POMDP). [Some applica-
tions include (Lin et al., 2014; Jung, Hoey, Morgan, Schröder,
& Wolf, 2016)].
BayesAct and Interact can be accessed at http://bayesact.ca

Neural Model
The novel contribution of this paper is to take the underlying
mathematics of ACT and implement them using the spiking
neurons. In particular, it is striking that the overall form of the
theory maps very well onto a neural model of the cortex/basal
ganglia/thalamus loop that has been previously used to model
a variety of tasks (Eliasmith et al., 2012).

The core part of the algorithm that is modelled here and its
relation to the neural model of the brain is shown in Figure 1.
In this work, the mechanisms for maintaining and tracking the
EPA values of the current situation is not modelled; rather,
focus is on the calculation of deflection and hence unlikeli-
ness, given the event perception from an object’s (AI agent)
perspective and time t. That is, given the EPA values of the
current situation, the question is: what action should be per-
formed by the object of the event?

This maps well onto the traditional roles of the cortex,
basal ganglia, and thalamus. Neurons in the cortex (1 in Fig-
ure 1) will represent the EPA values, the connections between
cortical neurons and basal ganglia neurons (2) will compute



eq. (11), the basal ganglia (3) will find the action with the
largest deflection minimizing utility value, and the thalamus
(4) will activate that particular action.

Figure 1: Neural implementation of ACT

While the overall mathematical function of this system is
easy to describe and implement, it will be shown how spik-
ing neurons can perform these operations. In particular, here
Neural Engineering Framework (NEF; Eliasmith & Ander-
son, 2004) is used, which is a general method for finding how
to connect simulated neurons so as to get the best approxi-
mation of any given algorithm. In general, the idea here is
that the activity of groups of neurons can be thought of as
representing vectors, and the connections between groups of
neurons can be thought of as computing functions on those
vectors. If we know the set of functions that we want to com-
pute then we can perform a sequence of local optimizations
(one for each set of connection weights) that will find the best
approximation of the algorithm, given whatever type of neu-
rons we want to use (including spiking and non-spiking neu-
ron models).

For the basal ganglia and thalamus, we can make use of
already-existing models of how to use the NEF to implement
exactly the function that is desired here: a system that takes
in a set of values from eq. (11) and determines which one
is the largest utility, say U , outputting that information to
the thalamus. This has been previously shown to both map
on well to the anatomy of the basal ganglia and to exhibit
realistic reaction times (Stewart, Choo, & Eliasmith, 2010).
This system has been used in many previous models, includ-
ing models of the bandit task (Stewart, Bekolay, & Eliasmith,
2012) and the large functional brain model Spaun (Eliasmith
et al., 2012). The same is used here without adjusting any pa-
rameters. Also, an inhibitory “context” input that provides a
large negative value for any actions that should not currently
be considered.

While the basal ganglia and thalamus model take care of
computing which of the action values has the largest deflec-
tion minimizing utility U (i.e. which action should be taken),
this still leaves the question of how to have neurons calculate
the eq. (11) values for each action, given the basic EPA values
that constitute t.

Since this is simply a function, it is possible to train a neu-
ral network to approximate that function. However, the gen-
eral challenge of neural networks is that if the function being
approximated is too complicated, we will need a very large
neural network to do this (either very deep or very broad, or
both). Importantly, the networks generated using the Neu-
ral Engineering Framework have been analyzed in terms of
the class of functions that they are good at approximating
when using a Leaky Integrate-and-Fire neuron model with the
default distribution of tuning curves (Eliasmith & Anderson,
2004). This analysis indicates that these neurons are best at
approximating functions that consist of linear combinations
of low-degree polynomials. Crucially, this is exactly the form
of the calculation being done here (see eq. (9)). This means
that we can use small numbers of neurons (here we use 1500)
with the same parameter settings as has been used in the other
biological models to approximate this function.

Figure 2: Example of behavior of NeuroACT

An example of the overall behavior of the resulting model
is shown in Figure 2. The input is the EPA values for each of
the 5 relevant terms. In this case, the situation is

[calm][doctor][instructs][ f ear f ul][patient]

and the corresponding input EPA values are [1.97 1.32 -
1.4][1.9 0.69 0.05][1.85 1.65 0.3][-1.64 -0.94 -1.15][0.9 -0.69
-1.05]. These values are fed into the convergence neurons.
These connections are completely random, meaning that any
particular input will produce some random pattern of neu-
ral activity that is unique to that input. From that activity,
the connection weights from the convergence neurons to the



basal ganglia compute the eq. (11) function for all of the
different actions in parallel. For simplicity, here we only plot
three of those actions: ‘obey’, ‘disobey’ and ‘yell at’. Finally,
the basal ganglia model finds the largest of these activity val-
ues (i.e. ‘obey’) and directs that result to the thalamus, so the
object of the event, which is the patient in this case, can per-
form for better interaction. This is also the optimal behavior
according to the mathematical model.

Simulation
To simulate NeuroACT model for social interaction involving
affect, decision-making and behavior, a single play of pris-
oners dilemma game scenario was used. Of the two players
involved; one represents a simulated human player agent (Ac-
tor) and the other represents NeuroACT AI agent (Object). In
the play round, each player can decide to either give two coins
to the other player (cooperation strategy) or take one coin (de-
fection strategy) from a common pile. Players can maximize
their returns by defecting while their partner cooperated, and
although the Nash equilibrium is mutual defection, the play-
ers can jointly maximize their scores through mutual cooper-
ation.

In the simulation scenarios, the AI agent perceives the
emotional state, identity and behavior of the human agent,
and outputs the optimal behavior it would choose (‘give’
or ‘take’) based on the ACT prescription of deflection-
minimization. The decision-making dynamics over the time
scale are tested, such that if the perceived emotion of the
human agent changes during the play round, the AI agent
changes its strategy as well. For simplicity, the identity of
both the players was kept as ‘stranger’. EPA profiles used for
identity, modifiers and behaviors are as below:

[happy] : [2.92,2.43,1.96]

[angry] : [−1.45,−0.30,1.13]

[stranger] : [0.02,−0.09,−0.23]

[gives to] : [1.60,1.47,1.55]

[takes f rom] : [−1.40,1.62,1.50]

Inhibition: The dictionary consists of 500 behaviors, out of
which 498 are inhibited in this case due to the game context.
If there was no mechanism of inhibitory neurons, AI agent
would have selected a deflection-minimizing behavior out of
500 options, but in our case, it selects between ‘give’ or ‘take’
behavior only and others get inhibited.

To demonstrate the behavior of the model and show its
ability to use neurons to perform similar calculations as
found in the standard Affect Control Theory, we provide
cortical input of 5 sets of EPA values representing a particular
situation. Since neurons require time to respond, we hold
this input constant for 0.5 seconds and then present a new
situation. In particular, we manually adjust the recognized
emotion from ‘happy’ to ‘angry’, as this causes ACT to

produce a different action. It should be noted that, in this ex-
ample, the ‘object’ is meant to correspond to the NeuroACT
AI agent itself.

Scenario 1: Human agent cooperates with AI agent

Perception at time t ≤ 0.5:

[happy][stranger][gives to][happy][stranger]

Perception at time t>0.5:

[angry][stranger][gives to][happy][stranger]

Scenario 2: Human agent defects with AI agent

Perception at time t ≤ 0.5:

[happy][stranger][takes from][happy][stranger]

Perception at time t>0.5:

[angry][stranger][takes from][happy][stranger]

Results

Figure 3: Human agent cooperates with AI agent

Results for the simulation runs for Scenarios 1 and 2 are
shown in Fig 3 and 4 respectively. In both scenarios, the re-
sultant behavior changes from ‘give’ to ‘take’ on perceiving
the emotion of the human agent that changes from ‘happy’ to
‘angry’, given the affective dynamics. In scenario 1 (Fig 3),
the change in behavior seems slower and more deliberate than



Figure 4: Human agent defects with AI agent

in scenario 2 (Fig 4), where the change is faster and somewhat
automatic. This may be due to actor’s behavior being more
positive in scenario 1 as compared to scenario 2.

NeuroACT shows how affect influences decision-making
and behavior. The behavior chosen by the model matches
with its non-neural counterpart in choosing the optimal be-
havior as prescribed by ACT. The ability of the neural model
to handle time dimension is important for the temporal or-
der of information processing similar to human brain circuit
(Gupta & Merchant, 2017).

Conclusion and Future Work
Social interaction is a challenging area to replicate in brain
simulations. NeuroACT is a novel contribution implementing
affective social interaction in spiking neurons. It is a general-
ized and extensible neural model of ACT, capable of provid-
ing an AI agent with the ability to interact with the other AI
agents or humans. The input is an interaction perception and
output is an optimal behavior selection. This is a step towards
making emotionally intelligent AI agents.

A specific doctor-patient interaction is tested for the model.
Simulation of a single play in Prisoner’s dilemma game is
provided. This can be iterated as well, taking into account
that in the next round of play, the actor and the object change.
NeuroACT can be used to model any other interaction. Fu-
ture enhancement can include settings for additional context,
such as location. The model can be expanded using similar
methods to predict the emotion and generate re-identification
of the actor and the object post-interaction. This system can
be enhanced by incorporating some sensorimotor signals to

integrate with physical robots.
Some other improvements could be considered involving a

working memory component for the agent to utilize experi-
ence from the previous interactions. The input to the model is
a generic input, that can incorporate visual, textual, or audi-
tory forms, as all would eventually translate into verbal con-
cepts. Advances in neuroimaging techniques like hyperscan-
ning to study the inter-brain synchronisation (Liu et al., 2018)
in social interaction may give more insight into the neural
mechanisms at play.
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Kajic, I., Schröder, T., Stewart, T. C., & Thagard, P. (2019).
The semantic pointer theory of emotion: Integrating phys-
iology, appraisal, and construction. Cognitive Systems Re-
search, 58, 35-53.



Lin, L., Czarnuch, S., Malhotra, A., Yu, L., Schröder, T., &
Hoey, J. (2014). Affectively Aligned Cognitive Assistance
Using Bayesian Affect Control Theory. In IWAAL.

Liu, D., Liu, S. Z., Liu, X., Zhang, C. Q., Li, A., Jin, C., . . .
Zhang, X. (2018). Interactive Brain Activity: Review and
Progress on EEG-Based Hyperscanning in Social Interac-
tions. Frontiers in Psychology, 9, 1862.

MacKinnon, N., & Robinson, D. (2014). Back to the Future:
25 Years of Research in Affect Control Theory. Advances
in Group Processes, 31, 139–173.

MacKinnon, N. J. (1994). Symbolic interactionism as affect
control. Suny Press. (Pages: xvi, 245)

Osgood, C. E., May, W. H., & Miron, M. S. (1975). Cross-
cultural universals of affective meaning. University of Illi-
nois Press. (Pages: xix, 486)

Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The
measurement of meaning. University of Illinois press.
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